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Abstract

In this paper, we present a detailed study of the analytic, conditional
analytic and derived analytic densities and give some applications to
classical number theory. Some new existence criteria [A. Fuchs and
R. A. Giuliano, Théorie Générale des Densités, Pub. I.R.M.A.,
Strasbourg. I, 1989] are established. Certain results obtained generalize
those obtained in ([JP Jour. Algebra, Number Theory & Appl. 5(3)
(2005), 513-533], [Far East J. Math. Sci. (FJMS) 18(1) (2005), 31-48]).

1. Prelude

We consider a family { }T∈α=ℜ α ,µ  of σ -finitely additive

probability measures on the set ( )∗℘ N  of subsets E of .∗N  We examine

the convergence, when α tends to ,0α  of

( ) ( ) { }( )∑
∞

=
αα =

1

.:
n

E nnIE µµ

If the limit, ( ),lim Eα
α
µ  when ,0α→α  exists, then we say that E has a

density in the sense of the family .ℜ
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If we take, for example, ,s=α  ] [,,1 ∞+=T  then we obtain the zeta-

family

{ },1,: >ζ=ζ ss

where for all subsets E of ,∗N

( ) ( ) ( )
( )∑ζ

=ζ=
n

s
E

ss
n

nI
s

EE 1::µ

and EI  is the indicator function of the subset E.

By taking the limit when s tends to ,1+  we diffuse the considered

measure, and we obtain that we call an analytic density.

We prove that the latter gives a generalization to the asymptotic
density [1, 2].

More precisely, analytic density is an extension of the asymptotic

density. Notably, the class E  of subsets E of ,∗N  for which ( )Es
s
µlim

exists contains, strictly, the class D  of subsets of ,∗N  for which

( )En
n

νlim  exists.

We recall that for all real numbers ,1>s  the series

∑
+∞

=1

1

n
sn

converges, and its sum is noted ( ).sζ  Thus

( ) ∑
+∞

=

=ζ
1

.1:
n

sn
s

Definition 1.1. The Riemann’s zeta function ζ is the function
defined, for all real numbers ,1>s  by

( ) ∑
+∞

=

=ζ
1

.1:
n

sn
s
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Proposition 1.1. The function ζ defined on ] [,,1 ∞++  is continuous,

derivable and decreasing.

For ulterior needs, we look how the zeta function ζ and its derivation
ζ′  behave in a neighborhood of 1 (the asymptotic behaviour of ( ),sζ

( )sLog ζ  and ( ),sζ′  as .)1+→s

Theorem 1.2 [1, 6]. We have

(a) ( ) ( ) ( ),1,1
1

1 +→+
−

=ζ sO
s

s

(b) ( ) ( ) ( ).1,1
1

1 +→−+
−

=ζ ssO
s

LogsLog

Theorem 1.3 [1, 6]. We have

( )
( )

( ),1
1

1
2

O
s

s +
−

−=ζ′  as ( ).1+→s

2. Main Results

2.1. Analytic densities

A generalization of asymptotic density [2] is the density introduced
by use of Riemann’s zeta function given previously.

We begin by introducing on ( ( ))∗∗ ℘ NN ,  a family of laws of

probability indexed by a real number ,1>s  as in [3].

Definition 2.1. Let E be a subset of .∗N  We put, for all ,1>s

( ) ( )
( )∑

≥
ζ

=
1

,1:
n

s
E

s
n

nI
s

Eµ

where ( )nIE  is the indicator function of the subset E.

We say that E has the number A  as an analytic density, if =A

( ),lim Es
s
µ  when s tends to .1+  (Notice that this limit belongs to ].)1,0[

We denote this limit by ( ),Eδ  and we call ( )Eδ  to be the analytic

density of E. We write E  to be a class of subsets of ∗N  which has an
analytic density.
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Proposition 2.1. Analytic density δ is invariant under translation.

More precisely, if ∗⊂ NE  and ,N∈k  then

( )
( ) ( )( ) 0lim

1
=−+

+→
EkE ss

s
µµ

uniformly on E.

Proof. We prove this property by increasing recurrence: (1) For
,1=k  we prove that ( )Esµ  and ( )1+Esµ  have the same asymptotic

comportment when s tends to .1+  Indeed, we put

( ) ( ) ( )
( )

( )
( )∑ ∑ +

ζ
−

ζ
=+−=

n n
s

E
s

E
ss

s

n

nI
sn

nI
s

EEe 1
1

111µµ

( ) ( ) ( ) ( ) ( )∑∑ ∑
∈∈ ∈












+
−

ζ
=

+ζ
−

ζ
=

En
ss

En En
ss nnsnsns

.
1

111

1

1111

And then

( ) ( ) ( )∑
+∞

=
ζ

=










+
−

ζ
≤≤

1
1 .1

1

1110
n

ss
s

snns
e

Let s tend to .1+  Then we see that 01 →se  uniformly in E. Otherwise,

( )Esµ  and ( )1+Esµ  have the same asymptotic comportment, and these

two limits are equal if these exist. In another way,

( ) ( ),1+δ=δ EE

so, invariance by translation of analytic density.

(2) We suppose

( ) ( ) ( )1...,,1, −++ kEEE sss µµµ

have the same asymptotic comportment when s tends to +1  and we prove
that

( )Esµ  and ( )kEs +µ

have the same property. Indeed,

( ) ( ) ( ) ( ) ( )∑ ∑
∈ ∈ +ζ

=+
ζ

=
En En

ssss
kns

E
ns

E .111;11 µµ
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We put

( ) ( ).11 −+−=− kEEe ss
s
k µµ

Then

( ) ( ) ( ) ( )) ( ( ) ( )( )211 +−+++−=+−= EEEEkEEe ssssss
s
k µµµµµµ

 ( ) ( )( ) ( ) ( )( ).112 kEkEkEkE ssss +−−++−+−−+++ µµµµ"

The second member is the sum of finite number of terms which tends to 0

uniformly in E, so

0→s
ke  uniformly in E.

Then

( )Esµ  and ( )kEs +µ

have the same asymptotic comportment when s tends to ,1+  and these

two limits are equal if there exist, otherwise,

( ) ( ) .kkEE ∀+δ=δ

Proposition 2.2. (a) All finite subsets ( )∗℘∈ NE  belong to E  and

( ) .0=δ E

(b) All cofinite subsets ( )∗℘∈ NE  belong to E  and ( ) .1=δ E

Proposition 2.3. E  contains the algebra of finite and cofinite subsets

of E.

Proposition 2.4. For all m of ,∗N  the class ∗Nm  of multiples of m

belongs to E  and

( ) .1
m

m =δ ∗N

Proof. Noting that

( )
ss

m
m 1=∗Nµ
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and letting ( ),1+→s  we have

( ) .1
m

m =δ ∗N

Proposition 2.5. The set P  of prime numbers belongs to E  and

( ) .0=δ P  In another way, prime numbers are rare.

Proof. We have

( ) ( ) ∑
∈

ζ
=

P
P

p
ss

ps
11µ

or, by Theorem 1.2(a),

( ) ( ),1~1 −
ζ

s
s

 as ( ).1+→s

Also,

∑
∈

−
Pp

s s
Log

p
,

1
1~1  as ( ).1+→s

Thus

( ) ( ) ,
1

11~
−

−
s

Logss Pµ  as ( ).1+→s

This tends to 0, when ( ),1+→s  so ( ) .0=δ P

Proposition 2.6. The set 2E  of square-free integers belongs to E  and

( ) ( ) .6
2

1
22

π
=

ζ
=δ E

Proof. By Proposition 2.10 in [3] and the fact that ( )s2
1

ζ
 is

continuous, it follows that

( ) ( ) ( ) ,6
2

1
2
1

22
π

=
ζ

→
ζ

=
s

Esµ  as ( ).1+→s

So

( ) ( ) .6
2

1
22

π
=

ζ
=δ E
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Proposition 2.7. The sets ( )2≥kEk  of integers without divisors of

the form kn  belong to E  and

( ) ( ) .1
k

Ek ζ
=δ

Proof. Since

( ) ( ) ,1
ks

Eks ζ
=µ

on taking the limit when ( ),1+→s  it follows that

( ) ( ) .1
k

Ek ζ
=δ

Theorem 2.8. Let E be a subset of ∗N  such that

∑
∈

∞+<
En

n
.1

Then E has an analytic density ( )Eδ  and ( ) .0=δ E  The converse is not

necessarily true.

Proof. We have

( ) ( ) ( ) ( )∑ ∑
∈ ∈

>
ζ

<
ζ

=
En En

ss s
nsns

E .11111µ

Then

( ) ,0→Esµ  as ( ).1+→s

For the converse see Theorem 4.2.

Before giving other applications, we require the following result:

Theorem 2.9. (Criterion). Let E be a subset of ∗N  neither finite, nor

cofinite, written in the form

[ [∪
1

,,
≥

=
n

nn qpE
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where ( ) 1≥nnp  and ( ) 1≥nnq  are two sequences of integers such that

.10 1 ≥∀<<< + npqp nnn

Put

nnn pLogqLog −=ρ  and ( ).11, 01 =≥−=σ − qnqLogqLog nnn

Let A  be a real number in ] [1,0  and suppose the following two

hypotheses hold:

( ) ,~: 11 −nn qLogpLogH  as ( ).∞+→n

( ) ,:2 A→
σ
ρ

n

nH  as ( ).∞+→n

Then the set E has an analytic density ( )Eδ  and ( ) .A=δ E  If ,0=A  then

( ) ( ) .02 =δ⇒ EH

For the proof of this theorem, we use the following result:

Lemma 2.10 ([1, Théo. VII.9, p. 168], [5, Théo. 8.2, p. 25]). Let

[ [∪
1

,
≥

=
n

nn qpE  be a subset of ,∗N  neither finite, nor cofinite. Let µ be a

positive measure on ( ( )),, ∗∗ ℘ NN  with total mass ∞+  and support ∗N
and F be its a distribution function. We put

( ) ( ) ( ) ( ) ( ).1,, 01 =≥−=σ−=ρ − qkqFqFpFqF kkkkkk

Then

( ) ( )

( )
( ) .inflim,suplim

1

1

1

11

1

1

∑

∑

∑

∑
−

=

−

=−
+∞→µ

=

=

+∞→
µ

σ

ρ

=δ

σ

ρ

=δ
n

k
k

n

k
k

n

n

nn

k
k

n

k
k

n pF
qF

We give a direct application of this theorem to the first-digit problem.

Definition 2.2. We suppose that we adopt the base ( )2≥bb  as a

numeration base; a digit is then a number { }1...,,1,0 −∈ bk  and the set



w
w

w
.p

ph
m

j.c
om

ANALYTIC DENSITIES IN NUMBER THEORY. … 227

kE  of strictly positive integers which admits a development in the base

b, with first-digit { },1...,,1,0 −∈ bk  is given by

[ ( ) [∪
0

,1,
≥

+=
n

nn
k bkkbE

the disjoint union of its connected components in second member. A

solution of the first-digit problem is independent of the numeration base.

Proposition 2.11. Let k be a given integer, with .91 ≤≤ k  We

consider the set E formed by strictly positive integers with development in

base b has a significantly first-digit equal to k. Then the set E has an

analytic density ( )Eδ  and

( ) .11 




 +=δ

k
LogE b

Proof. Indeed E takes the form

[ [∪
0

,,
≥

=
n

nn qpE

where

( ) { }.9...,,2,1,1, ∈+== kbkqkbp n
n

n
n

(a) We have

,kLogbnLogpLog n +=

( ) ( ).111 ++−=− kLogbLognqLog n

For fixed k, we have

.~ 1−nn qLogpLog

(b) Then

( )





 +=

+
=

kkb

bk
p
q

n

n

n

n 11
1

 and 
( )
( )

.
1

1
11

b
bk

bk
q
q

n

n

n

n =
+

+
=

−−
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We put






 +==ρ

k
Log

p
q

Log
n

n
n

11  and .
1

bLog
q
q

Log
n

n
n ==σ

−

Then

.11

11





 +=






 +

=
σ
ρ

k
Log

bLog
k

Log

b
n

n

So, by Theorem 2.9, we shall have

( ) .11 




 +=δ

k
LogE b

This result will be obtained in another way in an ulterior theorem.

Proposition 2.12. Let E be the set of natural integers with

development in base 2≥b  containing an odd number of digits. Then, E

has an analytic density ( )Eδ  and ( ) .
2
1=δ E

Proof. We write E in the form of disjoint union of its connected

components

[ [∪
0

122 .,
≥

+=
k

kk bbE

We put

.0,, 122 ≥== + kbqbp k
k

k
k

Then

(a) ( ) .12;2 1 bLogkqLogbLogkpLog kk −== −

We have

( ) ,1
12

2
12

2

1
→

−
=

−
=

− k
k

bLogk
bLogk

qLog
pLog

k

k  as ( ).∞+→k
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In other words

.~ 1−kk qLogpLog

(b) b
b

b
p
q

k

k

k

k ==
+

2

12
 and .2

12

12

1
b

b

b
q
q

k

k

k

k ==
−

+

−

We put

bLog
p
q

Log
k

k
k ==ρ

and

.2
1

bLog
q
q

Log
k

k
k ==σ

−

Then

.
2
1

2
==

σ
ρ

bLog
bLog

k

k

So, by Theorem 2.9, we shall have, ( ) .
2
1=δ E

Corollary 2.13. We suppose that sequences ( ) ( ) 11, ≥≥ nnnn qp  satisfy

,, 2
1

1 AA →→
−n

n

n

n
q
p

p
q

 as ( )∞+→n

with [ [,,1, 21 ∞+∈AA  one at least of those limits is different of 1. Then

(a) ,~ 1−nn qLogpLog  as ( );∞+→n

(b) ( ) ,
21

1

11

AA
A

Log
Log

q
p

p
q

Log

p
q

Log

q
q

Log

p
q

Log

n

n

n

n

n

n

n

n

n

n

n

n →








==
σ
ρ

−−

 as ( ).∞+→n

It results that E admits an analytic density

( ) ( ) .
21

1
AA
A

Log
Log

E =δ
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Theorem 2.14. (Existence criterion). Let A  be a real number such

that .10 ≤< A  Then the following two properties are equivalent:

( ) Ep :1  admits A  as an analytic density.

( ) ( ) .~:: 1122 −nn qLogpLogpp

 ( ) Forp :22

( ),1,1,, 01 =≥−=σ−=ρ − qnqLogqLogpLogqLog nnnnnn

we have

,

1

1 A→

σ

ρ

∑

∑

=

=
n

k
n

n

k
k

in other words

,
1

1

1

1 A→

σ

ρ

∑

∑

=

=
n

k
n

n

k
k

n

n
 as ( ).∞+→n

If ,0=A  then a condition ( )1p  amounts to ( ) .22p

In particular, if these two sequences ( ) ,1≥ρ nn  ( ) 1≥σ nn  converge in the

sense of Césaro to two limits 21, AA  (with ),02 >A  then property ( )22p  is

verified with .
2

1
A
AA =

It results the following corollary:

Corollary 2.15. We suppose that two sequences ( ) ,1≥nnp  ( ) 1≥nnq

satisfy the following two properties:

( ) ,:1 r
p
q

p
n

n →  as ( ).∞+→n

( ) ( ) ,:
1

2 ρ→nnqp  as ( ).∞+→n
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Then, E admits an analytic density ( )Eδ  and

( ) .
ρ

=δ
Log

rLog
E

Proof. It is enough to prove that under the hypothesis properties
( )12p  and ( )22p  above hold.

(1) It holds from ( )1p  that

nn qLogpLog ~

and from ( )2p  that

.~ ρLognqLog n

Also

.~ 1−nn qLogqLog

It results that

.~ 1−nn qLogpLog

(2) ,rLog
p
q

Log
n

n
n →






=ρ  also rLogn →ρ  in the sense of Césaro,

,1−−=σ nnn qLogqLog

(( ) )∑
=

ρ→==σ
n

k

nnnk LogqLogqLog
nn

1

1
,11

in other words, ρ→σ Logn  in the sense of Césaro so the result.

Remark 2.1. By virtue of ( ),1p  condition ( )2p  can be replaced by the

following:

( ) ( ) ( ).1,:
1

2 >ρρ→′
nnpp

Indeed,

( ) ( ) ,
1

1
1

nn
n

n

nnn q
q
p

p 





→
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or, by ( ),1p

,1~

1
n

n

n
q
p









then

( ) ( ) .~
11
nnnn qp

2.2. Applications

Proposition 2.16. Let E be a subset of ∗N  given by

[ [∪
1

,,
≥

=
k

kk qpE

where

( ) ( )
( ) ( )





+==

+==
∗.,

,,

dakkQbq

dakkPbp
kQ

k

kP
k

We suppose that ∗dda ,,  are real numbers such that:

( ) .0:1 >aH

( ) ForH :2  all ,1≥k  kp  and kq  are integers .1≥

( ) .10:3 <−<
∗

a
ddH

Then E admits an analytic density ( )Eδ  and ( ) .
a

ddE −=δ
∗

Proof. Indeed, we put

( )






=−=σ

−=−=ρ

−

∗

.

,

1 bLogaqLogqLog

bLogddpLogqLog

kkk

kkk

We verify

(a) 
( )

,1
11

→
+−

+=
∗− dka

dak
qLog
pLog

k

k  as ( );∞+→k
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in other words

.~ 1−kk qLogpLog

(b) .
a

dd

k

k −=
σ
ρ ∗

So, by Theorem 2.9, it holds that E admits an analytic density ( )Eδ

and ( ) .
a

ddE −=δ
∗

Proposition 2.17. Let E be a subset of ∗N  given by

[ [∪
1

,,
≥

=
k

kk qpE

where

( ) ( ) ( )
( ) ( ) ( )





++==

++==

−−∗

−−

.,

,,

11

11

nnnkQ
k

nnnkP
k

kokdakkQbq

kodkakkPbp

We suppose that ndda ,,, ∗  are numbers such that:

( ) nH :1  is an integer .2≥

( ) .0:2 >aH

( ) ForH :3  all ,1≥k  kp  and kq  are integers .1≥

( ) .10:4 <−<
∗

na
ddH

Then E admits an analytic density ( )Eδ  and ( ) .
na

ddE −=δ
∗

Proof. Indeed, we put

(( ) ( ))

( ( ))





+=−=σ

+−=−=ρ

−−
−

−−∗

.

,

11
1

11

bLogkonakqLogqLog

bLogkokddpLogqLog

nn
kkk

nn
kkk
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We verify

(a) 
( )

( ) ,1
11

→
−

=
− kQ

kP
qLog
pLog

k

k  as ( );∞+→k

in other words

.~ 1−kk qLogpLog

(b) ,
na

dd

k

k −→
σ
ρ ∗

 as ( ).∞+→k

So, by Theorem 2.9, it results that E admits an analytic density ( )Eδ

and ( ) .
na

ddE −=δ
∗

Proposition 2.18. Let E be a subset of ∗N  given by

[ [∪
0

122 ,,
≥

+=
k

kk ccE

where integers ,2≥c

,,0, cLogddcLoga b=== ∗

in Proposition 2.16.

Then E admits an analytic density ( )Eδ  and ( ) .
2
1=δ E

3. Conditional Analytic Density

It is natural to consider which we call the conditional analytic density

on the prime numbers.

We start with the relation

( ) ( )
( ) ,
B

BA
BA

s

s
s µ

µµ ∩
=|

where ( ) 0>Bsµ  and ,EA =  ,P=B  for all .1>s  We have the

following definition:
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Definition 3.1. Let E be a subset of ∗N  and we consider, for all

,1>s  the following expression:

( ) ( )
( ) .

1

1

∑

∑

∈

∈==|

P

P
PP

p
s

Ep
s

s

s
s

p

pE
E

µ
µµ ∩

Then we say that E admits the number A  as a conditional analytic

density related to ,P  if ( )P|Es
s
µlim  exists and equals ,A  when s tends

to .1+

(Notice that this limit belongs to ].)1,0[  We shall denote this

conditional density by ( ).Ecδ

Or, we know that

( ) ∑
∈

ζ
Pp

sp
sLog ,1~  as ( ).1+→s

So, E admits a conditional analytic density ,A  conditionally to ,P  if and

only if

( ) ( ) ∑
∈→ ζ+

Ep
ss psLog

11lim
1

exists and equals .A

This density has been used, first of all, by Dirichlet, who proved in

the first third of 19th century that there are infinitely many prime

numbers of the form:

( ),mod mkp ≡

where k and m are two relatively prime numbers.

Theorem 3.1. Let k and m be two relatively prime integers and let

mkE ,  be the set of prime numbers of the form ( ).mod mkp ≡  Then mkE ,
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admits a conditional analytic density ( )mkc E ,δ  and

( ) ( ) ,1
, m

E mkc ϕ
=δ

where ϕ is the Euler function. In other words,

( )
( ) ( ) .1lim

1 m
kms

s ϕ
=|+∗

→ +
PNµ

4. Comparison between Asymptotic and Analytic Densities

Before we give two general theorems which characterize analytic

density of subsets of ,∗N  we obtain the following theorem which states

one result of comparison between asymptotic density and analytic density

for a subset of .∗N

Theorem 4.1. Let E be a subset of .∗N  Consider the following two

properties:

( )
( )

( )
( )

( ) ( )( )

( )
( )

( )
( ) ( )

( ) ( )( )













δ=
ζ

=

==

∑

∑
∞+

=→→

=
+∞→+∞→

++
111

2

1
1

.1limlim:

,1limlim:

n
s

E

s
s

s

n

k
Ennn

Eexists
n

nI
s

Ep

EdexistskI
n

Ep

µ

ν

Then ( ) ( )21 pp ⇒  and we have, ( ) ( ).EEd δ=

The converse of above is false.

In other words, if E admits an asymptotic density ( ),Ed  then it

admits an analytic density ( )Eδ  and these two densities are equal

( ) ( )( ).EEd δ=  The converse is false.

So, if we denote a class of subsets of ∗N  which admits an asymptotic

density by D  and a class of subsets of ∗N  which admits an analytic

density by ,E  then we obtain a strict inclusion .E⊂D
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Moreover, analytic density δ on E  is an extension of asymptotic
density d on D.

Proof. For a direct proof see [4]. For the converse an example is
given by Theorem 2.6, Corollary 2.7 and Corollary 2.8 in [2].

Theorem 4.2. Let E be a subset of ∗N  such that

∑
∈

∞+<
En

n
.1

Then E admits an analytic density ( )Eδ  and ( ) .0=δ E

The converse is not necessarily true.

Proof. The direct conclusion follows by noting that for all ,1>s  we

have

( ) ( )
( )

( )
( )

( )∑ ∑
+∞

= ∈

→
ζ

≤
ζ

≤
ζ

=≤
1

,0110
n En

E
s

E
s s

C
n

nI
sn

nI
s

Eµ  as .1+→s

For the converse, we take ( ) ( ),pIpf P=  where

( )




∉
∈

=
,if,0
,if,1

P
P

P p

p
pI

is the indicator function of the set of prime numbers .P

Then, by Proposition 2.5, ( )Pδ  exists and ( ) .0=δ P  But

∑
∈Pp

p
1

diverges.

5. Derived Analytic Density

A subset E of ∗N  admits an analytic density ( )Eδ  equal to ∈AA,

[ ],1,0  if

( )
( )∑

+∞

=
−

1

,
1

~
k

s
E

sk

kI A  as s tends to .1+
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Definition 5.1. Let E be a subset of .∗N  We say that E admits a

derived analytic density ,A  [ ]( )1,0∈A  or a ( )Esµ′ -density ,A  if

( )
( )∑

+∞

= −1
2

,
1

~
k

s
E

sk

kLogkI A  as s tends to .1+

Corollary 5.1. ( )Esµ′ -density A  means that

( )
( )∑

+∞

=
− −1

21
,

1
~

k
s

E

skk

kLogkI A  as s tends to ,1+

or

( )∑
+∞

=1
2

,~
k

t
E

tkk

kLogkI A  as t tends to ,0+

so, this is a density related to the sequence ( ) 0>ttµ  of measures defined by

∑
+∞

=
+

ε=
1

1
,:

k
ktt

k

kLogµ

where kε  is the Dirac measure on ,∗N  defined by the unit mass placed at

the point k.

Its discrete Laplace transform is of the form

( ) ( ) ( ) ( )
,exp

1 1
∑ ∑
+∞

=

+∞

=

=−=
k k

t
EE

kk

kLogkI
kLogt

k
kLogkI

tg

and the distribution function F is given by

( ) ( )∑
≤

=
xkLog

E
k

kLogkI
xF .

By Tauberian theorem [1, (I.6), p. 30],

( ) ,~
2t

tg A  as t tends to zero,
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if and only if

( ) ,
2

~ 2xxF A  as x tends to infinity.

If

,1, −== stnLogx

then

( )
( )∑

+∞

= −1
2

,
1

~
k

s
E

sk

kLogkI A

if and only if

( )∑
=

n

k

E nLog
k

kLogkI

1

2
.

2
~
A

Corollary 5.2. Let E be a subset of ∗N  and let A  be a real number in

[ ].1,0  Then the following three properties are equivalent:

( )

( ) ( )
( )

( )

( ) ( ) ( )















∞+→

→
−

′

∑

∑

=

∞+

=

+

n

k

E

k
s

E

s

nasnLog
k

kLogkI
p

sas
sk

kLogkI
p

densityaadmitsEp

1

2

3

1
22

1

.,
2

~:

,1,
1

~:

,-:

A

A

Aµ

Definition 5.2. Let E be a subset of .∗N  For a real number ,1>s

( ) ( )
( )

( )∑
≥

ζ
=

2

.1:
k

s
E

s
kLogk

kI
sLog

EE

We call iterated analytic density of the set E to be of order 2 if ( )Es
s

Elim

exists when s tends to .1+

Acknowledgement

We would like to thank the referee for lots of corrections in English
and comments which greatly improved the presentation of this paper.



w
w

w
.p

ph
m

j.c
om

N. DAILI240

References

[1] N. Daili, Contributions à l’étude des densités, Thèse de Doctorat des Mathématiques,

Pub(443/TS-22), I.R.M.A.- C.N.R.S., Strasbourg. I, France, 1991.

[2] N. Daili, Asymptotic densities in number theory. Part I: A survey, JP Jour. Algebra,

Number Theory & Appl. 5(3) (2005), 513-533.

[3] N. Daili, Probabilistic zeta law, Far East J. Math. Sci. (FJMS) 18(1) (2005), 31-48.

[4] N. Daili, Analytic densities in number theory. Part II: Analytic densities of

arithmetic functions, 2005, pp. 1-16, preprint.

[5] A. Fuchs and R. A. Giuliano, Théorie Générale des Densités, Pub. I.R.M.A.,

Strasbourg. I, 1989.

[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford

Univ. Press, London, New York, 1949.

Department of Mathematics
F. Abbas University
19000 Sétif, Algeria
e-mail: nourdaili_dz@yahoo.fr


