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Abstract

The bivariate generalization of the hypergeometric function type I
distribution is defined by the probability density function proportional to

x1V1—1x§2—1(1 -x - xz)yflel(oc, B;v;1-x; —x9), x1 >0, x9>0,
x1 + x9 <1, where vy, vo, a, B and y are suitably chosen constants and

9F; is the Gauss hypergeometric function. In this article, we study

several properties of this distribution and derive density functions of
X1/X9, X1/(Xy + Xg), X1 + Xy and X;Xo.

1. Introduction

The random variable X is said to have a hypergeometric function
type I distribution, denoted as X ~ HI(V, a, B, v), if its p.d.f. is given by
(Gupta and Nagar [1], Nagar and Alvarez [4])

Cly+v-a)l(y+v-p)
T()TV)T(y +v - a-B)
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where 0 <x <1, v>0, vy>0, y+v>oa+p and oF] is the Gauss

hypergeometric function (Luke [2]). The hypergeometric function type I
distribution occurs as the distribution of the product of two independent
beta variables (Gupta and Nagar [1], Pham-Gia and Turkkan [6], Nagar
and Alvarez [4]). For o =y, the density (1) reduces to a beta type I

density given by

F(y +tv- B) v—B-1¢1 _ -1
Moot LT Oerst

and for B = y, the hypergeometric function type I density slides to

Ty +v=0) v-a-1q _ -1
EOCET R

Further, for o = 0 or B = 0 the hypergeometric function type I density

0<x <1

simplifies to a beta type I density with parameters v and y.

Recently, Nagar and Alvarez [4, 5] have studied several properties
and stochastic representations of the hypergeometric function type I
distribution. They have also derived the density function of the product of
two independent random variables having hypergeometric function type I
distribution.

The bivariate generalization of the hypergeometric function type I
distribution, denoted by (X, Xg) ~ Hl(vl, va; a, B, v), is defined by the
density

-1 -1 _
C(vy, vos o, B 7)oyt xy? (L -2y —x9) g Py By v 1 -y —xp), (@)

where x; > 0, x9 > 0, x; + x9 <1 and C(vy, vg; a, B, y) is the normalizing

constant. From (2), the constant C(vy, vo; o, B, v) is derived as
1pel-x
-1 1 -1_vy-1 -1
{C(vi, vo; o, B, ¥)} = Jo .[0 xlvl x;2 -2 - xQ)Y

o F (o, B; v; 1 — 2y — xg)dwgdy

_ ['(vy)T(ve) 1 Vi +v2—1(1 _ x)y—l
T(vy +vg) Jo

o Fi(a, B; ;3 1 - x)dx, 3)
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where the last line has been obtained by substituting y = x;/x and
x = x; +x9 with the Jacobian J(x;, x9 — ¥, x) = x and integrating y.
Now, evaluating the above integral and simplifying the resulting

expression using (A.3) and (A.5), we obtain

C(vi +vg +7 —a)[(vy +vg +7—B)
C(vi)T(ve)T(y)T(vy + vy +y - —B)’

C(Vl’ Va; Q, B: Y) =

where vi >0, vo9 >0, y >0 and v; +vg +vy > a +f.

For o = 0 or B = 0, the density (2) slides to a Dirichlet type I density
with parameters v;, vo and y. In Bayesian analysis the Dirichlet

distribution is used as a conjugate prior distribution for the parameters of
a multinomial distribution. However, the Dirichlet family is not
sufficiently rich in scope to represent many important distributional
assumptions, because the Dirichlet distribution has few number of
parameters. The bivariate distribution given by the density (2) is a
generalization of the Dirichlet distribution with added number of

parameters.

It can also be observed that bivariate generalization of the
hypergeometric function type I distribution defined by the density (2)
belongs to the Liouville family of distributions proposed by Marshall and
Olkin [3] and Sivazlian [7].

In this article, in Section 2 and Section 3, we show that if (X7, X5) ~
HI(vl, va; a, B, v), then X; ~ HI(vl, a, B, vg +v) and Xy ~ HI(V2, o,
B, vi + 7). Further, X; + Xy ~ HI(vl + vy, a, B, 7), which is independent

of X1/(X; + X5) ~ BI(vq, vo) and X;/Xy ~ B¥ (v, vg). We also derive
the density of the product ¥ = X;X5. Finally, in the Appendix, we give

some well known results and definitions that are used in this article.
2. Properties

In this section we study several properties of the bivariate
distribution defined in Section 1. We first derive marginal and conditional
distributions.
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Theorem 2.1. If (X;, Xq) ~ HI(vl, va; a, B, v), then X; ~ Hl(vl, o
B, vo +7) and Xy ~ HI(Vz, o, B, vy +7).
Proof. By integrating x5 in (2), we get the marginal p.d.f. of X; as

—x;

1
Clvr, vai o By a1 - )

oF (o, By 13 1 — %1 — xg)dxy

= C(vq, vo; a, B, y)xlvl_l(l - xl)v2+y_1

<[ R o (- m) - 2,

where we have used the substitution z = x9/(1 — x;). Now, the desired

result is obtained by using (A.3).

Using the above theorem, the conditional density function of X;

given X9 = x9 > 0 is obtained as

T(y +vq) JC1V171(1 —xy —xp)' oFi (o, B; v; 1 =% —x9)
TOVOT) @ - a7t 2File, Bvi+ 11— )

where 0 < x; <1-xy. Further, using (2) and (3), the joint (r, s)-th
moment is obtained as

A . Let=x vi+r-1_vo+s-1
E(Xle) = C(V1, vo; a, B, Y) odo xq X

-1
x(1—x1 —x9) oF(a, B; v; 1 — 21 — x9)dxgdx;

C(Vl’ Vo; Q, B: Y)
C(vi +7, vy +58;a,B,7)

[(vi +vg +y—a)(vy +vg +7—B)
[(vi)T(vo)T(vy + vy +7 - o —B)

C(vi +r)T(vg + §)T(vi + vg +y+T +5—a — )
I(vi+vg+y+r+s—a)l(vi +vg +y+r+s-B)’




... HYPERGEOMETRIC FUNCTION TYPE I DISTRIBUTION 101

where vi > 0,vg >0,y >0, v{ + vg +y+ 71 +s > a + . Now, substituting

appropriately, we obtain

N vilv+y-a-B)
B = 7B

vilvi+)(v+y-a-B)(v+y-a-B+1)

2y _
B(X7) v+y-a)v+y-—a+1)(v+y-B)(v+y-B+1)’

 vmbrr-a-Ppry-a-pe)
E(XlXQ)_(v+y—cx)(v+y—0c+1)(V+Y—l3)(V+V_B+1),

 vvey-a-p)
V) = G e -

[y wirizasp ]
vV+y-a+1)(v+y-B+1) (v+y-o)(v+y-B)/

and

C X,X _ V1V2(V+Y_OL_B)
i ) (v+y-—af(v+y-p)

[(v+y-a-B)(v+y-a-B+1)+ap]
vV+y-—a+1)(v+y-B+1)

X

’

where v; + vg = v.

In the next theorem we derive the bivariate generalization of the
hypergeometric function type I distribution using independent beta and

Dirichlet variables.

Theorem 2.2. Let (U, Uy) ~ D'(cy, ¢co; d) and Z ~ Bl(a, b) be
independent. Then (ZUy, ZUsy) ~ H(c, co; b, ¢; + ¢y +d —a, b + d).

Proof. The joint density of Z and (U;, Uy) is given by
Kup' _1u§2 T —y —ug)? 21— 2 (4)
where 0 <z <1, u1 >0, ug >0, g +ug <1 and

_ T(e; + ¢y +d)l(a +b)
~ T(ep)Teg)T(d)T(@)(b)
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Transforming X; = ZU;, i =1, 2 with the Jacobian J(u, ug, z —> x1, xg, 2)

2

=2z “ in (4) and integrating out z, we get the marginal density of

(X7, X9) as

(z—x; — x9)% 711 - 2)° Lz
2atC +d-a ’

®)

1
-1 _co-1
Kx' “x,

X, +Xg
where x; >0, x9 >0, x; +x9 <1. Now, substituting v = (1 - 2)/(1 —x; —x3)

with the Jacobian J(z — v) =1 —x; — x5 in (5), we obtain

1 w11 - v)¥
OfL - (1-x —xp)urreerd=e

Kx)! _1x§2 -1 (1 -2 —x9 )b+d_lj.

Finally, evaluation of the above integral using (A.4) yields the desired
result.

Corollary 2.2.1. Let Z ~ B'(a, b) and (U, Uy) ~ D (cy, cg; d) be
independent. Then ((1 - Z)Uy, (1 - Z)Uy) ~ H (¢;, ¢9; @, ¢ + ¢ +d — b,
a +d). Further, (ZUy, ZUy) ~ D (c;, co; b+d) if a =c¢; +cg +d and
(1=2)Uy, 1= 2)Uy) ~ Dl(cy, co; a+d) if b=c; +cy +d.

Corollary 2.2.2. Let V ~ B (a, b) and (Uy, Uy) ~ D'(c;, co; d) be
independent. Then (VU /(1 +V), VUs/(L+V)) ~ H (c;, co; b, ¢1 + cg +
d-a,b+d) and (U /1 +V), Usy/A+V)) ~ H (c;, co; a, ¢ +cg +d — b,
a +d). Further, VU, /1 + V), VUy /(1 + V)) ~ DX (c;, co; b+ d) if a = ¢ +
¢y +d and (Uy /1 + V), Ug )1+ V) ~ D(cy, co; a+d)ifb = ¢ + ¢y +d.

3. Distributions of Sum and Quotients

It is well known that if (Xj, X5) ~ DY(v1, vg; vg), then X;/X,
and X;/(X; + X3) are independent of X; + Xy. Further, X;/Xy ~
B (vy, vy), X1 /(X1 + X3) ~ BI(vy, vo) and X; + Xy ~ BL(v; + vy, v3).
In this section we derive similar results when X; and X, have the

bivariate hypergeometric function type I distribution.
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Theorem 3.1. Let (X, X5)~H (v;,ve;a,B,7). Then Z =X, /(X; +X5)
and S = Xy + Xy are independent, Z ~ BL(v{, vy) and S ~ H! (v{ +vs, a,
B, v)-

Proof. Transforming Z = X;/(X; + X3) and S = X; + Xy with the
Jacobian J(x;, x93 — 2, §) = s in (2), we obtain the joint p.d.f. of Z and S

as
C(Vl’ Vo5 , B> Y)ZVI_l (1 - Z)V2_1SV1+V2_1 (1 - S)y_12 Fl ((X, B; ¥ 1- 8)9

where 0 <z <1 and 0 < s < 1. Now, from the above factorization it is
clear that Z and S are independent, Z ~ Bl (v{, vg) and S ~ H (v; + v,
o By 7).

Corollary 3.1.1. Let (X7, X5) ~ H (v, vo; a, B, 7). Then X; /X5 and

Xy + Xy are independent. Further, X;/Xs ~ B (vy, vy).

Theorem 3.2. If (X;, Xy) ~ Hl(vl, vg; a, B, v), then the p.d.f. of
Y = Xq X, is given by

VRC(v1, vas o, B IT() _y*2 71— dy)' 2
Vet lp(y 1 1/2) (14 41— dy)2TTTV

e (@) ( 1-4y jk

=y +1/2),2" 1+ V1 -4y
21— 4y j 1
X oF |y +kR, vo — vy +y+k 2y +2k ————| 0<y<—.
2 1(y 2 1Y Y 1+ m 4
Proof. Making the transformation Y = X;X, with the Jacobian

J(x1, x5 — %1, ¥) = %7 in (2), we obtain the joint density of X; and Y

as

vo—1 2 y-1 2

Y2 (—ai + 21 - y) —X{ +x; =y

C(Vl’ Vo5 &, B’ Y) \} +,y_\:/l ZFI(G" B’ Ys %J’ (6)
X2 1 1



104 DAYA K. NAGAR and PAULA A. BRAN-CARDONA

where p < x; < ¢ with

— 41 -4y _1+41-4y

_1oyl-dy -
p g a 5

and 0 < y <1/4. Now, integrating x; in (6), we obtain the marginal

density of Y as

C(vy, vo; a, B, )y

vz—lj' [(x1 - p)(g —x)]"” !

xy2 r—Vi
X

(xy - p)(g - x1))dx1

x 2F1(0C, B; v; P

vo—1 2y-1 o1 71— gyt
_ C(Vl, Vo o, B, Y)y (CI p) J. ( )

ACAINE O[t—#(1 - p/q)]>""™

. t1-t)(qg - p) ]Jdt’

XM&B i )|

where we have used the substitution ¢ = (¢ — x1)/(¢ — p). Now, expanding
oF] in series form, integrating ¢ using (A.4) and simplifying the resulting

expression, we get the desired result.
Appendix

The Pochammer symbol (a), is defined by (a), = ala+1)---(a +n
-1)=(a),4(@a+n-1) for n=1,2, .., and (a), = 1. The generalized

hypergeometric function of scalar argument is defined by

(o )k (a )h 2k
F (aq, ... ;2) = P , (A1)
a( > a3 2) = Z@% Gy K
where a;, 1 =1, ..., p; b;, j =1, .., ¢ are complex numbers with suitable

restrictions and z is a complex variable. Conditions for the convergence of
the series in (A.1) are available in the literature, see Luke [2]. From (A.1)

it is easy to see that
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a b e 2) = . (a)k(b)ki
ZFI( ’b7 ’ ) kz(:) (c)k Bl |

Also, under suitable conditions, we have (Luke [2, Eq. 3.6(10)])

z| <1. (A.2)

1 a-1 -1
Ioz A -2)" pFy(ay, ..., ap; by, ..., by; 2y)dz

= %F&Fqﬂ(al, ey @y 05 by, ey Dy, 0+ By ). (A.3)

The integral representation of the Gauss hypergeometric function is

given as
o _ F(C) 1 a-1q _ \c—a-1 -b
2F1(a, b, C, Z) = mjot (]_ t) (1 Zt) dt,
Re(c) > Re(a) > 0, | arg(l - 2)| < =, (A.4)

respectively. Note that, the series expansion for 9F] given in (A.2) can be
obtained by expanding (1 —Zt)_b, |zt| <1, in (A.4) and integrating ¢.
Substituting z = 1 in (A.4) and integrating, we obtain

I(c)T(c—a-0b)
I'(c—a)l(c-0b)’

oFi(a, b; ¢; 1) = Re(c —a - b) > 0, (A.5)

where ¢ # 0, -1, —2, .... For properties and further results on these

functions the reader is referred to Luke [2].

Finally, we define the beta type I, beta type II and Dirichlet
distributions.

Definition A.1. The random variable X is said to have a beta type I
distribution with parameters (a, b), a > 0, b > 0, denoted as X ~ B(a, b),
if its p.d.f. is given by

(Bla, b 121 -x)P, 0<x<1,

where B(a, b) is the beta function given by

B(a, b) = T(a)T(b){T(a + b)} L.
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Definition A.2. The random variable X is said to have a beta type II
distribution with parameters (a, b), denoted as X ~ Bﬂ(a, b),a>0,b>0,
if its p.d.f. is given by
(Bla, b)\ 2711 + x)_(‘Hb), x > 0.
The bivariate generalization of the beta type I density is defined by

F(Vl + Vg + V3) vi-1_vy-1 Va—1
Xt a1 ay —xg) BT,
[(v))T(vg)T(vg) "t 72

x1 >0,x9 >0, 81 +x9 <1, (A.6)

where v; > 0,7 = 1, 2, 3. This distribution has been considered by several
authors and is well known in the scientific literature as the Dirichlet
(type I) distribution. We will write (X7, Xg) ~ DY (v, vo; v3) if the joint
density of X; and X, is given by (A.6).

The matrix variate generalizations of the beta type I, beta type II and

Dirichlet distributions have been defined and studied extensively. For
example, see Gupta and Nagar [1].
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