ANALYTIC DENSITIES IN NUMBER THEORY. PART I: ANALYTIC DENSITIES OF SUBSETS

N. DAILI

(Received October 11, 2005)

Submitted by K. K. Azad

Abstract

In this paper, we present a detailed study of the analytic, conditional analytic and derived analytic densities and give some applications to classical number theory. Some new existence criteria [A. Fuchs and R. A. Giuliano, Théorie Générale des Densités, Pub. I.R.M.A., Strasbourg. I, 1989] are established. Certain results obtained generalize those obtained in ([JP Jour. Algebra, Number Theory & Appl. 5(3) (2005), 513-533], [Far East J. Math. Sci. (FJMS) 18(1) (2005), 31-48]).

1. Prelude

We consider a family $\mathfrak{R} = \{ \mu_{\alpha}, \alpha \in T \}$ of σ -finitely additive probability measures on the set $\wp(\mathbb{N}^*)$ of subsets E of \mathbb{N}^* . We examine the convergence, when α tends to α_0 , of

$$\mu_{\alpha}(E) \coloneqq \sum_{n=1}^{\infty} I_{E}(n) \mu_{\alpha}(\{n\}).$$

If the limit, $\lim_{\alpha} \mu_{\alpha}(E)$, when $\alpha \to \alpha_0$, exists, then we say that E has a density in the sense of the family \Re .

2000 Mathematics Subject Classification: Primary 11M06, 11R45; Secondary 60A10, 60E05, 60E10.

Keywords and phrases: analytic densities, first-digit problem, some criteria.

© 2006 Pushpa Publishing House

If we take, for example, $\alpha=s,\ T=]1,+\infty[$, then we obtain the zeta-family

$$\zeta := \{\zeta_s, s > 1\},\$$

where for all subsets E of \mathbb{N}^* ,

$$\mu_s(E) \coloneqq \zeta_s(E) \coloneqq \frac{1}{\zeta(s)} \sum_n \frac{I_E(n)}{n^s}$$

and I_E is the indicator function of the subset E.

By taking the limit when s tends to 1^+ , we diffuse the considered measure, and we obtain that we call an *analytic density*.

We prove that the latter gives a generalization to the asymptotic density [1, 2].

More precisely, analytic density is an extension of the asymptotic density. Notably, the class $\mathcal E$ of subsets E of $\mathbb N^*$, for which $\lim_s \mu_s(E)$ exists contains, strictly, the class $\mathfrak D$ of subsets of $\mathbb N^*$, for which $\lim_s \mathbf v_n(E)$ exists.

We recall that for all real numbers s > 1, the series

$$\sum_{n=1}^{+\infty} \frac{1}{n^s}$$

converges, and its sum is noted $\zeta(s)$. Thus

$$\zeta(s) \coloneqq \sum_{n=1}^{+\infty} \frac{1}{n^s}.$$

Definition 1.1. The *Riemann's zeta function* ζ is the function defined, for all real numbers s > 1, by

$$\zeta(s) \coloneqq \sum_{n=1}^{+\infty} \frac{1}{n^s}.$$

Proposition 1.1. The function ζ defined on $]+1, +\infty[$, is continuous, derivable and decreasing.

For ulterior needs, we look how the zeta function ζ and its derivation ζ' behave in a neighborhood of 1 (the asymptotic behaviour of $\zeta(s)$, $Log \zeta(s)$ and $\zeta'(s)$, as $s \to 1^+$).

Theorem 1.2 [1, 6]. We have

(a)
$$\zeta(s) = \frac{1}{s-1} + O(1), (s \to 1^+),$$

(b)
$$Log \zeta(s) = Log \frac{1}{s-1} + O(s-1), (s \to 1^+).$$

Theorem 1.3 [1, 6]. We have

$$\zeta'(s) = -\frac{1}{(s-1)^2} + O(1), \ as \ (s \to 1^+).$$

2. Main Results

2.1. Analytic densities

A generalization of asymptotic density [2] is the density introduced by use of Riemann's zeta function given previously.

We begin by introducing on $(\mathbb{N}^*, \wp(\mathbb{N}^*))$ a family of laws of probability indexed by a real number s > 1, as in [3].

Definition 2.1. Let *E* be a subset of \mathbb{N}^* . We put, for all s > 1,

$$\mu_s(E) := \frac{1}{\zeta(s)} \sum_{n>1} \frac{I_E(n)}{n^s},$$

where $I_E(n)$ is the indicator function of the subset E.

We say that E has the number ℓ as an analytic density, if $\ell = \lim \mu_s(E)$, when s tends to 1^+ . (Notice that this limit belongs to [0, 1].)

We denote this limit by $\delta(E)$, and we call $\delta(E)$ to be the *analytic* density of E. We write \mathcal{E} to be a class of subsets of \mathbb{N}^* which has an analytic density.

Proposition 2.1. Analytic density δ is invariant under translation. More precisely, if $E \subset \mathbb{N}^*$ and $k \in \mathbb{N}$, then

$$\lim_{(s \to 1^+)} (\mu_s(E + k) - \mu_s(E)) = 0$$

uniformly on E.

Proof. We prove this property by increasing recurrence: (1) For k = 1, we prove that $\mu_s(E)$ and $\mu_s(E+1)$ have the same asymptotic comportment when s tends to 1^+ . Indeed, we put

$$\begin{split} e_1^s &= \mathbf{\mu}_s(E) - \mathbf{\mu}_s(E+1) = \frac{1}{\zeta(s)} \sum_n \frac{I_E(n)}{n^s} - \frac{1}{\zeta(s)} \sum_n \frac{I_{E+1}(n)}{n^s} \\ &= \frac{1}{\zeta(s)} \sum_{n \in E} \frac{1}{n^s} - \frac{1}{\zeta(s)} \sum_{n \in E} \frac{1}{(n+1)^s} = \frac{1}{\zeta(s)} \sum_{n \in E} \left(\frac{1}{n^s} - \frac{1}{(n+1)^s} \right). \end{split}$$

And then

$$0 \le e_1^s \le \frac{1}{\zeta(s)} \sum_{n=1}^{+\infty} \left(\frac{1}{n^s} - \frac{1}{(n+1)^s} \right) = \frac{1}{\zeta(s)}.$$

Let s tend to 1^+ . Then we see that $e_1^s \to 0$ uniformly in E. Otherwise, $\mu_s(E)$ and $\mu_s(E+1)$ have the same asymptotic comportment, and these two limits are equal if these exist. In another way,

$$\delta(E) = \delta(E+1),$$

so, invariance by translation of analytic density.

(2) We suppose

$$\mu_s(E), \ \mu_s(E+1), ..., \ \mu_s(E+k-1)$$

have the same asymptotic comportment when s tends to $\mathbf{1}^+$ and we prove that

$$\mu_s(E)$$
 and $\mu_s(E+k)$

have the same property. Indeed,

$$\mu_s(E) = \frac{1}{\zeta(s)} \sum_{n \in E} \frac{1}{n^s}; \qquad \mu_s(E+1) = \frac{1}{\zeta(s)} \sum_{n \in E} \frac{1}{(n+k)^s}.$$

We put

$$e_{k-1}^{s} = \mu_{s}(E) - \mu_{s}(E+k-1).$$

Then

$$e_k^s = \mu_s(E) - \mu_s(E+k) = (\mu_s(E) - \mu_s(E+1)) + (\mu_s(E+1) - \mu_s(E+2))$$
$$+ \dots + (\mu_s(E+k-2) - \mu_s(E+k-1)) + (\mu_s(E+k-1) - \mu_s(E+k)).$$

The second member is the sum of finite number of terms which tends to 0 uniformly in E, so

$$e_k^s \to 0$$
 uniformly in E .

Then

$$\mu_s(E)$$
 and $\mu_s(E+k)$

have the same asymptotic comportment when s tends to 1^+ , and these two limits are equal if there exist, otherwise,

$$\delta(E) = \delta(E+k) \quad \forall k.$$

Proposition 2.2. (a) All finite subsets $E \in \wp(\mathbb{N}^*)$ belong to \mathcal{E} and $\delta(E) = 0$.

(b) All cofinite subsets $E \in \wp(\mathbb{N}^*)$ belong to \mathcal{E} and $\delta(E) = 1$.

Proposition 2.3. \mathcal{E} contains the algebra of finite and cofinite subsets of E.

Proposition 2.4. For all m of \mathbb{N}^* , the class $m\mathbb{N}^*$ of multiples of m belongs to \mathcal{E} and

$$\delta(m\mathbb{N}^*)=\frac{1}{m}.$$

Proof. Noting that

$$\mu_s(m\mathbb{N}^*) = \frac{1}{m^s}$$

and letting $(s \to 1^+)$, we have

$$\delta(m\mathbb{N}^*)=\frac{1}{m}.$$

Proposition 2.5. The set \mathbb{P} of prime numbers belongs to \mathcal{E} and $\delta(\mathbb{P}) = 0$. In another way, prime numbers are rare.

Proof. We have

$$\mu_s(\mathbb{P}) = \frac{1}{\zeta(s)} \sum_{p \in \mathbb{P}} \frac{1}{p^s}$$

or, by Theorem 1.2(a),

$$\frac{1}{\zeta(s)} \sim (s-1)$$
, as $(s \to 1^+)$.

Also,

$$\sum_{p \in \mathbb{P}} \frac{1}{p^s} \sim Log \, \frac{1}{s-1}, \text{ as } (s \to 1^+).$$

Thus

$$\mu_s(\mathbb{P}) \sim (s-1)Log \frac{1}{s-1}$$
, as $(s \to 1^+)$.

This tends to 0, when $(s \to 1^+)$, so $\delta(\mathbb{P}) = 0$.

Proposition 2.6. The set E_2 of square-free integers belongs to $\mathcal E$ and

$$\delta(E_2) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}$$
.

Proof. By Proposition 2.10 in [3] and the fact that $\frac{1}{\zeta(2s)}$ is continuous, it follows that

$$\mu_s(E_2) = \frac{1}{\zeta(2s)} \to \frac{1}{\zeta(2)} = \frac{6}{\pi^2}, \text{ as } (s \to 1^+).$$

So

$$\delta(E_2) = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}.$$

Proposition 2.7. The sets E_k $(k \ge 2)$ of integers without divisors of the form n^k belong to $\mathcal E$ and

$$\delta(E_k) = \frac{1}{\zeta(k)}.$$

Proof. Since

$$\mu_s(E_k) = \frac{1}{\zeta(ks)},$$

on taking the limit when $(s \to 1^+)$, it follows that

$$\delta(E_k) = \frac{1}{\zeta(k)}.$$

Theorem 2.8. Let E be a subset of \mathbb{N}^* such that

$$\sum_{n \in E} \frac{1}{n} < +\infty.$$

Then E has an analytic density $\delta(E)$ and $\delta(E) = 0$. The converse is not necessarily true.

Proof. We have

$$\mu_s(E) = \frac{1}{\zeta(s)} \sum_{n \in E} \frac{1}{n^s} < \frac{1}{\zeta(s)} \sum_{n \in E} \frac{1}{n} \quad (s > 1).$$

Then

$$\mu_s(E) \to 0$$
, as $(s \to 1^+)$.

For the converse see Theorem 4.2.

Before giving other applications, we require the following result:

Theorem 2.9. (Criterion). Let E be a subset of \mathbb{N}^* neither finite, nor cofinite, written in the form

$$E = \bigcup_{n \ge 1} [p_n, q_n[,$$

where $(p_n)_{n\geq 1}$ and $(q_n)_{n\geq 1}$ are two sequences of integers such that

$$0 < p_n < q_n < p_{n+1} \quad \forall n \ge 1.$$

Put

$$\rho_n = Log \, q_n - Log \, p_n \, and \, \sigma_n = Log \, q_n - Log \, q_{n-1}, \, n \ge 1 \, (q_0 = 1).$$

Let ℓ be a real number in]0,1[and suppose the following two hypotheses hold:

$$(H_1)$$
: $Log p_n \sim Log q_{n-1}$, as $(n \to +\infty)$.

$$(H_2): \frac{\rho_n}{\sigma_n} \to \ell, \text{ as } (n \to +\infty).$$

Then the set E has an analytic density $\delta(E)$ and $\delta(E) = \ell$. If $\ell = 0$, then $(H_2) \Rightarrow \delta(E) = 0$.

For the proof of this theorem, we use the following result:

Lemma 2.10 ([1, Théo. VII.9, p. 168], [5, Théo. 8.2, p. 25]). Let $E = \bigcup_{n\geq 1} [p_n, q_n[$ be a subset of \mathbb{N}^* , neither finite, nor cofinite. Let μ be a

positive measure on $(\mathbb{N}^*, \wp(\mathbb{N}^*))$, with total mass $+\infty$ and support \mathbb{N}^* and F be its a distribution function. We put

$$\rho_k = F(q_k) - F(p_k), \quad \sigma_k = F(q_k) - F(q_{k-1}), \quad k \ge (q_0 = 1).$$

Then

$$\overline{\delta}_{\mu} = \limsup_{(n \to +\infty)} \frac{\displaystyle\sum_{k=1}^{n} \rho_{k}}{\displaystyle\sum_{k=1}^{n} \sigma_{k}}, \quad \underline{\delta}_{\mu} = \liminf_{(n \to +\infty)} \frac{F(q_{n-1})}{F(p_{n})} \frac{\displaystyle\sum_{k=1}^{n-1} \rho_{k}}{\displaystyle\sum_{k=1}^{n-1} \sigma_{k}}.$$

We give a direct application of this theorem to the first-digit problem.

Definition 2.2. We suppose that we adopt the base b ($b \ge 2$) as a numeration base; a digit is then a number $k \in \{0, 1, ..., b-1\}$ and the set

 E_k of strictly positive integers which admits a development in the base b, with first-digit $k \in \{0, 1, ..., b-1\}$, is given by

$$E_k = \bigcup_{n\geq 0} [kb^n, (k+1)b^n],$$

the disjoint union of its connected components in second member. A solution of the first-digit problem is independent of the numeration base.

Proposition 2.11. Let k be a given integer, with $1 \le k \le 9$. We consider the set E formed by strictly positive integers with development in base b has a significantly first-digit equal to k. Then the set E has an analytic density $\delta(E)$ and

$$\delta(E) = Log_b \left(1 + \frac{1}{k}\right).$$

Proof. Indeed *E* takes the form

$$E = \bigcup_{n \ge 0} [p_n, q_n[,$$

where

$$p_n = kb^n$$
, $q_n = (k+1)b^n$, $k \in \{1, 2, ..., 9\}$.

(a) We have

$$Log p_n = nLog b + Log k,$$

$$Log q_{n-1} = (n-1)Log b + Log(k+1).$$

For fixed k, we have

$$Log p_n \sim Log q_{n-1}$$
.

(b) Then

$$\frac{q_n}{p_n} = \frac{(k+1)b^n}{kb^n} = \left(1 + \frac{1}{k}\right) \text{ and } \frac{q_n}{q_{n-1}} = \frac{(k+1)b^n}{(k+1)b^{n-1}} = b.$$

We put

$$\rho_n = Log \frac{q_n}{p_n} = Log \left(1 + \frac{1}{k}\right) \text{ and } \sigma_n = Log \frac{q_n}{q_{n-1}} = Log b.$$

Then

$$\frac{\rho_n}{\sigma_n} = \frac{Log\left(1 + \frac{1}{k}\right)}{Log b} = Log_b\left(1 + \frac{1}{k}\right).$$

So, by Theorem 2.9, we shall have

$$\delta(E) = Log_b \left(1 + \frac{1}{k}\right).$$

This result will be obtained in another way in an ulterior theorem.

Proposition 2.12. Let E be the set of natural integers with development in base $b \ge 2$ containing an odd number of digits. Then, E has an analytic density $\delta(E)$ and $\delta(E) = \frac{1}{2}$.

Proof. We write E in the form of disjoint union of its connected components

$$E = \bigcup_{k \geq 0} [b^{2k}, \, b^{2k+1}[.$$

$$p_k = b^{2k}, \quad q_k = b^{2k+1}, \quad k \geq 0.$$

We put

$$p_k = b^{2k}, \quad q_k = b^{2k+1}, \quad k \ge 0.$$

Then

(a)
$$Log p_k = 2k Log b$$
; $Log q_{k-1} = (2k-1)Log b$.

We have

$$\frac{Log \ p_k}{Log \ q_{k-1}} = \frac{2k \ Log \ b}{(2k-1) Log \ b} = \frac{2k}{2k-1} \to 1, \ \text{as} \ (k \to +\infty).$$

In other words

$$Log p_k \sim Log q_{k-1}$$
.

(b)
$$\frac{q_k}{p_k} = \frac{b^{2k+1}}{b^{2k}} = b$$
 and $\frac{q_k}{q_{k-1}} = \frac{b^{2k+1}}{b^{2k-1}} = b^2$.

We put

$$\rho_k = Log \frac{q_k}{p_k} = Log b$$

and

$$\sigma_k = Log \frac{q_k}{q_{k-1}} = 2Log b.$$

Then

$$\frac{\rho_k}{\sigma_k} = \frac{Log\,b}{2\,Log\,b} = \frac{1}{2}.$$

 $\frac{\rho_k}{\sigma_k} = \frac{Log\,b}{2\,Log\,b} = \frac{1}{2}\,.$ So, by Theorem 2.9, we shall have, $\,\delta(E) = \frac{1}{2}\,.$

Corollary 2.13. We suppose that sequences $(p_n)_{n\geq 1}$, $(q_n)_{n\geq 1}$ satisfy

$$\frac{q_n}{p_n} \to \ell_1, \quad \frac{p_n}{q_{n-1}} \to \ell_2, \text{ as } (n \to +\infty)$$

with $\ell_1, \ \ell_2 \in [1, +\infty[$, one at least of those limits is different of 1. Then

(a)
$$Log p_n \sim Log q_{n-1}$$
, $as (n \to +\infty)$;

$$\text{(b)}\ \frac{\rho_n}{\sigma_n} = \frac{Log\,\frac{q_n}{p_n}}{Log\,\frac{q_n}{q_{n-1}}} = \frac{Log\,\frac{q_n}{p_n}}{Log\!\left(\frac{q_n}{p_n}\,\frac{p_n}{q_{n-1}}\right)} \to \frac{Log\,\ell_1}{Log(\ell_1\ell_2)},\ as\ (n\to +\infty).$$

It results that E admits an analytic density

$$\delta(E) = \frac{Log \, \ell_1}{Log(\ell_1 \ell_2)}.$$

Theorem 2.14. (Existence criterion). Let ℓ be a real number such that $0 < \ell \le 1$. Then the following two properties are equivalent:

 (p_1) : E admits ℓ as an analytic density.

$$(p_2): (p_2)_1: Log \ p_n \sim Log \ q_{n-1}.$$

 $(p_2)_2: For$

 $\rho_n = Log \, q_n - Log \, p_n, \quad \sigma_n = Log \, q_n - Log \, q_{n-1}, \quad n \geq 1, \quad (q_0 = 1),$ we have

$$\frac{\sum_{k=1}^{n} \rho_k}{\sum_{k=1}^{n} \sigma_k} \to \ell,$$

in other words

$$\frac{\frac{1}{n}\sum_{k=1}^{n}\rho_{k}}{\frac{1}{n}\sum_{k=1}^{n}\sigma_{n}} \to \ell, \ as \ (n \to +\infty).$$

If $\ell = 0$, then a condition (p_1) amounts to $(p_2)_2$.

In particular, if these two sequences $(\rho_n)_{n\geq 1}$, $(\sigma_n)_{n\geq 1}$ converge in the sense of Césaro to two limits ℓ_1 , ℓ_2 (with $\ell_2>0$), then property $(p_2)_2$ is verified with $\ell=\frac{\ell_1}{\ell_2}$.

It results the following corollary:

Corollary 2.15. We suppose that two sequences $(p_n)_{n\geq 1}$, $(q_n)_{n\geq 1}$ satisfy the following two properties:

$$(p_1): \frac{q_n}{p_n} \to r, \text{ as } (n \to +\infty).$$

$$(p_2): (q_n)^{\frac{1}{n}} \to \rho, \text{ as } (n \to +\infty).$$

Then, E admits an analytic density $\delta(E)$ and

$$\delta(E) = \frac{Log \ r}{Log \ \rho}.$$

Proof. It is enough to prove that under the hypothesis properties $(p_2)_1$ and $(p_2)_2$ above hold.

(1) It holds from (p_1) that

$$Log p_n \sim Log q_n$$

and from (p_2) that

$$Log q_n \sim n Log \rho$$
.

Also

$$Log q_n \sim Log q_{n-1}$$
.

It results that

$$Log p_n \sim Log q_{n-1}.$$

(2)
$$\rho_n = Log\left(\frac{q_n}{p_n}\right) \to Log r$$
, also $\rho_n \to Log r$ in the sense of Césaro,

$$\sigma_n = Log \, q_n - Log \, q_{n-1},$$

$$\frac{1}{n}\sum_{k=1}^{n}\sigma_{k}=\frac{1}{n}\log q_{n}=Log((q_{n})^{\frac{1}{n}})\to Log\,\rho,$$

in other words, $\sigma_n \to Log \rho$ in the sense of Césaro so the result.

Remark 2.1. By virtue of (p_1) , condition (p_2) can be replaced by the following:

$$(p_2)':(p_n)^{\frac{1}{n}}\to \rho, \ (\rho>1).$$

Indeed,

$$(p_n)^{\frac{1}{n}} \to \left(\frac{p_n}{q_n}\right)^{\frac{1}{n}} (q_n)^{\frac{1}{n}},$$

or, by (p_1) ,

$$\left(\frac{p_n}{q_n}\right)^{\frac{1}{n}} \sim 1,$$

then

$$(p_n)^{\frac{1}{n}} \sim (q_n)^{\frac{1}{n}}.$$

2.2. Applications

Proposition 2.16. Let E be a subset of \mathbb{N}^* given by

$$E = \bigcup_{k>1} [p_k, q_k[,$$

where

$$\begin{cases} p_k = b^{P(k)}, & P(k) = ak + d, \\ q_k = b^{Q(k)}, & Q(k) = ak + d^*. \end{cases}$$

We suppose that a, d, d^* are real numbers such that:

 $(H_1): a > 0.$

 (H_2) : For all $k \ge 1$, p_k and q_k are integers ≥ 1 .

$$(H_3): 0 < \frac{d^* - d}{a} < 1.$$

Then E admits an analytic density $\delta(E)$ and $\delta(E) = \frac{d^* - d}{a}$.

Proof. Indeed, we put

$$\begin{cases} \rho_k = Log \, q_k - Log \, p_k = (d^* - d) Log \, b, \\ \sigma_k = Log \, q_k - Log \, q_{k-1} = a Log \, b. \end{cases}$$

We verify

(a)
$$\frac{Log \ p_k}{Log \ q_{k-1}} = \frac{ak+d}{a(k-1)+d^*} \to 1$$
, as $(k \to +\infty)$;

in other words

$$Log p_k \sim Log q_{k-1}$$
.

(b)
$$\frac{\rho_k}{\sigma_k} = \frac{d^* - d}{a}$$
.

So, by Theorem 2.9, it holds that E admits an analytic density $\delta(E)$ and $\delta(E)=\frac{d^*-d}{a}$.

Proposition 2.17. Let E be a subset of \mathbb{N}^* given by

$$E = \bigcup_{k>1} [p_k, q_k[,$$

where

$$\begin{cases} p_k = b^{P(k)}, & P(k) = ak^n + dk^{n-1} + o(k^{n-1}), \\ q_k = b^{Q(k)}, & Q(k) = ak^n + d^*k^{n-1} + o(k^{n-1}). \end{cases}$$

We suppose that a, d, d^*, n are numbers such that:

 (H_1) : n is an integer ≥ 2 .

 $(H_2): a > 0.$

 $(H_3):$ For all $k \ge 1$, p_k and q_k are integers ≥ 1 .

$$(H_4): 0 < \frac{d^* - d}{na} < 1.$$

Then E admits an analytic density $\delta(E)$ and $\delta(E) = \frac{d^* - d}{na}$.

Proof. Indeed, we put

$$\begin{cases} \rho_k = Log \, q_k - Log \, p_k = ((d^* - d)k^{n-1} + o(k^{n-1}))Log \, b, \\ \sigma_k = Log \, q_k - Log \, q_{k-1} = (nak^{n-1} + o(k^{n-1}))Log \, b. \end{cases}$$

We verify

(a)
$$\frac{Log \ p_k}{Log \ q_{k-1}} = \frac{P(k)}{Q(k-1)} \to 1$$
, as $(k \to +\infty)$;

in other words

$$Log p_k \sim Log q_{k-1}$$
.

(b)
$$\frac{\rho_k}{\sigma_k} \to \frac{d^* - d}{na}$$
, as $(k \to +\infty)$.

So, by Theorem 2.9, it results that E admits an analytic density $\delta(E)$

and
$$\delta(E) = \frac{d^* - d}{na}$$
.

Proposition 2.18. *Let* E *be a subset of* \mathbb{N}^* *given by*

$$E = \bigcup_{k>0} [c^{2k}, c^{2k+1}],$$

where integers $c \geq 2$,

$$a = Log c$$
, $d = 0$, $d^* = Log_b c$

in Proposition 2.16.

 $E=\bigcup_{k\geq 0}[c^{2k},\,c^{2k+1}[,$ ere integers $c\geq 2,$ $a=Log\,c,\quad d=0,\quad d^*=Log_b\,c,$ Proposition 2.16. $Then\ E\ admits\ an\ analytic\ density\ \delta(E)\ and\ \delta(E)=\frac{1}{2}\,.$

3. Conditional Analytic Density

It is natural to consider which we call the conditional analytic density on the prime numbers.

We start with the relation

$$\mu_{s}(A \mid B) = \frac{\mu_{s}(A \cap B)}{\mu_{s}(B)},$$

where $\mu_s(B) > 0$ and A = E, $B = \mathbb{P}$, for all s > 1. We have the following definition:

Definition 3.1. Let E be a subset of \mathbb{N}^* and we consider, for all s > 1, the following expression:

$$\mu_s(E \,|\, \mathbb{P}) = \frac{\mu_s(E \cap \mathbb{P})}{\mu_s(\mathbb{P})} = \frac{\displaystyle\sum_{p \in E} \frac{1}{p^s}}{\displaystyle\sum_{p \in \mathbb{P}} \frac{1}{p^s}}.$$

Then we say that E admits the number ℓ as a conditional analytic density related to \mathbb{P} , if $\lim_s \mu_s(E \mid \mathbb{P})$ exists and equals ℓ , when s tends to 1^+ .

(Notice that this limit belongs to [0, 1].) We shall denote this conditional density by $\delta_c(E)$.

Or, we know that

$$Log \zeta(s) \sim \sum_{p \in \mathbb{P}} \frac{1}{p^s}$$
, as $(s \to 1^+)$.

So, E admits a conditional analytic density ℓ , conditionally to \mathbb{P} , if and only if

$$\lim_{(s \to 1^+)} \frac{1}{Log \, \zeta(s)} \sum_{p \in E} \frac{1}{p^s}$$

exists and equals ℓ .

This density has been used, first of all, by Dirichlet, who proved in the first third of 19th century that there are infinitely many prime numbers of the form:

$$p \equiv k \pmod{m}$$
,

where k and m are two relatively prime numbers.

Theorem 3.1. Let k and m be two relatively prime integers and let $E_{k,m}$ be the set of prime numbers of the form $p \equiv k \pmod{m}$. Then $E_{k,m}$

admits a conditional analytic density $\delta_c(E_{k,m})$ and

$$\delta_c(E_{k,m}) = \frac{1}{\varphi(m)},$$

where φ is the Euler function. In other words,

$$\lim_{(s\to 1^+)} \mathbf{\mu}_s(m\mathbb{N}^* + k \mid \mathbb{P}) = \frac{1}{\varphi(m)}.$$

4. Comparison between Asymptotic and Analytic Densities

Before we give two general theorems which characterize analytic density of subsets of \mathbb{N}^* , we obtain the following theorem which states one result of comparison between asymptotic density and analytic density for a subset of \mathbb{N}^* .

Theorem 4.1. Let E be a subset of \mathbb{N}^* . Consider the following two properties:

$$\begin{cases} (p_1): \lim_{(n \to +\infty)} \mathbf{v}_n(E) = \lim_{(n \to +\infty)} \frac{1}{n} \sum_{k=1}^n I_E(k) \ exists \ (=d(E)), \\ \\ (p_2): \lim_{(s \to 1^+)} \mathbf{\mu}_s(E) = \lim_{(s \to 1^+)} \frac{1}{\zeta(s)} \sum_{n=1}^{+\infty} \frac{I_E(n)}{n^s} \ exists \ (=\delta(E)). \end{cases}$$

Then $(p_1) \Rightarrow (p_2)$ and we have, $d(E) = \delta(E)$.

The converse of above is false.

In other words, if E admits an asymptotic density d(E), then it admits an analytic density $\delta(E)$ and these two densities are equal $(d(E) = \delta(E))$. The converse is false.

So, if we denote a class of subsets of \mathbb{N}^* which admits an asymptotic density by \mathfrak{D} and a class of subsets of \mathbb{N}^* which admits an analytic density by \mathcal{E} , then we obtain a strict inclusion $\mathfrak{D} \subset \mathcal{E}$.

Moreover, analytic density δ on \mathcal{E} is an extension of asymptotic density d on \mathfrak{D} .

Proof. For a direct proof see [4]. For the converse an example is given by Theorem 2.6, Corollary 2.7 and Corollary 2.8 in [2].

Theorem 4.2. Let E be a subset of \mathbb{N}^* such that

$$\sum_{n\in E}\frac{1}{n}<+\infty.$$

Then E admits an analytic density $\delta(E)$ and $\delta(E) = 0$.

The converse is not necessarily true.

Proof. The direct conclusion follows by noting that for all s > 1, we have

$$0 \le \mu_s(E) = \frac{1}{\zeta(s)} \sum_{n=1}^{+\infty} \frac{I_E(n)}{n^s} \le \frac{1}{\zeta(s)} \sum_{n \in E} \frac{I_E(n)}{n} \le \frac{C}{\zeta(s)} \to 0, \text{ as } s \to 1^+.$$

For the converse, we take $f(p) = I_{\mathbb{P}}(p)$, where

$$I_{\mathbb{P}}(p) = \begin{cases} 1, & \text{if } p \in \mathbb{P}, \\ 0, & \text{if } p \notin \mathbb{P}, \end{cases}$$

is the indicator function of the set of prime numbers \mathbb{P} .

Then, by Proposition 2.5, $\delta(\mathbb{P})$ exists and $\delta(\mathbb{P}) = 0$. But

$$\sum_{p\in\mathbb{P}}\frac{1}{p}$$

diverges.

5. Derived Analytic Density

A subset E of \mathbb{N}^* admits an analytic density $\delta(E)$ equal to ℓ , $\ell \in [0, 1]$, if

$$\sum_{k=1}^{+\infty} \frac{I_E(k)}{k^s} \sim \frac{\ell}{(s-1)}, \text{ as } s \text{ tends to } 1^+.$$

Definition 5.1. Let E be a subset of \mathbb{N}^* . We say that E admits a derived analytic density ℓ , $(\ell \in [0, 1])$ or a $\mu'_s(E)$ -density ℓ , if

$$\sum_{k=1}^{+\infty} \frac{I_E(k) Log \, k}{k^s} \sim \frac{\ell}{\left(s-1\right)^2}, \text{ as } s \text{ tends to } 1^+.$$

Corollary 5.1. $\mu'_s(E)$ -density ℓ means that

$$\sum_{k=1}^{+\infty} \frac{I_E(k) Log \, k}{k k^{s-1}} \sim \frac{\ell}{\left(s-1\right)^2} \,, \,\, as \, s \, tends \, to \,\, 1^+,$$

or

$$\sum_{k=1}^{+\infty} \frac{I_E(k) Log \, k}{k k^t} \sim \frac{\ell}{t^2}, \text{ as } t \text{ tends to } 0^+,$$

so, this is a density related to the sequence $\left(\mu_{t}\right)_{t>0}$ of measures defined by

$$\mu_t := \sum_{k=1}^{+\infty} \frac{Log \, k}{k^{t+1}} \, \varepsilon_k,$$

where ε_k is the Dirac measure on \mathbb{N}^* , defined by the unit mass placed at the point k.

Its discrete Laplace transform is of the form

$$g(t) = \sum_{k=1}^{+\infty} \frac{I_E(k) Log k}{k} \exp(-t Log k) = \sum_{k=1}^{+\infty} \frac{I_E(k) Log k}{kk^t},$$

and the distribution function F is given by

$$F(x) = \sum_{\text{Log } k \le x} \frac{I_E(k) \text{Log } k}{k}.$$

By Tauberian theorem [1, (I.6), p. 30],

$$g(t) \sim \frac{\ell}{t^2}$$
, as t tends to zero,

if and only if

$$F(x) \sim \frac{\ell}{2} x^2$$
, as x tends to infinity.

If

$$x = Log n, \quad t = s - 1,$$

then

$$\sum_{k=1}^{+\infty} \frac{I_E(k) Log \, k}{k^s} \sim \frac{\ell}{\left(s-1\right)^2},$$

if and only if

$$\sum_{k=1}^{n} \frac{I_E(k) Log \, k}{k} \sim \frac{\ell \, Log^2 n}{2} \, .$$

Corollary 5.2. Let E be a subset of \mathbb{N}^* and let ℓ be a real number in [0, 1]. Then the following three properties are equivalent:

$$\begin{cases} (p_1): E \ admits \ a \ \mu_s'\text{-}density \ \ell, \\ \\ (p_2): \sum_{k=1}^{+\infty} \frac{I_E(k)Log \ k}{k^s} \sim \frac{\ell}{(s-1)^2}, \ as \ (s \to 1^+), \\ \\ (p_3): \sum_{k=1}^{n} \frac{I_E(k)Log \ k}{k} \sim \frac{\ell Log^2 n}{2}, \ as \ (n \to +\infty). \end{cases}$$

Definition 5.2. Let *E* be a subset of \mathbb{N}^* . For a real number s > 1,

$$\mathbb{E}_s(E) \coloneqq \frac{1}{\operatorname{Log} \zeta(s)} \sum_{k \ge 2} \frac{I_E(k)}{(k \operatorname{Log} k)^s}.$$

We call *iterated analytic density* of the set E to be of order 2 if $\lim_{s} \mathbb{E}_{s}(E)$ exists when s tends to 1^{+} .

Acknowledgement

We would like to thank the referee for lots of corrections in English and comments which greatly improved the presentation of this paper.

References

- [1] N. Daili, Contributions à l'étude des densités, Thèse de Doctorat des Mathématiques, Pub(443/TS-22), I.R.M.A.- C.N.R.S., Strasbourg. I, France, 1991.
- [2] N. Daili, Asymptotic densities in number theory. Part I: A survey, JP Jour. Algebra, Number Theory & Appl. 5(3) (2005), 513-533.
- [3] N. Daili, Probabilistic zeta law, Far East J. Math. Sci. (FJMS) 18(1) (2005), 31-48.
- [4] N. Daili, Analytic densities in number theory. Part II: Analytic densities of arithmetic functions, 2005, pp. 1-16, preprint.
- [5] A. Fuchs and R. A. Giuliano, Théorie Générale des Densités, Pub. I.R.M.A., Strasbourg. I, 1989.
- [6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, London, New York, 1949.

Department of Mathematics F. Abbas University 19000 Sétif, Algeria e-mail: nourdaili_dz@yahoo.fr