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ANALYTIC DENSITIES IN NUMBER THEORY.
PART I: ANALYTIC DENSITIES OF SUBSETS
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Abstract

In this paper, we present a detailed study of the analytic, conditional
analytic and derived analytic densities and give some applications to
classical number theory. Some new existence criteria [A. Fuchs and
R. A. Giuliano, Théorie Générale des Densités, Pub. I.R.M.A.,
Strasbourg. I, 1989] are established. Certain results obtained generalize
those obtained in ([JP Jour. Algebra, Number Theory & Appl. 5(3)
(2005), 513-533], [Far East J. Math. Sci. (FIMS) 18(1) (2005), 31-48]).

1. Prelude

We consider a family R={p,,aeT} of o-finitely additive

probability measures on the set ¢(N*) of subsets E of N*. We examine

the convergence, when o tends to ag, of

pa(B) = Ip(m)ng (in}).
n=1

If the limit, lim p,(E), when o — 0, exists, then we say that E has a
o

density in the sense of the family ‘R.
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If we take, for example, oo = s, T = |1, + o [, then we obtain the zeta-

family
C.! = {C87 s > 1}a

where for all subsets E of N*,

)= G () = o 3 AE)

n

and Iy is the indicator function of the subset E.

By taking the limit when s tends to 1%, we diffuse the considered

measure, and we obtain that we call an analytic density.

We prove that the latter gives a generalization to the asymptotic

density [1, 2].

More precisely, analytic density is an extension of the asymptotic

density. Notably, the class £ of subsets E of N*, for which lim p (E)
S

exists contains, strictly, the class © of subsets of N*, for which

lim v, (E) exists.
n

We recall that for all real numbers s > 1, the series

converges, and its sum is noted ¢(s). Thus

&(s) = ZOO: ni
n=1

Definition 1.1. The Riemann’s zeta function { is the
defined, for all real numbers s > 1, by

C(s) = i % .
n=1

function
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Proposition 1.1. The function ¢ defined on |+ 1, + « [, is continuous,

derivable and decreasing.

For ulterior needs, we look how the zeta function ¢ and its derivation
¢' behave in a neighborhood of 1 (the asymptotic behaviour of {(s),

Log((s) and ¢'(s), as s — 17).
Theorem 1.2 [1, 6]. We have
@ €)=~ + 0(1), (s > 1°),

1
S_

(b) Log{(s) = Log

T O(s-1), (s > 17).

Theorem 1.3 [1, 6]. We have

1
(s = 1)

C'(s) = - +0(Q1), as (s > 1%).

2. Main Results

2.1. Analytic densities

A generalization of asymptotic density [2] is the density introduced
by use of Riemann’s zeta function given previously.

We begin by introducing on (N*, o(N*)) a family of laws of

probability indexed by a real number s > 1, asin [3].

Definition 2.1. Let E be a subset of N*. We put, for all s > 1,

_ 1 N 1g(n)
ny(E) = C(s); =,

n

where Iy (n) is the indicator function of the subset E.

We say that E has the number ¢ as an analytic density, if ( =
lim p (E), when s tends to 1*. (Notice that this limit belongs to [0, 1].)
S

We denote this limit by 8(E), and we call 8(E) to be the analytic

density of E. We write £ to be a class of subsets of N* which has an
analytic density.
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Proposition 2.1. Analytic density & is invariant under translation.
More precisely, if E « N* and k € N, then
tim, (us (5 + ) () = 0

(s—>
uniformly on E.

Proof. We prove this property by increasing recurrence: (1) For
k =1, we prove that py(E) and py(E +1) have the same asymptotic

comportment when s tends to 1*. Indeed, we put

et = my(B) - alE 1) = 4, )Z Ip() _ g<15> 5 IE:S(n)

nS

1
:@én C(S)Z:(n+1)S C(S)Z[n (n+1 ]

And then

1
C(S)Z( (n+1 ]:c(sy

Let s tend to 17. Then we see that ef — 0 uniformly in E. Otherwise,
py(E) and pg(E +1) have the same asymptotic comportment, and these

two limits are equal if these exist. In another way,
S(E)=8(E +1),
so, invariance by translation of analytic density.
(2) We suppose
Bo(E), wy(E +1), oy wo(E + k —1)

have the same asymptotic comportment when s tends to 1* and we prove
that
ps(E) and py(E + k)

have the same property. Indeed,

1 1 1
Hs(E)=@Z)‘%¥; p(E +1) = Q(s) Z(n+k)s )

ek
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We put
ey = ns(B) - ps(E +E-1).
Then
e, = ns(E) - ns(E + k) = (n5(E) - ns(E +1)) + (ns(E +1) - py(E + 2))
+ot (us(E + k= 2) = pg(E + k=1))+ (n5(E + k= 1) - ps(E + k).

The second member is the sum of finite number of terms which tends to 0

uniformly in E, so
e} — 0 uniformly in E.

Then

ns(E) and pg(E + k)
have the same asymptotic comportment when s tends to 17, and these
two limits are equal if there exist, otherwise,

SE)=8(E +k) Vk.

Proposition 2.2. (a) All finite subsets E € p(N*) belong to £ and
3(E) = 0.

(b) All cofinite subsets E € p(N*) belong to £ and 3(E) = 1.

Proposition 2.3. £ contains the algebra of finite and cofinite subsets
of E.

Proposition 2.4. For all m of N*, the class mN* of multiples of m
belongs to £ and
o1
3(mN™) = —
Proof. Noting that

* 1
"s(mN ) R
m
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and letting (s — 1), we have

3(mN™) = %

Proposition 2.5. The set P of prime numbers belongs to £ and
3(P) = 0. In another way, prime numbers are rare.

Proof. We have

or, by Theorem 1.2(a),

1 6 +
0] (s—-1), as (s > 17).
Also,
ZL~ Log 1 ,as (s > 17).
p° s—1
pelP
Thus
ny(P) ~ (s — 1) Log Sfl, as (s > 1%).

This tends to 0, when (s — 1), so §(P) = 0.

Proposition 2.6. The set Ey of square-free integers belongs to £ and

1 6

(Ey)=—~=—.

F2)=79) = 2

Proof. By Proposition 2.10 in [3] and the fact that @ is
continuous, it follows that

1 1 6 n
R(Ey)=—%= > —==—7F,as(s>1").
)= g Ty T e :

So

1

3(E3) = 535 = n%
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Proposition 2.7. The sets E; (k > 2) of integers without divisors of
the form nk belong to £ and

5(Ey,) = ﬁ

Proof. Since

n(Ey) = %

on taking the limit when (s — 1%), it follows that

5(Ey,) = ﬁ

Theorem 2.8. Let E be a subset of N* such that
>
= < + oo,
n

Then E has an analytic density 8(E) and 8(E) = 0. The converse is not
necessarily true.

Proof. We have

1 1 1
Fs(E):@;§<@;

S|

(s >1).
Then
n(E) - 0, as (s > 17).
For the converse see Theorem 4.2.
Before giving other applications, we require the following result:

Theorem 2.9. (Criterion). Let E be a subset of N* neither finite, nor
cofinite, written in the form

E = U [pn’ qn[’

n>1
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where (p,,),s; and (g, ), are two sequences of integers such that
0<p,<q, <Pps1 VYVn 21
Put
pn = Logq, — Logp, and o, = Logq, — Logq,_1, n21 (q9 =1).
Let ¢ be a real number in ]0,1[ and suppose the following two
hypotheses hold:

(Hy) : Log p,, ~ Logqp_y, as (n — + ).

(Hz):g—”af, as (n - + o).

n

Then the set E has an analytic density 8(E) and 8(E) = (. If ¢ =0, then
(Hy) = 5(E) = 0.

For the proof of this theorem, we use the following result:

Lemma 2.10 ([1, Théo. VIL.9, p. 168], [5, Théo. 8.2, p. 25]). Let
E = U [Pn,» @, e a subset of N*, neither finite, nor cofinite. Let u be a

n=1
positive measure on (N*, p(N")), with total mass +o and support N*

and F be its a distribution function. We put

pr = Flar) - F(pr), o) = Flgr) - F(qr1), k=(q =1).

Then
n n-1
Z Pk 7 Pk
gu = lim sup L. , 8, =liminf —(qn’l) k=1
(n—>+0) 1 K (n—>+x) F(pn) n-1
(o3 o},
k=1 k=1

We give a direct application of this theorem to the first-digit problem.

Definition 2.2. We suppose that we adopt the base b (b > 2) as a

numeration base; a digit is then a number %k € {0, 1, ..., b — 1} and the set
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E;, of strictly positive integers which admits a development in the base

b, with first-digit k£ € {0, 1, ..., b — 1}, is given by

B, = | J ko7, (e + 100"

n>0

the disjoint union of its connected components in second member. A

solution of the first-digit problem is independent of the numeration base.

Proposition 2.11. Let k be a given integer, with 1 <k <9. We
consider the set E formed by strictly positive integers with development in
base b has a significantly first-digit equal to k. Then the set E has an
analytic density 8(E) and

5(E) = Log,,(1 s %)
Proof. Indeed E takes the form

E = U [pn’ qn[’

n>0
where
p, = k0", q, =(Fk+1)0", ke{l,2 .., 9.
(a) We have
Log p,, = nLogb + Logk,
Logq,_; = (n—-1)Logb + Log(k +1).
For fixed &, we have
Log pp, ~ Logqn-1-
(b) Then

n n
q_n:M:(HL) and dn_ _ _(k+1)b
P kb" k 1 (k+1)p"7!
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We put
Pp = Logq—” = Log(l + l) and o, = Logq—” = Logh.
120 k dn-1
Then
1
o 03] (=
o, Logbh (" T%)

So, by Theorem 2.9, we shall have
1
3E) = Logb(l + %).

This result will be obtained in another way in an ulterior theorem.

Proposition 2.12. Let E be the set of natural integers with

development in base b > 2 containing an odd number of digits. Then, E

has an analytic density 8(E) and 3(E) = %

Proof. We write E in the form of disjoint union of its connected

components
E — U [bzk’ b2k+1[.
k>0
We put
DL = b2k’ qr = b2k+1, k > 0.
Then

(@) Log pp, = 2k Logb; Logqy_1 = (2k —1)Logb.
We have

Logpr, 2kLogb 2k

Logqr, (2k-1)Logh 2k—1 1, as (k > + ).
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In other words

(b) Lk
Dpr

We put

and

Then

b2k+l

Log pj, ~ Logqyj_;.

2k+1
—band T 0 _p2
Qr1 2kt

b2k

P = Logq—k = Logb
DPp

s), = Log -2k = 2 Logb.
qr-1

Pr _ Logb _1

o, 2Logbhb 2°

So, by Theorem 2.9, we shall have, §(E) = %

229

Corollary 2.13. We suppose that sequences (py, )51, (@5 ), Satisfy

with (1, {9 € [1, + x|, one at least of those limits is different of 1. Then

Pn

=L, — (9, as (n > + o)

n n-1

(a) Log p, ~ Logqy_1, as (n — +);

(b) 2o =

On

q q
Log =~ Log >
% by _ % bn ., _Logty
Log dn Log(Q_n Pn \J LOg(EIZZ)
n-1 Pn 9n-1

It results that E admits an analytic density

Lngl

SE) = Togltrtz)"

as (n — +©).
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Theorem 2.14. (Existence criterion). Let ¢ be a real number such

that 0 < ¢ < 1. Then the following two properties are equivalent:
(p1) : E admits ¢ as an analytic density.
(p2) : (p2); : Log p, ~ Logq,_1.
(pg)y : For
p, = Logq,, — Logp,, o, = Logq, —Logq,_1, n>1, (qo =1),

we have

>
i\
I

el

=

NgE
3Q

il
1,

in other words

1
7w 2P
kn;laé, as (n > + o).
o
k=1

If ¢ = 0, then a condition (p;) amounts to (pgy),-

In particular, if these two sequences (p, ), (65,),5; converge in the
sense of Césaro to two limits /1, /o (with /9 > 0), then property (pg), is
3
Ty

verified with ¢ =

It results the following corollary:
Corollary 2.15. We suppose that two sequences (pn)nzl’ (Qn)nzl

satisfy the following two properties:

(pl):q—” - r,as (n > +wo).
n

(02) : (@n)n = p. s (n = +<0).
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Then, E admits an analytic density 3(E) and

Logr
S(E) = Lo§ -

Proof. It is enough to prove that under the hypothesis properties
(p2); and (pg), above hold.

(1) It holds from (p;) that

Log p,, ~ Logqy
and from (py) that
Logq,, ~ nLogp.
Also
Logqy, ~ Logqy-1-
It results that
Log pp, ~ L0gqp_1-

@) p, = Log(q—n) — Logr, also p,, - Logr in the sense of Césaro,

Pn

c, = Logq, — Logq,_1,

n

1 1 1

~ 20k = - Logay = Log((¢n)n) — Logp,
k=1

in other words, o,, > Logp in the sense of Césaro so the result.

Remark 2.1. By virtue of (p;), condition (pg) can be replaced by the

following:

' 1
(p2) : (Pp)n —p, (p>1)
Indeed,

1
1 - 1
1 p 1
(pn)n > (qnj”(qn n,

n
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or, by (pl )’

1
(o) -
qn
then
1 1
(pn)n ~ (Qn)n
2.2. Applications

Proposition 2.16. Let E be a subset of N* given by

E = pe axl.

k>1
where

o = bP® . P(k) = ak + d,
qr = bQ") Q(k) = ak + d*.

We suppose that a, d, d* are real numbers such that:
(Hy):a > 0.

(Hy) : For all k > 1, p;, and q;, are integers > 1.

d* —d

(H3):0 < <1

Then E admits an analytic density 8(E) and 3(E) = d a_ d .

Proof. Indeed, we put
pr = Logqy — Log pj, = (d" — d)Logb,
o, = Logqp — Logqp_1 = aLogh.
We verify

(a) Logp, __ ak+d — 1, as (k > +o);

Logqr1  qa(k-1)+d*
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in other words

Log pp ~ Logqp_q-

() 2L -

Pr d"-d
Op a )

So, by Theorem 2.9, it holds that E admits an analytic density &(E)

d' -d

and §(E) =

Proposition 2.17. Let E be a subset of N* given by

E = U [Pk Qrl,

k>1
where
pp = b P(k) = ak™ + dR" + o(R* V),
ap = b, Q) = ak™ + K" + ok V).
We suppose that a, d, d*, n are numbers such that:
(Hy) : n is an integer > 2.
(Hy):a > 0.
(Hg): For all k > 1, p, and q; are integers > 1.

d' -d

(H4):0< na

< 1.

Then E admits an analytic density 8(E) and 3(E) = d n; d .

Proof. Indeed, we put

pr = Logay — Log py, = (d" ~ d)k" ™" + o(k" ™)) Logb,
oy = Logqy, — Logqy,_, = (nak™ ! + o(k" 1)) Logb.
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We verify

Logp, _ _P(k)
Logqr, Q(k-1)

-1, as (B > +»);

(a)

in other words

Log py, ~ Logqp_;.

[ JLEN d _d, as (k » + o).
Op na
So, by Theorem 2.9, it results that E admits an analytic density 8(E)

d -d

and 3(E) = Py

Proposition 2.18. Let E be a subset of N* given by

E - U [02k7 02k+1[,

k>0
where integers ¢ > 2,
a=Loge, d=0, d* = Logy c,

in Proposition 2.16.

Then E admits an analytic density 3(E) and 3(E) = %

3. Conditional Analytic Density
It is natural to consider which we call the conditional analytic density
on the prime numbers.

We start with the relation

_ (AN B)
HS(A‘B)— HS(B) )

where py(B)>0 and A=E, B=P, for all s>1. We have the

following definition:
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Definition 3.1. Let E be a subset of N* and we consider, for all

s > 1, the following expression:

ZL
(B (p) = BelEOP) _ ikl

ps(P) ZL ‘

peP b

Then we say that E admits the number ¢ as a conditional analytic
density related to P, if lim py(E |P) exists and equals ¢/, when s tends
S
to 17.
(Notice that this limit belongs to [0, 1].) We shall denote this

conditional density by 5.(E).

Or, we know that

,as (s > 1%).

Logt(s) ~

1
s
peP p

So, E admits a conditional analytic density ¢, conditionally to P, if and
only if

. 1 1
Iim ———— —
(s—>17) Log &(s) I;Eps
exists and equals /.

This density has been used, first of all, by Dirichlet, who proved in
the first third of 19th century that there are infinitely many prime

numbers of the form:
p = k(mod m),
where k and m are two relatively prime numbers.

Theorem 3.1. Let k and m be two relatively prime integers and let
Ej, , be the set of prime numbers of the form p = k(mod m). Then Ej, ,,
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admits a conditional analytic density 5.(Ey, ,,) and

5 (Ek m) - (m)

where ¢ is the Euler function. In other words,

lim pg,(mN* +E|P) = L

(s>1%) o(m)’
4. Comparison between Asymptotic and Analytic Densities

Before we give two general theorems which characterize analytic
density of subsets of N*, we obtain the following theorem which states

one result of comparison between asymptotic density and analytic density

for a subset of N*,

Theorem 4.1. Let E be a subset of N*. Consider the following two

properties:

(py): (nl_iglw)vn(E) = lim Z I (k) exists (= d(E)),

n—)+oo n

. 1m = 1m IE(n exists
(o) : lim ps(E)= I )C()Z ts (= 8(E)).

(s>1*

Then (p;) = (ps) and we have, d(E) = 3(E).

The converse of above is false.

In other words, if E admits an asymptotic density d(E), then it
admits an analytic density §(E) and these two densities are equal

(d(E) = 3(E)). The converse is false.

So, if we denote a class of subsets of N* which admits an asymptotic

density by ® and a class of subsets of N* which admits an analytic

density by &, then we obtain a strict inclusion ® < €&.
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Moreover, analytic density & on £ is an extension of asymptotic
density d on D.

Proof. For a direct proof see [4]. For the converse an example is
given by Theorem 2.6, Corollary 2.7 and Corollary 2.8 in [2].

Theorem 4.2. Let E be a subset of N* such that
>
= < + oo,
n

Then E admits an analytic density 3(E) and 3(E) = 0.

The converse is not necessarily true.

Proof. The direct conclusion follows by noting that for all s > 1, we

have

For the converse, we take f(p) = Ip(p), where

SR P,
is the indicator function of the set of prime numbers P.
Then, by Proposition 2.5, §(P) exists and &(P) = 0. But
> 1
pep P

diverges.

5. Derived Analytic Density

A subset E of N* admits an analytic density 3(E) equal to 4, / €
[0, 1], if

+00

Z I (k) ~ L, asstendsto 17,
P (-1)
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Definition 5.1. Let E be a subset of N*. We say that E admits a
derived analytic density ¢, (¢ € [0, 1]) or a p,(E)-density ¢, if

+00

5> ass tends to 17.
k® (s-1)

k=1
Corollary 5.1. p,(E)-density { means that

+00

Z IE(k)st‘l)gk -t 5 » as s tends to 1",
~  kk (s-1)
or
+00
ZM ~ 12, as t tends to 0%,
~ kK ¢

so, this is a density related to the sequence (p; )t>0 of measures defined by

where ¢}, is the Dirac measure on N*, defined by the unit mass placed at
the point k.
Its discrete Laplace transform is of the form
+00 +00
Iy (k)Logk Igp(R)Logk
g(t):Z—E( )k 5 exp(—tLogk)=Z—E( )t g
k=1 k=1 kk

and the distribution function F'is given by

Iz (kR)Logk
F(x) = Z—E()k g8
Log k<x

By Tauberian theorem [1, (1.6), p. 30],

g(t) ~ 12, as t tends to zero,
t
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if and only if

F(x) ~ éxz, as x tends to infinity.

If
x =Logn, t=s-1,
then
i Ig(k)Logk ¢
e~ (s — 1)

if and only if

Z”: Ig(k)Logk _ ¢ Log’n
k 2
k=1
Corollary 5.2. Let E be a subset of N* and let ¢ be a real number in
[0, 1]. Then the following three properties are equivalent:

(p1) : E admits a pj-density (,

+00

Ig(k)Logk ¢ N

(p2) : £ ~ ,as (s > 17),

,; k* (s - 1)

n

N0 Ip(k)Logk  (Log®n

(p3).; A g as (n = + o).

Definition 5.2. Let E be a subset of N*. For a real number s > 1,

Ig (k)

1
Bs(E) = Log (s) ; (k Logk)®

We call iterated analytic density of the set E to be of order 2 if lim E (E)
S
exists when s tends to 1.
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