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Abstract 

In this paper we investigate the effects of the Damkohler and Schmidt 
numbers on the inviscid instability of reactive boundary layer flow over a 
horizontal rigid flat surface with heat and mass transfer. The fluid 
buoyancy caused simultaneously by thermal and species diffusion is 
assumed large. This then leads to a two-layered flow structure with the 
disturbances governed by the Taylor-Goldstein equation. A Chebyshev 
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collocation spectral method was used to find the eigen-solution of the 
Taylor-Goldstein equation. The growth rate and phase speeds of the 
inviscid wave modes are obtained for varying buoyancy, Damkohler and 
Schmidt numbers. 

1. Introduction 

There are many transport processes which occur in nature and in 
artificial devices in which the fluid flow is driven or modified by density 
gradients caused by temperature and species composition differences. 
Atmospheric flows are driven appreciably by both temperature and water 
concentration differences. Flows in large water bodies such as lakes and 
oceans are driven by density and temperature differences and are also 
subject to the effects of differential concentration of dissolved salts and 
suspended particulate matter. 

One of the earliest studies on the combined effects of thermal and 
concentration species diffusion driven flows was done by Somers [13]. 
This study was subsequently followed up by, among other researchers, 
Mathers et al. [7]. In 1971, Gebhart and Pera [4] investigated flows 
resulting from buoyancy forces which arise from a combination of 
temperature and species concentration effects of comparable magnitudes. 
Their study showed that in the case of vertical flows, the Boussinesq 
approximations yield a set of equations which have a similarity form 
solution for the combined buoyancy effects. 

Among the more recent studies, Magyari and Keller [6] systematically 
investigated the mechanical and thermal properties of self-similar 
boundary layer flows induced by stretching surfaces with rapidly 
decreasing power-law and exponential velocities. The study observed that 
the flow problem admitted solutions only if a lateral suction was applied 
and, except for an isolated value of the suction velocity, the problem 
admitted a non-denumerable infinity of solutions for any given suction 
velocity less than the maximum suction velocity of the surface. 

The effect of heat transfer on the upper-branch stability of Tollmien 
waves in accelerating boundary layer over a rigid surface in 
incompressible flow was investigated by Mureithi et al. [11]. It was 
observed in that study that buoyancy has a destabilizing effect on rigid 
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bodies. Motsa et al. [9] showed that in the case of flow over a compliant 
boundary there are cases where large buoyancy leads to modes which are 
more stable than the instability modes which arise in the absence of 
buoyancy. 

Motsa and Sibanda [10] gave a detailed investigation of the effects of 
surface flexibility on the inviscid instability boundary layer flow over a 
horizontal flat plate with heat transfer when the fluid buoyancy is large. 
Together, the Mureithi et al. [11] and Motsa et al. [9] studies have 
established that in the limit of large buoyancy, the boundary layer 
develops a non-constant pressure gradient and that the disturbances that 
arise are inviscid in nature and are governed by the Taylor-Goldstein 
(TG) equation. In Motsa and Sibanda [10], the analysis of the TG 
equation by means of a Chebyshev spectral collocation method showed 
that the influence of the plate flexibility on the inviscid instability is most 
important when the perturbation wave number α is small and that plate 
compliance destabilizes the Tollmien-Schlichting (TS) waves that are 
governed by the Taylor-Goldstein equation. While the Motsa and Sibanda 
[10] study was fundamentally about the dynamics of fluid-surface 
coupling behaviour, the current study seeks to establish what the impact 
of varying the ratio of the hydrodynamic time scale to the chemical 
reaction kinematics time scale as measured by the flow Damkohler 
number would be in the case of a reactive boundary layer flow. These 
perturbations are known to take the form of TS instability waves that are 
destabilized by viscous mechanisms. 

Shateyi et al. [12] considered the effect of a chemical reaction between 
a chemical species and the fluid on the linear stability of two-dimensional 
disturbances wave modes. The effect of the Damkohler number was found 
to have destabilizing effects on the Tollmien-Schlichting waves. 

Two complementary approaches are adopted for this study. In the 
first part a similarity approach is used to transform the governing 
Navier-Stokes equations to first order form which are then solved to find 
the effects of the fluid buoyancy, Damkohler and Schmidt numbers on the 
fluid velocity and temperature profiles. The Damkohler number is an 
important parameter that gives a quantification of whether the chemical 
reaction mechanism is diffusion or kinematically controlled. The system 
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is characterized as diffusion controlled if the mixing rate of the reactants 
is slow compared to the reaction rate while fast mixing and slow reaction 
rates give rise to a kinematically controlled system. 

The Schmidt number arises in mixing flows as a ratio of momentum 
diffusivity to mass diffusivity. It is a measure of the relative influences of 
the diffusion of momentum and the diffusion of species in the mixing 
boundary layer fluid. Most of the earlier work on the importance of the 
influence of the Schmidt number in species mixing have been 
experimental rather than theoretical, see for example, Broadwell and 
Breidenthal [2] and Dimotakis [3]. For an experimental study of the role 
played by high Schmidt numbers in jets and other mixing boundary layer 
flows the reader is referred to Miller [8] and the references therein. This 
study hopes to provide a theoretical basis for studying the influence of the 
Damkohler and Schmidt numbers in boundary layer flows. 

In the second approach a Taylor-Goldstein equation that is derived 
from the governing Navier-Stokes equations is solved using a Chebychev 
spectral collocation method to determine how the growth rates and the 
phase speed of small perturbations to the flow are influenced by 
buoyancy, Damkohler and Schmidt numbers. 

2. Mathematical Formulation 

The equations governing a two-dimensional incompressible fluid 
flowing over a horizontal plate which is composed of a chemical species 
expressed in dimensionless form under a Boussinesq type approximation 
are given by (Shateyi et al. [12]): 

,0=+ yx vu  (1a) 

,1 2uRepuvuu xyx ∇+−=+  (1b) 

,21 TGCGvRepvvuv tcyyx ++∇+−=+ −  (1c) 

,211 DaCCScRevCuC yx −∇=+ −−  (1d) 

,211 TRePrvTuT yx ∇=+ −−  (1e) 

where the subscripts x and y denote differentiation of the fluid property 
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with respect to the streamwise and normal coordinates, respectively, u 
and v are the streamwise and normal velocity components, respectively, p 
is the pressure, C is the species chemical concentration and T is the fluid 
temperature. 

The parameters of particular interest in this study are the Schmidt 
number ,DSc ν=  where ν is the kinematic viscosity of the fluid and D is 
the molecular diffusivity of the chemical species in the mixing boundary 
layer. The Schmidt number is analogous to the Prandtl number κν=Pr  
with D replaced by the thermal diffusion coefficient κ. The second 
important parameter is the Damkohler number Da. The Damkohler 
number is defined as the ratio of the flow time scale to the chemical time 
scale. Buoyancy is another important consideration in this study since 
the species fluid mixing usually gives off or absorbs heat. We denote by          

tG  and cG  the buoyancy terms induced by the temperature and 
concentration differences, respectively. The buoyancy terms are defined 
by ,2

, ReGrG tc =  where Gr is the Grashof number and Re is the 

Reynolds number of the flow. 

In the absence of any disturbances, the flow velocity, temperature, 
chemical concentration and pressure are given by: 

( ) ( ) ( ) ,,,,,, 21 """ +=+=+= − YxTTYxVRevYxUu BBB  

( ) ( ) ( ),,,, YxpxppYxCC beB +=+= "  (2) 

where ep  ,( exeuu=  where eu  is the external streaming flow) is the 
pressure induced by the streaming flow, bp  is the pressure induced by 

the buoyancy and yReY 21=  is the boundary layer coordinate. A simple 
analysis shows that when the buoyancy terms ,tG  ( ),1~ OGc  the 
temperature, chemical and velocity fields are decoupled. It is only when 

,tG  ( )21~ ReOGc  that these equations become fully coupled. Our main 
focus is on the modified upper-branch structure that obtains for large 

buoyancy, and to that end we define ,6
0

−ε= tt GG  6
0

−ε= cc GG  and 

,6
0

−ε= DDa  where the small parameter ε is defined by 12
1−

=ε Re  and 
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( ) ( ).1~,, 000 ODGG ct  Substituting equations (2) into the governing 
Navier-Stokes and taking the limit ( ) ,, 00 ∞→ct GG  ,∞→Re  we obtain 
the following basic steady state boundary layer equations: 

,0=
∂
∂

+
∂
∂

Y
V

x
U BB  (3a) 

,2

2

Y
U

dx
duux

p
Y

UVx
UU Be

e
bB

B
B

B
∂

∂
+−

∂
∂

−=
∂
∂

+
∂
∂  (3b) 

,1
02

2
B

BB
B

B
B CD

Y
C

ScY
CVx

CU −
∂

∂
=

∂
∂

+
∂
∂  (3c) 

,1
2

2

Y
T

PrY
TVx

TU BB
B

B
B

∂

∂
=

∂
∂

+
∂
∂  (3d) 

,00 BcBt
b CGTGY

p
+=

∂
∂  (3e) 

with boundary conditions 

1,0 ==== BBBB TCVU    at  ,0=Y  

( ) 0,,, →→ bBBeB pTCxuU    as  .∞→Y  (4) 

We assume that the boundary layer profile is the prototype of the self-
similar flow, (see Mureithi et al. [11] for details) given by: 

( ) ( ) ( ),,23
1, 313131 η=−′η=η′= − gxTffxVfxU BBB  (5a) 

( ) ( ) ,,, 313231 xuqxphxC ebB =η=η=  (5b) 

where the similarity variable is given by .31−=η Yx  Using the 
transformations (5) in equations (3) we obtain 

( ) ( ),213
123

1 2 η′+−−′′−′=′′′ qqffff  (6a) 

( ),323
1

0hDhffhSch +′−′=′′  (6b) 

( ),23
1 gffgPrg ′−′=′′  (6c) 

,00 hGgGq ct +=′  (6d) 
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with boundary conditions 

( ) ( ) ( ) ( ) ,10,1,00,00 ==∞′=′= gfff  (7a) 

( ) ( ) ( ) ( ) .0,0,10,0 =∞=∞==∞ qhhg  (7b) 

Equations (6) were first reduced into a system of ordinary differential 
equations and then solved using a combination of fourth and fifth order 
Runge-Kutta methods. The numerical results that illustrate the effects of 
the buoyancy, Damkohler and Schmidt numbers on the velocity and 
species concentration distributions are shown in Figures 2-3. 

3. Analysis of the Growth Rate of Disturbances 

The asymptotic structure for the upper-branch stability of boundary 
layer flows is now well known. However, in the limit ( )000 ,, DGG ct  

,∞+→  the structure of the flow is modified as in Motsa and Sibanda [10] 

with the neutral wave number and wave speed of order ( ).1−εO  We thus 

set 0
1αε=α −  and ,0

1cc −ε=  where 0α  and 0c  are the scaled real wave 
number and wave speed of the travelling wave disturbance, respectively. 
The disturbances are taken to be in the form of a modulated wave-train 
periodic in X, and we replace the derivatives by 

Xx ∂
∂αε

∂
∂ −

0
6~    and   .~ 00

6
Xct ∂
∂αε

∂
∂ −  (8) 

We now perturb the flow by writing 

( ) ( ) ( ) ,,,,,,,,0,,,,, 00000 "+δ+= pCTvuPCTUpCTvu BBBB  (9) 

where 1δ  is a measure of the size of the disturbance, ,6
0

−ε= tt GG  
6

0
−ε= cc GG  and .6

0
−ε= DDa  Taking the limit ∞→Re  in equations 

(1) we obtain 
,0000 =+α YX vu  (10a) 

( ) ,000000 XBYXB pUvucU α−=+−α  (10b) 

( ) ,000000000 CGTGpvcU ctYXB ++α−=−α  (10c) 

( ) ,00000 =+−α BYXB TvTcU  (10d) 

( ) .000000 CDCvCcU BYXB −=+−α  (10e) 
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Setting ,.00 cceuu iX +=  ,.00 ccevv iX +=  etc., where c.c denotes the 
complex conjugate and eliminating 000 ,, CTu  and 0p  gives the Taylor-
Goldstein (TG) equation 

( ) ( ) ( )[ ] 0000
2
00

2
0 vTGUcUvvcU BtBBB ′−′′−−α−′′−  

( )
( )

,02
0

2
0

2
0

00
2

0
2
0 =

−α+

′−α
+

cUD
vCGcU

B

BcB  (11) 

with the boundary conditions given by 

00 =v   at ∞= ,0Y    and   00 =p   at ,0=Y   (12) 

where the primes denote differentiation with respect to Y. The TG 
equation can be transformed into a similarity form by setting 

,,, 3
1

03
1

03
1

α=α==η
−−

xcxcYx  

( ) ( ) ( ),,, 3
1

3
1

3
1

η=η=η′= hxCgxTfxU BBB  
to give 

( ) ( ) ( )[ ] ( )
( )

,0222
0

00
22

000
2

0
2 =

−′α+

′−′α
+′−′′′−′−α−′′−′

cfD
vhGcfvgGfcfvvcf c

t  (13) 

where the primes now denote differentiation with respect to η. The 
appropriate boundary condition is 

00 =v    at .∞=η  (14) 

Equations (13) and (14) constitute an eigenvalue problem of the 

( ) ,0,,,,, 0 =α DGScPrcF  (15) 

which is solved for the complex eigenvalue ( ) ( )cImicRec +=  for fixed 
wave number α, effective buoyancy G, the Prandtl number Pr, the 
Schmidt number Sc and the scaled Damkohler number .0D  The real part 

( )cRe  gives the phase speed of the perturbation and the imaginary part 
( )cIm  gives the growth rate in time, ( ).cImα  The flow is linearly stable 

(unstable) when ( )cIm  is positive (negative). 

To solve equation (15) we used a spectral collocation method of the 
Chebyshev type. The Chebyshev Spectral Collocation method was used by 
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Motsa and Sibanda [10] in the case of flow over compliant surfaces. We 
look for an approximate solution, 

( ) ( ) ( )∑
=

≤≤−φ=φ≡
N

k
kk zzTzzv

0
0 ,11,ˆ  

where ( )zTk  is the kth Chebychev polynomial of the first kind and kφ̂  are 
the Chebyshev coefficients. The physical region [ )∞,0  was mapped into 
the region [ ]1,1−  using the domain truncation technique proposed by 
Boyd [1] and the mapping 

,11,2
1 ≤≤−+=η zz

L  (16) 

where L is a scaling parameter which is used to invoke the boundary 
condition at ∞. For convenience, we used the Chebychev-Gauss-Lobatto 
points where 

....,,1,0,11,cos NjzN
jz j =≤≤−π=  (17) 

The derivatives of the functions ( )zNφ  at the collocation points are 
represented by 

( ( )) ∑
=

φ=φ
N

k
kjkjN zdz

d

0
,~D  (18) 

where the derivative matrix D is given by 

( ) ,...,1,0,;1 Nkjkjzzc
c

kj

kj

k

j
jk =≠

−
−

=
+

D  

( )
,1...,,2,1

12 2 −=
−

−= Nk
z

z

k

k
kkD  

,6
12 2

00 NNDN −=+=D  

where jc  and kc  are equal to 1 for 1,,2,1, −= Nkj …  and Ncc =0  

.2=  High order derivatives are computed as simply multiple powers of 
D, that is, 

( ) ∑
=

=φ=
φ N

k
k

n
jkn

jN
n

Nk
dz

zd

0
,,1,0,~ …D  (19) 
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where n is the order of the derivatives. Now substituting into equations 
(13)-(14) yields 

( ) [( ) ]Φ′−′′′−′−Φ





 α−−′ gffIDf tGc

L
c 0

22
2

2 ˆ4  

 ( )
( )

,0
ˆ

222
0

0
22

=Φ
−′α+

′+−′α
+

cf
hf

D
Gc c  (20) 

0~ =φ    at  ,1=z  (21) 

where I is an ( ) ( )11 +×+ NN  identity matrix, [ ]TNφφφφ=Φ ~...,,~,~,~
210  

and 
( ( )) ( ( )),diag,diag jj zhzg ′=′′=′ hg  

( ( )) ( ( )).diag,diag jj zfzf ′′′=′′′′=′ ff  

Here ( )diag  signifies that the entries of equation (20) are placed on the 
main diagonal of an ( ) ( )11 +×+ NN  matrix with the rest of the entries 
of the matrix being zero. By applying the Taylor series expansion to the 
last two terms of the equation about ( ) ,0=−′ cf  we can rewrite equation 
(20) as the nonlinear eigenvalue problem 

( ) ,0=ΦcM  (22) 

where ( ) ,21
2

0 AAA ++= cccM  with, 

,2414
2
0

2

2

2
0

0
2

22
20 h2IDA ′









 α−
α

+α−=
DLLD

G
L

c  

,648448 3
4
0

4
0

4

2
0

2
0

2
22

231 hfhfIDffA ′′α
+′′α

−





 α−′−′′′=

DL
G

DL
G

LLL
cc  

gffIDfA ′+′′′′−





 α−′= 04

22
2

2
22

21644
tGLLLL

 

 ,328
2
0

5
0

4
2

32
0

0
2

hhf ′α
−′′α

+
DL
G

LD
G cc  

where the matrices ,0A  ,1A  2A  all have dimensions ( ) ( )11 +×+ NN  
and the boundary conditions have been explicitly incorporated in the first 
and the ( )1+N th rows of ,0A  1A  and .2A  By defining ,1 ΦΦ c=  we can 
transform equation (22) into the linear generalized eigenvalue problem 
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,10121















−
=

















Φ

Φ

Φ

Φ

I0
0A

0I
AA

c  (23) 

where 0 is an ( ) ( )11 +×+ NN  matrix of zeros. Equation (23) is a 
generalized eigenvalue problem that can be solved using any standard 
globally convergent numerical scheme. 

4. Results and Discussion 

Whereas in Motsa and Sibanda [10] the primary objective was to 
determine the impact of the flexible surface dynamics on the stability of 
the boundary layer flow, and to that end a surface parameter sensitivity 
analysis was carried out, in this study our primary focus is on the effect of 
reaction kinematics on the growth of the instability waves. The numerical 
results thus seek to show the effect of fluid buoyancy, the Damkohler and 
the Schmidt numbers on the fluid properties and the growth of the 
instability waves. The effects of buoyancy and Damkohler numbers on 
the velocity distribution are shown in Figure 1. Figure 1(a) depicts the 
velocity distribution for different values of the effective buoyancy 
parameter when the Damkohler number is held constant. 

 
Figure 1. The effect of (a) buoyancy, and (b) the Damkohler number 

on the basic velocity ( )η′f  when .5.0== ScPr  

Increasing buoyancy results in significant increases in the velocity of 
the flow near the surface. The velocity reaches a distinguished maximum 
value near the boundary surface. Beyond this maximum the velocity 
asymptotically reduces to the free stream value. 
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Figure 1(b) shows the effect of the Damkohler number on the        
velocity distribution for fixed buoyancy. The Damkohler number is a       
very important parameter that gives a characterization of whether          
the reaction mechanism is diffusion controlled (when )10D  or 
kinematically controlled ( ).10D  A Damkohler number, ( )1~0 OD  
would therefore indicate parity between the characteristic mixing and 
chemical reaction time scales. High Damkohler numbers tend to promote 
low velocities and therefore high mixing of the fluids. Figure 2(a) shows 
the effect of increasing the buoyancy force on the species concentration 
profiles for fixed Damkohler numbers. We observe a reduction in 
concentration levels of the fluid as buoyancy is increased. A similar trend 
was also observed in the study by Motsa and Sibanda [10] for 
hydrodynamic and thermal boundary layers. 

 
Figure 2. Plot to show the effect of (a) buoyancy, and (b) the Damkohler 

number on the concentration profiles when .5.0== ScPr  

Figure 2(b) shows the effect of the Damkohler number on the 
species concentration distribution for fixed buoyancy. As can be seen 
on these plots, increasing the Damkohler number when other fluid and 
thermodynamic parameters are fixed reduces the concentration levels in 
the boundary layer flow. In Figure 3 we show the effect of the Schmidt 
numbers on the velocity and concentration distributions. The Schmidt 
number is the ratio of momentum diffusivity to mass diffusivity. It 
represents the relative ease of molecular momentum and mass transfer 
and is a very important parameter in calculations of binary mass transfer 
in multi-phase flows. The computations here have been carried out for 
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low Schmidt numbers since for most gases ( ).1~ OSc  However, in many 
practical problems of interest, such as in the case of oxygen and carbon 
dioxide in oceans and lakes, Schmidt numbers may be very high, for 
example, 700≈Sc  for 2CO  in seawater (Hasegawa and Kasagi [5]). The 

mixing of fluids however reduces as .∞→Sc  

 
Figure 3. The effect of the Schmidt numbers on (a) the velocity flow, 

and (b) the concentration when .10 == DG  

The effect of an increase in the Schmidt numbers is to reduce the 
momentum boundary layer and lead to a thinning of the species diffusion 
layer. 

Figures 4 through 6 show the growth rate ( )cImα  and the phase 

speed ( )cRe  as functions of the wave number α. In Figure 4 we show the 
effect of increasing the buoyancy term on the growth rate and the phase 
speed. Increasing the buoyancy force increases both the growth rate of 
the disturbances and the phase speed. The effect of Damkohler number 
on the growth rate of the perturbations when wave numbers and speeds 
are low is marginal, see Figure 5(a). The growth rate however increases 
with increase in the Damkohler number as can be more clearly seen in 
Table 1 with increases becoming quite significant for high Damkohler 
numbers. In Table 1, the growth rate ( )cImα  increases in each column 

with the wave number α. Further, simulations show that a change from a 
kinematically controlled reaction, 10D  to a diffusion controlled 

system, 10D  has no significant impact on the growth rate of the 
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perturbations. However, increasing Damkohler numbers initially reduces 
the magnitude of the wave speed as is shown in Figure 5(b). Thus, 
overall, increasing the Damkohler number has only weakly destabilizing 
effects on the boundary layer flow that is governed by the TG equation. 
This result confirms the earlier tentative findings in Shateyi et al. [12] 
that increasing the Damkohler number has a destabilizing effect on 
Tollmien-Schlichting waves. 

 
 (a) (b) 

Figure 4. The effect of increasing the buoyancy on (a) the disturbance 
growth rate ( ),cImα  and (b) the phase speed ( ).cRe  

Table 1. Comparison of the growth rate of the disturbance for various 
Damkohler numbers when 1== ScPr  and 4=G  

  1101 5
0

−×=D  10 =D  20 =D  50 =D  
α  ( )cImα  ( )cImα  ( )cImα  ( )cImα  

0.10  0.0873 0.0878 0.0882 0.0903 
0.28  0.2415 0.2429 0.2439 0.2524 
0.48  0.4054 0.4077 0.4091 0.4307 
0.68  0.5647 0.5682 0.5695 0.6054 
0.88  0.7375 0.7446 0.7475 0.7739 
1.08  0.8977 0.9054 0.9090 0.9329 
1.28  1.0329 1.0406 1.0443 1.0776 
1.48  1.1485 1.1562 1.1601 1.2032 
1.68  1.2487 1.2563 1.2604 1.3076 
1.88  1.3366 1.3440 1.3482 1.3961 



INSTABILITY ANALYSIS OF A REACTIVE BOUNDARY … 131 

 
Figure 5. The effect of the Damkohler number on (a) the growth rate, 

and (b) phase speed. 

Lastly, Figure 6 shows the effect of the Schmidt numbers on (a) the 
growth rate, and (b) the wave speed of the flow perturbations. For low 
Schmidt numbers (corresponding to fast mixing and chemical reactions) 
and ,1>α  we observe an increase in the growth rate of the disturbances 
suggesting a destabilization of the boundary layer flow with increasing 
Schmidt numbers. For ,2.0>Sc  a steady growth of the disturbances is 
observed. However, for 2.0≤Sc  a significant damping of the disturbances 
occurs when 1≥α  leading to a rapid decline in the growth rate of the 
disturbances. Figure 6(b) shows that the phase speed is reduced by 
increases in Schmidt numbers. At each Schmidt number the phase speed 
initially decreases for small wave numbers before increasing to a 
maximum for large wave numbers. 

 
Figure 6. The (a) growth rate, and (b) phase speed for varying 

Schmidt numbers. 
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5. Conclusions 

In this paper we have considered the stability of inviscid wave modes 
generated over a horizontal flat surface in the presence of a large 
buoyancy force and reactive kinematics. The governing boundary layer 
equations were first cast into a similarity form and solved to determine 
the effects of the fluid buoyancy, the Damkohler and the Schmidt 
numbers on the momentum and thermal boundary layer profiles. A 
Taylor-Goldstein equation that governs the evolution of the inviscid 
disturbance modes was derived and solved using a Chebyshev spectral 
collocation method to find the eigenvalues and the growth rates of the 
wave modes. This study has shown, inter alia, that (i) the effect of 
increasing fluid buoyancy is to increase the growth rate and the phase 
speed of the disturbance waves and thereby destabilizing the boundary 
layer flow, and (ii) increasing the Damkohler number has only a marginal 
effect on the growth rate of the inviscid wave modes for small wave 
numbers although the phase speed decreases before increasing in tandem 
with increase in the wave number. The effect of the Damkohler numbers 
on the growth rate of the inviscid wave modes is thus only significant for 
large wave numbers. The study has also shown that increasing the 
Schmidt number reduces the boundary layer velocity and the growth rate 
of the disturbances. 
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