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Abstract

In this paper, we present a detailed study of the analytic, conditional
analytic and derived analytic densities and give some applications to
classical number theory. Some new existence criteria [A. Fuchs and
R. A. Giuliano, Théorie Générale des Densités, Pub. I.R.M.A.,
Strasbourg. I, 1989] are established. Certain results obtained generalize
those obtained in ([JP Jour. Algebra, Number Theory & Appl. 5(3)
(2005), 513-533], [Far East J. Math. Sci. (FJMS) 18(1) (2005), 31-48]).

1. Prelude

We consider a family { }T∈α=ℜ α ,µ  of σ -finitely additive

probability measures on the set ( )∗℘ N  of subsets E of .∗N  We examine

the convergence, when α tends to ,0α  of

( ) ( ) { }( )∑
∞

=
αα =

1

.:
n

E nnIE µµ

If the limit, ( ),lim Eα
α
µ  when ,0α→α  exists, then we say that E has a

density in the sense of the family .ℜ
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If we take, for example, ,s=α  ] [,,1 ∞+=T  then we obtain the zeta-

family

{ },1,: >ζ=ζ ss

where for all subsets E of ,∗N

( ) ( ) ( )
( )∑ζ

=ζ=
n

s
E

ss
n

nI
s

EE 1::µ

and EI  is the indicator function of the subset E.

By taking the limit when s tends to ,1+  we diffuse the considered

measure, and we obtain that we call an analytic density.

We prove that the latter gives a generalization to the asymptotic
density [1, 2].

More precisely, analytic density is an extension of the asymptotic

density. Notably, the class E  of subsets E of ,∗N  for which ( )Es
s
µlim

exists contains, strictly, the class D  of subsets of ,∗N  for which

( )En
n

νlim  exists.

We recall that for all real numbers ,1>s  the series

∑
+∞

=1

1

n
sn

converges, and its sum is noted ( ).sζ  Thus

( ) ∑
+∞

=

=ζ
1

.1:
n

sn
s

Definition 1.1. The Riemann’s zeta function ζ is the function
defined, for all real numbers ,1>s  by

( ) ∑
+∞

=

=ζ
1

.1:
n

sn
s
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Proposition 1.1. The function ζ defined on ] [,,1 ∞++  is continuous,

derivable and decreasing.

For ulterior needs, we look how the zeta function ζ and its derivation
ζ′  behave in a neighborhood of 1 (the asymptotic behaviour of ( ),sζ

( )sLog ζ  and ( ),sζ′  as .)1+→s

Theorem 1.2 [1, 6]. We have

(a) ( ) ( ) ( ),1,1
1

1 +→+
−

=ζ sO
s

s

(b) ( ) ( ) ( ).1,1
1

1 +→−+
−

=ζ ssO
s

LogsLog

Theorem 1.3 [1, 6]. We have

( )
( )

( ),1
1

1
2

O
s

s +
−

−=ζ′  as ( ).1+→s

2. Main Results

2.1. Analytic densities

A generalization of asymptotic density [2] is the density introduced
by use of Riemann’s zeta function given previously.

We begin by introducing on ( ( ))∗∗ ℘ NN ,  a family of laws of

probability indexed by a real number ,1>s  as in [3].

Definition 2.1. Let E be a subset of .∗N  We put, for all ,1>s

( ) ( )
( )∑

≥
ζ

=
1

,1:
n

s
E

s
n

nI
s

Eµ

where ( )nIE  is the indicator function of the subset E.

We say that E has the number  as an analytic density, if =

( ),lim Es
s
µ  when s tends to .1+  (Notice that this limit belongs to ].)1,0[

We denote this limit by ( ),Eδ  and we call ( )Eδ  to be the analytic

density of E. We write E  to be a class of subsets of ∗N  which has an
analytic density.
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Proposition 2.1. Analytic density δ is invariant under translation.

More precisely, if ∗⊂ NE  and ,N∈k  then

( )
( ) ( )( ) 0lim

1
=−+

+→
EkE ss

s
µµ

uniformly on E.

Proof. We prove this property by increasing recurrence: (1) For
,1=k  we prove that ( )Esµ  and ( )1+Esµ  have the same asymptotic

comportment when s tends to .1+  Indeed, we put

( ) ( ) ( )
( )

( )
( )∑ ∑ +

ζ
−

ζ
=+−=

n n
s

E
s

E
ss

s

n

nI
sn

nI
s

EEe 1
1

111µµ

( ) ( ) ( ) ( ) ( )∑∑ ∑
∈∈ ∈












+
−

ζ
=

+ζ
−

ζ
=

En
ss

En En
ss nnsnsns

.
1

111

1

1111

And then

( ) ( ) ( )∑
+∞

=
ζ

=










+
−

ζ
≤≤

1
1 .1

1

1110
n

ss
s

snns
e

Let s tend to .1+  Then we see that 01 →se  uniformly in E. Otherwise,

( )Esµ  and ( )1+Esµ  have the same asymptotic comportment, and these

two limits are equal if these exist. In another way,

( ) ( ),1+δ=δ EE

so, invariance by translation of analytic density.

(2) We suppose

( ) ( ) ( )1...,,1, −++ kEEE sss µµµ

have the same asymptotic comportment when s tends to +1  and we prove
that

( )Esµ  and ( )kEs +µ

have the same property. Indeed,

( ) ( ) ( ) ( ) ( )∑ ∑
∈ ∈ +ζ

=+
ζ

=
En En

ssss
kns

E
ns

E .111;11 µµ
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We put

( ) ( ).11 −+−=− kEEe ss
s
k µµ

Then

( ) ( ) ( ) ( )) ( ( ) ( )( )211 +−+++−=+−= EEEEkEEe ssssss
s
k µµµµµµ

 ( ) ( )( ) ( ) ( )( ).112 kEkEkEkE ssss +−−++−+−−+++ µµµµ

The second member is the sum of finite number of terms which tends to 0

uniformly in E, so

0→s
ke  uniformly in E.

Then

( )Esµ  and ( )kEs +µ

have the same asymptotic comportment when s tends to ,1+  and these

two limits are equal if there exist, otherwise,

( ) ( ) .kkEE ∀+δ=δ

Proposition 2.2. (a) All finite subsets ( )∗℘∈ NE  belong to E  and

( ) .0=δ E

(b) All cofinite subsets ( )∗℘∈ NE  belong to E  and ( ) .1=δ E

Proposition 2.3. E  contains the algebra of finite and cofinite subsets

of E.

Proposition 2.4. For all m of ,∗N  the class ∗Nm  of multiples of m

belongs to E  and

( ) .1
m

m =δ ∗N

Proof. Noting that

( )
ss

m
m 1=∗Nµ
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and letting ( ),1+→s  we have

( ) .1
m

m =δ ∗N

Proposition 2.5. The set P  of prime numbers belongs to E  and

( ) .0=δ P  In another way, prime numbers are rare.

Proof. We have

( ) ( ) ∑
∈

ζ
=

P
P

p
ss

ps
11µ

or, by Theorem 1.2(a),

( ) ( ),1~1 −
ζ

s
s

 as ( ).1+→s

Also,

∑
∈

−
Pp

s s
Log

p
,

1
1~1  as ( ).1+→s

Thus

( ) ( ) ,
1

11~
−

−
s

Logss Pµ  as ( ).1+→s

This tends to 0, when ( ),1+→s  so ( ) .0=δ P

Proposition 2.6. The set 2E  of square-free integers belongs to E  and

( ) ( ) .6
2

1
22

π
=

ζ
=δ E

Proof. By Proposition 2.10 in [3] and the fact that ( )s2
1

ζ
 is

continuous, it follows that

( ) ( ) ( ) ,6
2

1
2
1

22
π

=
ζ

→
ζ

=
s

Esµ  as ( ).1+→s

So

( ) ( ) .6
2

1
22

π
=

ζ
=δ E
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Proposition 2.7. The sets ( )2≥kEk  of integers without divisors of

the form kn  belong to E  and

( ) ( ) .1
k

Ek ζ
=δ

Proof. Since

( ) ( ) ,1
ks

Eks ζ
=µ

on taking the limit when ( ),1+→s  it follows that

( ) ( ) .1
k

Ek ζ
=δ

Theorem 2.8. Let E be a subset of ∗N  such that

∑
∈

∞+<
En

n
.1

Then E has an analytic density ( )Eδ  and ( ) .0=δ E  The converse is not

necessarily true.

Proof. We have

( ) ( ) ( ) ( )∑ ∑
∈ ∈

>
ζ

<
ζ

=
En En

ss s
nsns

E .11111µ

Then

( ) ,0→Esµ  as ( ).1+→s

For the converse see Theorem 4.2.

Before giving other applications, we require the following result:

Theorem 2.9. (Criterion). Let E be a subset of ∗N  neither finite, nor

cofinite, written in the form

[ [∪
1

,,
≥

=
n

nn qpE
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where ( ) 1≥nnp  and ( ) 1≥nnq  are two sequences of integers such that

.10 1 ≥∀<<< + npqp nnn

Put

nnn pLogqLog −=ρ  and ( ).11, 01 =≥−=σ − qnqLogqLog nnn

Let  be a real number in ] [1,0  and suppose the following two

hypotheses hold:

( ) ,~: 11 −nn qLogpLogH  as ( ).∞+→n

( ) ,:2 →
σ
ρ

n

nH  as ( ).∞+→n

Then the set E has an analytic density ( )Eδ  and ( ) .=δ E  If ,0=  then

( ) ( ) .02 =δ⇒ EH

For the proof of this theorem, we use the following result:

Lemma 2.10 ([1, Théo. VII.9, p. 168], [5, Théo. 8.2, p. 25]). Let

[ [∪
1

,
≥

=
n

nn qpE  be a subset of ,∗N  neither finite, nor cofinite. Let µ be a

positive measure on ( ( )),, ∗∗ ℘ NN  with total mass ∞+  and support ∗N
and F be its a distribution function. We put

( ) ( ) ( ) ( ) ( ).1,, 01 =≥−=σ−=ρ − qkqFqFpFqF kkkkkk

Then

( ) ( )

( )
( ) .inflim,suplim

1

1

1

11

1

1

∑

∑

∑

∑
−

=

−

=−
+∞→µ

=

=

+∞→
µ

σ

ρ

=δ

σ

ρ

=δ
n

k
k

n

k
k

n

n

nn

k
k

n

k
k

n pF
qF

We give a direct application of this theorem to the first-digit problem.

Definition 2.2. We suppose that we adopt the base ( )2≥bb  as a

numeration base; a digit is then a number { }1...,,1,0 −∈ bk  and the set
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kE  of strictly positive integers which admits a development in the base

b, with first-digit { },1...,,1,0 −∈ bk  is given by

[ ( ) [∪
0

,1,
≥

+=
n

nn
k bkkbE

the disjoint union of its connected components in second member. A

solution of the first-digit problem is independent of the numeration base.

Proposition 2.11. Let k be a given integer, with .91 ≤≤ k  We

consider the set E formed by strictly positive integers with development in

base b has a significantly first-digit equal to k. Then the set E has an

analytic density ( )Eδ  and

( ) .11 




 +=δ

k
LogE b

Proof. Indeed E takes the form

[ [∪
0

,,
≥

=
n

nn qpE

where

( ) { }.9...,,2,1,1, ∈+== kbkqkbp n
n

n
n

(a) We have

,kLogbnLogpLog n +=

( ) ( ).111 ++−=− kLogbLognqLog n

For fixed k, we have

.~ 1−nn qLogpLog

(b) Then

( )





 +=

+
=

kkb

bk
p
q

n

n

n

n 11
1

 and 
( )
( )

.
1

1
11

b
bk

bk
q
q

n

n

n

n =
+

+
=

−−
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We put






 +==ρ

k
Log

p
q

Log
n

n
n

11  and .
1

bLog
q
q

Log
n

n
n ==σ

−

Then

.11

11





 +=






 +

=
σ
ρ

k
Log

bLog
k

Log

b
n

n

So, by Theorem 2.9, we shall have

( ) .11 




 +=δ

k
LogE b

This result will be obtained in another way in an ulterior theorem.

Proposition 2.12. Let E be the set of natural integers with

development in base 2≥b  containing an odd number of digits. Then, E

has an analytic density ( )Eδ  and ( ) .
2
1=δ E

Proof. We write E in the form of disjoint union of its connected

components

[ [∪
0

122 .,
≥

+=
k

kk bbE

We put

.0,, 122 ≥== + kbqbp k
k

k
k

Then

(a) ( ) .12;2 1 bLogkqLogbLogkpLog kk −== −

We have

( ) ,1
12

2
12

2

1
→

−
=

−
=

− k
k

bLogk
bLogk

qLog
pLog

k

k  as ( ).∞+→k
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In other words

.~ 1−kk qLogpLog

(b) b
b

b
p
q

k

k

k

k ==
+

2

12
 and .2

12

12

1
b

b

b
q
q

k

k

k

k ==
−

+

−

We put

bLog
p
q

Log
k

k
k ==ρ

and

.2
1

bLog
q
q

Log
k

k
k ==σ

−

Then

.
2
1

2
==

σ
ρ

bLog
bLog

k

k

So, by Theorem 2.9, we shall have, ( ) .
2
1=δ E

Corollary 2.13. We suppose that sequences ( ) ( ) 11, ≥≥ nnnn qp  satisfy

,, 2
1

1 →→
−n

n

n

n
q
p

p
q

 as ( )∞+→n

with [ [,,1, 21 ∞+∈  one at least of those limits is different of 1. Then

(a) ,~ 1−nn qLogpLog  as ( );∞+→n

(b) ( ) ,
21

1

11

Log
Log

q
p

p
q

Log

p
q

Log

q
q

Log

p
q

Log

n

n

n

n

n

n

n

n

n

n

n

n →








==
σ
ρ

−−

 as ( ).∞+→n

It results that E admits an analytic density

( ) ( ) .
21

1
Log

Log
E =δ
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Theorem 2.14. (Existence criterion). Let  be a real number such

that .10 ≤<  Then the following two properties are equivalent:

( ) Ep :1  admits  as an analytic density.

( ) ( ) .~:: 1122 −nn qLogpLogpp

 ( ) Forp :22

( ),1,1,, 01 =≥−=σ−=ρ − qnqLogqLogpLogqLog nnnnnn

we have

,

1

1 →

σ

ρ

∑

∑

=

=
n

k
n

n

k
k

in other words

,
1

1

1

1 →

σ

ρ

∑

∑

=

=
n

k
n

n

k
k

n

n
 as ( ).∞+→n

If ,0=  then a condition ( )1p  amounts to ( ) .22p

In particular, if these two sequences ( ) ,1≥ρ nn  ( ) 1≥σ nn  converge in the

sense of Césaro to two limits 21,  (with ),02 >  then property ( )22p  is

verified with .
2

1=

It results the following corollary:

Corollary 2.15. We suppose that two sequences ( ) ,1≥nnp  ( ) 1≥nnq

satisfy the following two properties:

( ) ,:1 r
p
q

p
n

n →  as ( ).∞+→n

( ) ( ) ,:
1

2 ρ→nnqp  as ( ).∞+→n
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Then, E admits an analytic density ( )Eδ  and

( ) .
ρ

=δ
Log

rLog
E

Proof. It is enough to prove that under the hypothesis properties
( )12p  and ( )22p  above hold.

(1) It holds from ( )1p  that

nn qLogpLog ~

and from ( )2p  that

.~ ρLognqLog n

Also

.~ 1−nn qLogqLog

It results that

.~ 1−nn qLogpLog

(2) ,rLog
p
q

Log
n

n
n →






=ρ  also rLogn →ρ  in the sense of Césaro,

,1−−=σ nnn qLogqLog

(( ) )∑
=

ρ→==σ
n

k

nnnk LogqLogqLog
nn

1

1
,11

in other words, ρ→σ Logn  in the sense of Césaro so the result.

Remark 2.1. By virtue of ( ),1p  condition ( )2p  can be replaced by the

following:

( ) ( ) ( ).1,:
1

2 >ρρ→′
nnpp

Indeed,

( ) ( ) ,
1

1
1

nn
n

n

nnn q
q
p

p 





→
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or, by ( ),1p

,1~

1
n

n

n
q
p









then

( ) ( ) .~
11
nnnn qp

2.2. Applications

Proposition 2.16. Let E be a subset of ∗N  given by

[ [∪
1

,,
≥

=
k

kk qpE

where

( ) ( )
( ) ( )





+==

+==
∗.,

,,

dakkQbq

dakkPbp
kQ

k

kP
k

We suppose that ∗dda ,,  are real numbers such that:

( ) .0:1 >aH

( ) ForH :2  all ,1≥k  kp  and kq  are integers .1≥

( ) .10:3 <−<
∗

a
ddH

Then E admits an analytic density ( )Eδ  and ( ) .
a

ddE −=δ
∗

Proof. Indeed, we put

( )






=−=σ

−=−=ρ

−

∗

.

,

1 bLogaqLogqLog

bLogddpLogqLog

kkk

kkk

We verify

(a) 
( )

,1
11

→
+−

+=
∗− dka

dak
qLog
pLog

k

k  as ( );∞+→k
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in other words

.~ 1−kk qLogpLog

(b) .
a

dd

k

k −=
σ
ρ ∗

So, by Theorem 2.9, it holds that E admits an analytic density ( )Eδ

and ( ) .
a

ddE −=δ
∗

Proposition 2.17. Let E be a subset of ∗N  given by

[ [∪
1

,,
≥

=
k

kk qpE

where

( ) ( ) ( )
( ) ( ) ( )





++==

++==

−−∗

−−

.,

,,

11

11

nnnkQ
k

nnnkP
k

kokdakkQbq

kodkakkPbp

We suppose that ndda ,,, ∗  are numbers such that:

( ) nH :1  is an integer .2≥

( ) .0:2 >aH

( ) ForH :3  all ,1≥k  kp  and kq  are integers .1≥

( ) .10:4 <−<
∗

na
ddH

Then E admits an analytic density ( )Eδ  and ( ) .
na

ddE −=δ
∗

Proof. Indeed, we put

(( ) ( ))

( ( ))





+=−=σ

+−=−=ρ

−−
−

−−∗

.

,

11
1

11

bLogkonakqLogqLog

bLogkokddpLogqLog

nn
kkk

nn
kkk
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We verify

(a) 
( )

( ) ,1
11

→
−

=
− kQ

kP
qLog
pLog

k

k  as ( );∞+→k

in other words

.~ 1−kk qLogpLog

(b) ,
na

dd

k

k −→
σ
ρ ∗

 as ( ).∞+→k

So, by Theorem 2.9, it results that E admits an analytic density ( )Eδ

and ( ) .
na

ddE −=δ
∗

Proposition 2.18. Let E be a subset of ∗N  given by

[ [∪
0

122 ,,
≥

+=
k

kk ccE

where integers ,2≥c

,,0, cLogddcLoga b=== ∗

in Proposition 2.16.

Then E admits an analytic density ( )Eδ  and ( ) .
2
1=δ E

3. Conditional Analytic Density

It is natural to consider which we call the conditional analytic density

on the prime numbers.

We start with the relation

( ) ( )
( ) ,
B

BA
BA

s

s
s µ

µµ ∩
=|

where ( ) 0>Bsµ  and ,EA =  ,P=B  for all .1>s  We have the

following definition:
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Definition 3.1. Let E be a subset of ∗N  and we consider, for all

,1>s  the following expression:

( ) ( )
( ) .

1

1

∑

∑

∈

∈==|

P

P
PP

p
s

Ep
s

s

s
s

p

pE
E

µ
µµ ∩

Then we say that E admits the number  as a conditional analytic

density related to ,P  if ( )P|Es
s
µlim  exists and equals ,  when s tends

to .1+

(Notice that this limit belongs to ].)1,0[  We shall denote this

conditional density by ( ).Ecδ

Or, we know that

( ) ∑
∈

ζ
Pp

sp
sLog ,1~  as ( ).1+→s

So, E admits a conditional analytic density ,  conditionally to ,P  if and

only if

( ) ( ) ∑
∈→ ζ+

Ep
ss psLog

11lim
1

exists and equals .

This density has been used, first of all, by Dirichlet, who proved in

the first third of 19th century that there are infinitely many prime

numbers of the form:

( ),mod mkp ≡

where k and m are two relatively prime numbers.

Theorem 3.1. Let k and m be two relatively prime integers and let

mkE ,  be the set of prime numbers of the form ( ).mod mkp ≡  Then mkE ,
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admits a conditional analytic density ( )mkc E ,δ  and

( ) ( ) ,1
, m

E mkc ϕ
=δ

where ϕ is the Euler function. In other words,

( )
( ) ( ) .1lim

1 m
kms

s ϕ
=|+∗

→ +
PNµ

4. Comparison between Asymptotic and Analytic Densities

Before we give two general theorems which characterize analytic

density of subsets of ,∗N  we obtain the following theorem which states

one result of comparison between asymptotic density and analytic density

for a subset of .∗N

Theorem 4.1. Let E be a subset of .∗N  Consider the following two

properties:

( )
( )

( )
( )

( ) ( )( )

( )
( )

( )
( ) ( )

( ) ( )( )
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Then ( ) ( )21 pp ⇒  and we have, ( ) ( ).EEd δ=

The converse of above is false.

In other words, if E admits an asymptotic density ( ),Ed  then it

admits an analytic density ( )Eδ  and these two densities are equal

( ) ( )( ).EEd δ=  The converse is false.

So, if we denote a class of subsets of ∗N  which admits an asymptotic

density by D  and a class of subsets of ∗N  which admits an analytic

density by ,E  then we obtain a strict inclusion .E⊂D
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Moreover, analytic density δ on E  is an extension of asymptotic
density d on D.

Proof. For a direct proof see [4]. For the converse an example is
given by Theorem 2.6, Corollary 2.7 and Corollary 2.8 in [2].

Theorem 4.2. Let E be a subset of ∗N  such that

∑
∈

∞+<
En

n
.1

Then E admits an analytic density ( )Eδ  and ( ) .0=δ E

The converse is not necessarily true.

Proof. The direct conclusion follows by noting that for all ,1>s  we

have

( ) ( )
( )

( )
( )

( )∑ ∑
+∞

= ∈

→
ζ

≤
ζ

≤
ζ

=≤
1

,0110
n En

E
s

E
s s

C
n

nI
sn

nI
s

Eµ  as .1+→s

For the converse, we take ( ) ( ),pIpf P=  where

( )




∉
∈

=
,if,0
,if,1

P
P

P p

p
pI

is the indicator function of the set of prime numbers .P

Then, by Proposition 2.5, ( )Pδ  exists and ( ) .0=δ P  But

∑
∈Pp

p
1

diverges.

5. Derived Analytic Density

A subset E of ∗N  admits an analytic density ( )Eδ  equal to ∈,

[ ],1,0  if

( )
( )∑

+∞

=
−

1

,
1

~
k

s
E

sk

kI
 as s tends to .1+
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Definition 5.1. Let E be a subset of .∗N  We say that E admits a

derived analytic density ,  [ ]( )1,0∈  or a ( )Esµ′ -density ,  if

( )
( )∑

+∞

= −1
2

,
1

~
k

s
E

sk

kLogkI
 as s tends to .1+

Corollary 5.1. ( )Esµ′ -density  means that

( )
( )∑

+∞

=
− −1

21
,

1
~

k
s

E

skk

kLogkI
 as s tends to ,1+

or

( )∑
+∞

=1
2

,~
k

t
E

tkk

kLogkI
 as t tends to ,0+

so, this is a density related to the sequence ( ) 0>ttµ  of measures defined by

∑
+∞

=
+

ε=
1

1
,:

k
ktt

k

kLogµ

where kε  is the Dirac measure on ,∗N  defined by the unit mass placed at

the point k.

Its discrete Laplace transform is of the form

( ) ( ) ( ) ( )
,exp

1 1
∑ ∑
+∞

=

+∞

=

=−=
k k

t
EE

kk

kLogkI
kLogt

k
kLogkI

tg

and the distribution function F is given by

( ) ( )∑
≤

=
xkLog

E
k

kLogkI
xF .

By Tauberian theorem [1, (I.6), p. 30],

( ) ,~
2t

tg  as t tends to zero,
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if and only if

( ) ,
2

~ 2xxF  as x tends to infinity.

If

,1, −== stnLogx

then

( )
( )∑

+∞

= −1
2

,
1

~
k

s
E

sk

kLogkI

if and only if

( )∑
=

n

k

E nLog
k

kLogkI

1

2
.

2
~

Corollary 5.2. Let E be a subset of ∗N  and let  be a real number in

[ ].1,0  Then the following three properties are equivalent:

( )

( ) ( )
( )

( )

( ) ( ) ( )
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Definition 5.2. Let E be a subset of .∗N  For a real number ,1>s

( ) ( )
( )

( )∑
≥

ζ
=

2

.1:
k

s
E

s
kLogk

kI
sLog

EE

We call iterated analytic density of the set E to be of order 2 if ( )Es
s

Elim

exists when s tends to .1+
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