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Abstract

In this paper, we introduce a new subclass of harmonic meromorphic
functions. Coefficient bounds, distortion bounds, extreme points,
convolution conditions and convex linear combinations for the functions

belonging to this class are obtained.
1. Introduction

A continuous function f =u +iv is a complex valued harmonic
function in a domain D < C if both u and v are real harmonics in D. In
any simply connected domain we write f = h + g, where h and g are

analytic in D. A necessary and sufficient condition for f to be locally

univalent and orientation preserving in D is that |A'|>|g'| in D (see
[1]). Hengartner and Schober [2] investigated functions harmonic in the
exterior of the unit disk U = {z :| z| > 1}, among other things they showed

that complex valued, harmonic, orientation preserving univalent mapping
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f, defined in U and satisfying f(o) = o, must admit the representation

f(2) = h(z) + g(2), (1.1)

where h(z) and g(z) are defined by

hz) =2z + Zanz_” and g(z) = anz_”, |z| e U. (1.2)
n=1 n=1

For 0<a<1,0<A<1,k>0 and 0 <y <2n let Mg(a, A, k) consist

of functions f satisfying the conditions

Re{(l + keiY)( e jf ézz ) f(z)j - keiy} > q. (1.3)

Also let Mg (a, A, k) be the subclass of Mpy(a, A, k) consisting of

functions f = h + g for which

h(z) =z + Zanz’”, g(z) = —Z bz, a, =20, b, >0. (1.4)
n=1 n=1

Note that the class of harmonic meromorphic starlike functions has been
studied by Jahangiri [3] and Jahangiri and Silverman [4]. We also note
the class Mpg(a,0,1) of harmonic meromorphic starlike functions

studied by Rosy et al. [5].

Here we state a result due to Jahangiri [3], which we will use

throughout this paper.
Theorem 1.1. Let f = h + g with h and g of the form (1.2). If

[(n+a)|a, [+ (n-0)]b, []<1-0, (1.5)

NgE

I
—

n

then f is harmonic, orientation preserving and univalent in U.
2. Coefficient Bounds

First we prove a sufficient coefficient bound.
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Theorem 2.1. Let f = h + g with h and g be given by (1.2). If

D (1 + k)= (@ + k) (u(n +1) = 1)} a |

n=1

k) - (0 + R —1)+ 1} b, ) < 1-a, 2.1)

then f is harmonic, orientation preserving and univalent in U and
f € MH((I, 7\., k)
Proof. Consider the function f = A + g, where h and g are given by

(1.2). In [4] it has been proved that if Z::1 n(|a, |+]b,|) <1, then fis

harmonic, orientation preserving and univalent in U. For 0 <A <1,

note that

n<(ml+k)-Mn+1)-1)(a+k)1-a
and

n <+ k)—n-1)+1)(a+ k)1 -

Suppose that (2.1) holds. Then we have

© 2z - 26') e)— ke ! > a .
R {[x(zh'(z) - zg'(z)) +(1- }\’) (h(Z) 3 §(Z)):| (1 + k ) k } >a, (2.2

where z =re?,0<y<2r,0<r<1,k>0,0<0o<1and 0<A<1.
Now let
A(2) = (1 + ke') [2R'(2) - 2g'(2)]
— ke [M(zh'(2) - 28'(2)) + (1 - 1) (h(z) + &(2))] (2.3)
and
B(z) = Mzh'(z) - 28'(2)) + (1 = 1) (h(2) + E(2))- (2.4)
For 0 < o < 1, we observe that

|A(z)+ (1 - a)B(z)|-| A(z) - 1 + a)B(z)| = 0. (2.5)
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From (2.3) and (2.4), we note that
| A=)+ (- 0)B()|

= (1 - a) - ke™) (hzh'(2) + (1 = M)A(2)) + (1 + ke™) (2R'(2))

+((1-a) - ke™) (-rzg'(z) + (1 - 1) g(2)) + (1 + ke') (—2g'(2)) |

(2-a)z- i (n(1 + ke™) + (Mn +1) - 1) (1 - o — ke ))a,z ™"

n=1
- i (n(1 + ke™ )+ (Mn - 1) +1)(1 — o — ke )b,z "
n=1

2(2—oc)|z|—Z(n(1+k)+(k(n+1)—1)(1—oc—k))|an||z|_”

n=1

=D+ k) + (M -1)+ 1)1 —a k)| b, || 2"
n=1

and

| A(z) - (1 + o) B(2)|

= [ (1 + &) + ke ) (Azh'(z) + (1 = V) A(2)) - (1 + ke™ ) (zh'(2))

+ (1 + o) + ke™) (hzg'(2) + (1 - 1)g(2)) - (1 + ke'™) (~28'(2)) |

0z + i (n(1 + ke™) = (Mn +1) = 1)(1 + a + ke ))a,z ™"

n=1

+ i (n(1 + ke™) = (Mn - 1) +1)(1 + o + ke™))b,z™"

n=1

> oc|z|+Z(n(1+k)—(k(n+1)—l)(1+a+k))|an [|z]™
n=1

0

+Z(n(l+k)—(k(n—1)+1)(1+oc+k))|bn [|z]™",

n=1
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then

|A(z) + (1 - a)B(z)| - | A(z) - (1 + o) B(z) |

>91-a)z[-2) (1 +k) - (Mn+1)-1) (-0 - k)| a, || 2] "
n=1
~2) (1 + k)= (n = 1)+ 1) (@ + k)| by | 2"
n=1
= 2|z|{1—0t—Z(n(1+k)—(7»(n+1)—1)(—oc—k))|an ||2|7n71
n=1

= (L + B) = (M= 1) + 1) (@ + k)| by || Zl_n_l}

n=1

n=1

> Z{I—Q—Z(n(l+k)—(k(n+1)—1)(oc+k))|an|

=Y+ B) = (M= 1) + 1) (@ + k)| by |} >0,

n=1
by (2.1).
We next show that the condition (2.1) is also necessary for functions
in Mg(o, A, k).
Theorem 2.2. Let f = h+ g with h and g be given by (1.4). Then
f € Mg(a, A, k) if and only if the inequality (2.1) holds for the coefficient
of f=h+g.

Proof. In view of Theorem 2.1, we need only to show that
f & Mz (a, A, k) if the condition (2.1) does not hold. We note that for

f € Mg(o, &, k), by (1.3) the condition (2.2) must be satisfied for all

values of z in U. Substituting for A, g, h', g, A" and g" in (2.2) and
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choosing values of z on the real axis where 0 <z =r >1, we are

required to have Re{A(z)/B(z)} > 0, where
AZ) = (1-a)= D" ({n(1 + ke™) = (@ + ke™) [(Mn + 1) - 1)]} a, |
n=1

+{n(L+ ke™) = (0 + ke™) [(M(n — 1) + D]} b, || 2[7)

and

B)=1+Y (1 -2n+1)|a|lz[""
n=1

=Y -2 -1, |27
n=1

For Re(e”)<|e” |=1 the required condition Re{A(z)/B(z)} =0 is

equivalent to

(L —a)= D (n(1 + ke™) = (o + ke™) (1(n +1) = 1} a, |
n=1

£ {n(1+ ke™) = (a + ke™)(un = 1) + 1)} by, )r~"

= = (2.6)
10 -2+ ) g [ =@ - 1) By [
n=1 n=1

If the condition (2.1) does not hold, then the numerator of (2.6) is

negative for z sufficiently close to 1. Thus there exists a zg =15 > 1 for

which the quotient in (2.6) is negative. This contradicts the required

condition for f € M#(a, A, k) and so the proof is complete.

3. Distortion Bounds and Extreme Points

In this section, we shall obtain distortion bounds for functions in

M#(a, &, k) and also provide extreme points for the class Mz(a, A, k).
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Theorem 3.1. If f € Mz(a, A, k), for 0<a <1 and |z|=r>1,
then
r—1-o)yrt <|f@)|<r+Q-a)rt

Proof. We only prove the right hand inequality. The argument for
left hand inequality is similar and will be omitted. Let f € Mz(a, A, k).

Taking the absolute value of f, we obtain

n=1 n=1

[fz)| =]z + Zanz’” — anz*” <r+ Z(an +b,)r "
n=1

IA

r+ Z (a, +b,)r?
n=1

IA

r+ Y (I + ke™) — (@ + ke™ ) (Mn +1) 1)} | a, |
n=1

+{n( + ke™) — (o + ke™ ) (Mn —1) + 1)| b, |})r !
<r+(@1-a)rh

Theorem 3.2. f € Mg(o, A, k) if and only if f can be expressed as

f(z) = 2}(%’% + Yn&n); (3.1)
where
2 €U hole) = 2 hnle) = 2+ (x((ln_+a1)) Dark)?
80(2) = 2 8nl2) = 2 = gy (x((ln__oi)) e’ b2

o0
> (n + 3n) =1, %, 20 and y, > 0.
n=0
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Proof. Note that for f we may write

f(z) = Z(xnhn + yngn)
n=0

0

= xohg + Y080 + Z[xn(z + (nd + k) - (x((ln_+a1)) -1)(a + k)) 27”)

n=1

+ yn(z HOEDE (}L(ln__al) +1)(a + k)) E_nﬂ

= 3 Xy + z+ 3 1-a) o
_nz::')(n Yn) ;(n(1+k)—(k(n+1)—1)(a+k)) n

N 1-a) z N
_;(n(l TR -Mn-1)+ D@+ k)"

Now the first part of the proof is complete, since by Theorem 2.2,

© 1-a
}:B41+erun+D—1Na+kD@ﬁa+ky4§n+$-1xa+k»%J

n=1

1)~ 340 =)+ Ve D) (e == )

= (1—a)2(xn +y,) <1-o.
n=1

Conversely, suppose that f € Mz(a, A, k). Then

i[(n(l +h) - (Mn+ D) =D+ k)

1-a
n=1

y ollr k) - (7‘(1”_‘;) + (o + k) bn} <1
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Setting
‘- (A +k)-AMn+1)-1)(a + k))a
n 1-a n
v, = (n(1 + k) - (k(ln_—;) +1)(a + k)) By, 0<x<1
and

o0
Yo =1-x9 _Z(xn + Y )s
n=1

0
we obtain f(z) = Y (x,h, + ¥,8,) as required.
n=0

4. Convolution and Convex Linear Combination

In this section, we show that the class Mg(a, A, k) is invariant

under convolution and convex linear combination of its members.
For harmonic functions
o0 o0
flz)=z+ E a,z "t - E b,z "
n=1 n=1

and

the convolution of f and F'is given by

0

(f*F)(2) = f(2)* F2) = 2+ Y a,A,2" = ) b,B,Z ", (4.1)
n=1

n=1

Theorem 4.1. For 0 <p<a <1, let fe Mg(o, A, k) and F €
Mg (B, % k). Then f+ F e Mg(o, % k) € Mg (B, . k).
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Proof. Suppose f and F are in Mz/(a, A, k) so that f x F is given by
above convolution. Since f e Mg(a, A, k) and F € Mz(B, A, k), the

coefficient of f and F must satisfy conditions given in Theorem 2.2. So for

the coefficient of f * F we can write
i ({n( + ke™) — (o + ke™ ) (M(n +1) - 1)}a, A,
=1
+{n(1 + ke™) = (o + ke™)(M(n — 1) + 1)}b,B,,)
< i (n( + ke™) = (a + ke™)(M(n + 1) - 1)}a,
n=1

+{n(1 + ke™) = (o + ke™ ) (Mn - 1) + 1)1b,,).

The right hand side of the above inequality is bounded by 1 — a because
f e Mg(o, A, k). Thus f*F € Mg(o, A, k) = Mg(B, &, k).

Finally, we examine the convex combination of Mz(a, A, k).

Let the functions f;(2) be defined, for j =1, 2, ..., by

0 0
f](Z) =z + Zan,jzfn - anJE’”, anyj > O, bn,] > 0. (42)
n=1

n=1

Theorem 4.2. Let the functions f;(z) defined by (4.2) be in the class
My (o, A, k) for every j =1, 2, .... Then the functions t(z) defined by

[~e}

t(z) = chfj(z), 0<¢<1) (4.3)

Jj=1

m

are also in the class Mg(a, A, k), where Z cj =1

J=1
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Proof. According to the definition of ¢, we can write
t(z) =z + Z chan,j 2" - Z chbnyj z . (4.4)

n=1\j=1 n=1\j=1

Further, since f;(z) are in Mz(a, A, k) for every (j =1, 2, ...), by (2.2)

we have
D A+ ke™) = (0 + ke ) (Mn +1) = 1) D cjay, ;
n=1 j=1
+ (n(1 + ke™) — (o + ke™) (M(n - 1) + 1))?3 cibn.j
j=1

= > i1 D [l + ke™) = (@ + ke™ ) (Mn +1) = 1) @ |
j=1 n=1
+ (n( + ke™) = (a + ke™ ) (M(n — 1) +1))| b, ; []

< ch(l —a)<(1-a).
j=1

Hence the theorem follows.
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