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Abstract 

For an orthogonal set of polynomials ( )zpr  relating to a kernel weight 

function, we consider the zeros of ( ),zpr  focusing attention on the 
largest. Systems such as binomial in its three forms (Poisson, binomial, 
negative binomial), the normal, and the approach using a Maple code for 
zeros of functions expressed in factorial form are described. In some 
cases a nearly linear form for the largest zero is .CrrBAzr ++=  
Particular attention is given to the third degree zeros relating to the 
general case. 
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1. Introduction 

We have from Wall [8] 

( ) ( ) ( ) ( )( ),02ln2
1ln2

1ln >+π+−




 −=Γ zzJzzzz R  

where the last term is the continued fraction ( ) "
+++

= z
a

z
a

z
azJ 321  and 

4021 ...,,, aaa  are given in Char [3]. 

The associated set of orthogonal polynomials ( )zpr  follows the 
recursion 

( ) ( ) ( ) ( )…,2,121 =−= −− rzpazzpzp rrrr  

with 0,,1 10 === spzpp  if .0<s  The first few cases of ( )zpr  are 
given in Table 1. 

Table 1. The orthogonal polynomial ( )zpr  

r ( )zpr  

1 z 

2 2
2 az −  

3 ( )32
3 aazz +−  

4 ( ) 24432
24 aaaaazz +++−  

5 ( ) ( )3525245432
35 aaaaaazaaaazz ++++++−  

A graphical representation is shown in Figure 1. 

It is well known that the zeros of ( )zpr  are real, distinct, and 

between a consecutive pair rr pp ,1−  there is a zero of ( ).1 zpr+  What is 

the form of the largest zero in ( );zpr  can it be approximated? 
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Figure 1. Orthogonal polynomials 21, pp  and .3p  

2. The Zeros of ( ),zpr  and ( )zJ  

Using the Maple symbolic code we have the zeros ( ):rz  

,2523809524.0,0333333333.0,0833333333.0 321 === zzz  

,5174736492.1,0115230681.1,5256064590.0 654 === zzz  

,0268871923.4,0099173833.3,2694889742.2 987 === zzz  

.002768081.510 =z  

The orthogonal polynomials are: 

( ) ,1 zzp =  

( ) ,033333.02
2 −= zzp  

( ) ,285714.03
3 zzzp −=  

( ) ,017520.0811321.0 24
4 +−= zzzp  

( ) ,306527.0822844.1 35
5 zzzzp +−=  
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( ) ,026586.0537685.1340317.3 246
6 −+−= zzzzp  

( ) ,722246.0674609.5609806.5 357
7 zzzzzp −+−=  

( ) ,080023.0350549.5728688.15619724.8 2468
8 +−+−= zzzzzp  

( ) ,988425.2201558.28318746.38646611.12 3579
9 zzzzzzp +−+−=  

( ) 46810
10 888537.106441225.81649379.17 zzzzzp −+−=  

.400337.0755983.29 2 −+ z  

The solutions to ( ) 0=zpr  are 

Table 2. Zeros of ( )zpr  

r Zeros 

3 5345224838.0,0 ±  

4 1490042347.0,8883234111.0 ±±  

5 4329328185.0,278832666.1,0 ±±  

6 671292531.1,7273992128.0,1341235375.0 ±±±  

7 083480262.2,058497207.1,3853571018.0,0 ±±±  

8 496804990.2,396413273.1,6481101603.0,1251872687.0 ±±±±  

9 922790877.2,755931799.0,9453299115.0,3563135901.0,0 ±±±±  

10 349278196.3,120209256.2,250580285.1,5985892571.0,1190261337.0 ±±±±±  

Now set up the zeros when we take the Stieltjes approximation (see 

Char [3]) 162sas =∗  (Stieltjes [5, letter 173, p. 354]) and also see 
Stieltjes [6]. 

There should be a very close set of zeros corresponding to using the 
correct values of .sa  

Table 3. Comparison of the largest zeros for ra  and ∗
ra  

r 11 12 13 14 15 16 

ra  4.22 4.66 5.11 5.55 6.00 6.46 
∗
ra  4.22 4.67 5.11 5.56 6.01 6.46 
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Table 3 indicates the largest zeros are practically the same for the 
partial numerators relating to the Stieltjes continued fraction form and 

the Stieltjes conjecture ( ).16~ 2rar  

rz  is linear with a small gradient. This suggests the model 

CrrBAzr ++=  

which we fitted using a least square Maple program, the second term in 

rz  could be ,λBr  where .10 ≤λ<  

Note that for higher curvature a possible model for zeros might be 

,2DrCrrBAzr +++=  

where A, B, C and D are constants. 

3. The Normal Density and the Well Known Laplace 
Continued Fraction 

Laplace continued fraction: 

( ) ( ) .03211 >
++++

= zzzzzzf R"  

The orthogonal set ( )zpr  

( ) ,10 =zp  

( ) ,1 zzp =  

( ) ,12
2 −= zzp  

( ) ,33
3 zzzp −=  

( ) ,36 24
4 +−= zzzp  

( ) ( ) ( ) ( )zprzzpzp rrr 21 1 −− −−=  

and so on. The linear form with slight slope is an approximant to .rz  
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4. Zeros of Orthogonal Polynomials Related to the 
Binomial Distribution 

4.1. The Poisson case 

Using finite difference expressions, such as 

( ) ( ) ( ) ( ),,2,111 …" =+−−= rrxxxx r  

( ) ( ) ( ) ( ),11 −+ =−=∆ rrrr rxxxx  

consider the orthogonal system related to the Poisson case ( )xpr  for 
which 

( ) ( ) ( )0...,,2,1 >θ== ∆θ− rxexp r
r  

( )rx







∆θ−∆θ+∆θ−= "3

3
2

2

!3!21  

( ) ( ).!
0

r

s

ss
xs 











 ∆θ−
= ∑

∞

=

 

Thus 

( ) ( ) ( ) ( ) ( )"33221
321

−−− θ







−θ








+θ








−= rrrr

r x
r

x
r

x
r

xxp  

( ).0...,,2,1 >θ=r  

4.2. The binomial case 

The generating function of the binomial being ( ) ,10, ≤<+ pqpt n  
1=+ qp  and ....,2,1=n  

The orthogonal set ( )[ ]xGr  is defined as 

( ) ( ) ( ) ( )rrn
r xpxG 11 +−−∆+=  

and we consider the cases .1...,,2,1 −= nr  See Aitken and Gonin [1, 
expression (11)]; expanding 
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( ) ( ) ( ) ( ) ( )( ) ( )2221 2
2

1
1

−− +−







++−








−= rrr

r xprn
r

pxrn
r

xxG  

( )( ) ( ) .3
3

333 "−+−







− rxprn

r
 

The negative binomial is set up for its orthogonal system by setting 
,pp −=  and ,kn −=  where ,0>p  and .0>k  

There are problems involved in the binomial case since the orthogonal 
set is finite - hence only approximations are available. 

4.3. The negative binomial distribution and largest zeros 

The orthogonal set ( ){ }xHr  is given by 

( ) ( ) ( ) ( )0,01 1 >>∆−= −+ kpxpxH rrk
r  

( ) ( ) ( ) ( )2221
2

1
1

1 −− 





 −+

+





 −+

−= rrr xrp
rk

prx
rk

x  

( ) ( ) .
3

1 333 "+





 −+

− −rxrp
rk  

When ,1=k  the negative binomial distribution reduces to the geometric 

distribution, the form essentially being ( ) ( ) "tABtABA 2++  for its 

probability generating function with ,10 ≤< A  .1=+ BA  The 
corresponding negative binomial is 

( ) ( ) ( )rr
r xpxH ∆−=∗ 1  

( ) ( ) ( ) ( ) .
21

2221 "+





+






+= −− rrr xrp

r
prx

r
x  

4.4. The Stieltjes continued fraction form under equivalence 
transformations 

The continued fraction 

"
++++++ 111
332211 q

z
pq

z
pq

z
p  
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(p’s and q’s are positive and real) may be expressed as 

.1111
4321
"

+α+α+α+α zz  

The parameters ...,,, 21 αα  being given by Stieltjes [5, letter 177, p. 365]. 

A first condition for the moment problem to have a solution is for the α’s 
to be positive. Using successive equivalence transformations we have 

Standard terms:  
321

21
21

1
1

,,1
ppp

qq
pp

q
p  for .,, 531 ααα  

New terms:  
321
321

21
21

1
1 ,, qqq

ppp
qq
pp

q
p  for .,, 642 ααα  

The pattern is clear, and 

( )1...;,0 0
121

21
12 ===α

+
+ qsppp

qqq
s
s

s "
"  

and 

( ).,2,1
21
21

2 …
"
"

==α sqqq
ppp
s
s

s  

4.5. Examples 

Example 1. The ...,,2,1, == sqp ss  then 1122 1,1 ++ =α=α sss p  

so ∑ ∞=αs  satisfying the 2nd condition for the existence of a solution 

to the moment problem. 

Example 2. 

( ) ( ) ,2,12 33 rqrp rr =−=  

( ) ,12
1112

115
113

1111
3

12 





 







+
+







−
+





 +





 ++=α + rrr "  

( ).,2,12
114

112
11

3
2 …" =







 





 −





 −





 −=α rrr  

Finite and infinite products are needed to come up with satisfactory 
bounds (see Bromwich [2, Chapter VI]). 
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5. The Zeros of the Poisson Case ( )1=θ  

We have always pointed out that the largest zeros for a Poisson 
system are approximately linear. This property also holds for the 
complete set of zeros for ( ),xpr  r  being fixed (i.e., the internal zeros are 
nearly linear deviating somewhat in the vicinity of the largest). Evidence 
of this is clear from the listing below. 

Complete list of zeros for Poisson ( )1=θ  

( ) ,6180.2,3820.02 =  

( ) ,1149.4,7459.1,1392.03 =  

( ) ,5443.5,0797.3,3320.1,0440.04 =  

( ) ,9288.6,3884.4,5406.2,1307.1,0114.05 =  

( ) ,2807.8,6768.5,7514.3,2457.2,0429.1,0024.06 =  

( ) ,6073.9,9485.6,9597.4,3771.3,0956.2,0114.1,0004.07 =  

( ) ,9137.10,2063.8,1636.6,5174.4,1662.3,0304.2,0024.1,0001.08 =  

( ) ,4521.9,3625.7,6623.5,2504.4,0612.3,0077.2,0004.1,0000.09 =  

,2033.12  

( ) ,5564.8,8093.6,3445.5,1036.4,0181.3,0016.2,0001.1,0000.010 =  

 ,4787.13,6877.10  

( ) ,9569.7,4455.6,1564.5,0350.4,0043.3,0003.2,0000.1,0000.011 =  

,7419.14,9143.11,7454.9  

( ) ,5513.7,2181.6,0592.5,0095.4,0008.3,0000.2,0000.1,0000.012 =  

,9945.15,1329.13,9297.10,1040.9  

( ) ,2869.7,0907.6,0181.5,0021.4,0001.3,0000.2,0000.1,0000.013 =  

,2376.17,3443.14,1096.12,2502.10,6603.8  

( ) ,1292.7,0308.6,0044.5,0004.4,0000.3,0000.2,0000.1,0000.014 =  

,4724.18,5493.15,2853.13,3951.11,7715.9,3615.8  
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( ) ,0483.7,0084.6,0009.5,0001.4,0000.3,0000.2,0000.1,0000.015 =  

,6996.19,7485.16,4572.14,5384.12,8841.10,4405.9,1741.8  

( ) ,0145.7,0018.6,0001.5,0000.4,0000.3,0000.2,0000.1,0000.016 =  

,6254.15,6802.13,9975.11,5231.10,2245.9,0706.8  

,9201.20,9423.17  

( ) ,0035.7,0003.6,0000.5,0000.4,0000.3,0000.2,0000.1,0000.017 =  

,7901.16,8202.14,1112.13,6084.11,2797.10,0979.9,0233.8  

,1342.22,1312.19  

( ) ,0007.7,0001.6,0000.5,0000.4,0000.3,0000.2,0000.1,0000.018 =  

,9585.15,2249.14,6958.12,3389.11,1299.10,0351.9,0062.8  

,3427.23,3156.20,9517.17  

( ) ,0000.6,0000.5,0000.4,0000.3,0000.2,0000.1,0000.019 =  

,7848.13,4016.12,1662.11,0503.10,0102.9,0013.8,0001.7  

,5459.24,4958.21,1102.19,0950.17,3385.15  

( ) ,0000.7,0000.6,0000.5,0000.4,0000.3,0000.2,0000.1,0000.020 =  

,8750.14,4672.13,2066.12,0690.11,0158.10,0024.9,0002.8  

.7443.25,6721.22,2658.20,2299.18,4518.16  

As r increases, roots become ....,3,2,1,0  In the three cases the 
largest zeros are approximately linear, see Figure 2. Note that the zeros 

are found using Maple code for polynomials with terms ( ) ( ),,, 32 xxx  etc. 
Moreover we expect the zeros to be real. 
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Figure 2. Largest zeros for Poisson with ,5.0θ =  0.1  and 5.0. 

The solving of the cubic equation is described by Nickalls [4] in 
details. We have 

( ) ,23
3 dcbxaxxp +++=  (1) 

and in our case, ,1=a  and the relations 

,2,33,3
32 δ=−=δ−= hcbbxN  

produce Ny  by replacing x in (1) by ,Nx  followed by 

( ) ,3cos hyN−=φ    and   ( ) ,3arccos hyN−=φ  

and 

,cos21 φδ+= Nxx  

( ),32cos22 φ+πδ+= Nxx  

( ).34cos23 φ+πδ+= Nxx  

For the Poisson case the orthogonal polynomial for the cubic is 

( ) ( ) ( ) ,33213 3223
3 θ−θ+θ++θ+−= xxxxp  
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and solutions are 

( ),1,0,13
2cos3

3121 −=




 π+φθ++θ+= kkx  

where 

( )
( ).0

27
312

arccos3
1

3
>θ



















θ+

θ=φ  

For the case of ,1=θ  three roots are 4.1149, 0.1392 and 1.7459 as 
expected. 

The essence of the solution to the trigonometrical cubic lies in the 
equivalence of the two equations 

BAzz +=3    and   ( );3coscos3cos4 3 φ+φ=φ  

i.e., 

( ) .3coscos3cos4 3

3

φ
=

φ
=

φ

BAzz  

6. Concluding Remarks 

For a classical account of the general properties of zeros of functions 
see Szegö [7]. Simple formulas for zeros in general are rare: however, 
some progress is possible using symbolic programs, such as Maple, 
Mathematica, etc. Our study includes equations of zeros, the equations 
being of order 40 to 50. 

An unusual model emerges, as 

,~ CrrBAzr ++  

and in some cases this appears to be a linear form. Generalizations of 
this suggest new problems in elementary geometry. 
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