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Abstract 

We consider two dimensional adsorption-diffusion equations in both 
Cartesian and stream function coordinates. Symmetry classification of 
the arbitrary functions that appear as coefficients in these equations 
seems impossible. However, using the elements of the one dimensional 
optimal systems of admitted Lie algebras and two dimensional Abelian 
Lie subalgebras, we perform some reductions to fewer independent 
variables for the special cases of the realistic water flows backgrounds 
and choices of physical dispersion coefficient. Some invariant solutions 
are constructed. 

1. Introduction 

The quest for analytical solutions of equations for water flow and 
solute transport equations has continued unabated. Among other 
reasons, these exact solutions are needed to give insight into transport 
processes and also to be used as bench marks for the numerical schemes. 

Solute dispersion is complicated even at the macroscopic level 
because the dispersion coefficient increases with fluid velocity, which in 
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general is varying in space and time. The fluid velocity vector cannot be 
an arbitrary smooth function of space and time; it must conform to the 
established laws of fluid flow in porous media [4]. Although passive 
scalar transport in solvent-conducting porous media has been extensively 
studied by many people for many years, realistic exactly solvable models 
with spatially varying dispersion coefficient are very rare. Most existing 
solutions are for solute transport under point source water flow [6, 13]). 
Zoppou and Knight [15] constructed exact solutions for dispersion in a 
background of hyperbolic water streamline bounded by a wedge. 
Furthermore, some exotic solutions, which satisfy some physical 
boundary conditions, have been obtained for the linear two dimensional 
solute transport under realistic water flow background [4, 9]).  

Here, we analyse the two dimensional transport equation for 
adsorbing solutes. The equations for transport of such solutes have an 
added complication of being nonlinear. Moitsheki et al. [8], considered 
the one dimensional adsorbing solute transport problem. To this end, we 
consider two dimensional equation in Cartesian coordinates and select a 
form of the solute transport in stream function coordinates. 

This paper is divided as follows: In Section 2, we discuss the 
derivation of the adsorption-diffusion equation for solute transport. In 
Sections 3 and 4, we analyse the solute transport equations in Cartesian 
and stream function coordinates, respectively. Special cases of dispersion 
coefficient and realistic water flow backgrounds are selected. We employ 
Lie point symmetries in our analysis; the reader is referred to text such 
as those of, e.g., [2, 10], for further details. Lastly, we provide 
conclusions. 

2. Nonlinear Adsorption-diffusion Equations 

Combining the equation for continuity, for mass conservation 

( ) ,0=⋅∇+
∂
θ∂ Jt

c  

together with the form of total flux density 
( ) ,0 VJ ffef ccvDcD +∇θ−∇θ−=  
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which is due to molecular diffusion, dispersion and convection, we obtain 
the adsorption-diffusion equation (ADE) 

( ) ( ( ) ) ( ).0 Vffef ccvDcDt
c ⋅∇−∇θ+∇θ⋅∇=
∂
θ∂  (1) 

Here, ,, 






∂
∂

∂
∂=∇ yx  t is time, fa ccc +=  is total solute concentration, 

ac  is the concentration of the adsorbed component, and fc  is the 

concentration within the liquid. 0D  is the diffusion coefficient. The 

dispersion coefficient eD  is found to be an increasing function of pore 

water, the velocity is modelled by the power law ,1
m

e vDD =  with 

21 ≤≤ m  and 1D  being the proportionality constant. Since, 0D  and eD  

are microscopically similar (see, e.g., [1], these terms are usually 
combined, i.e., ( ) ( ).0 vDDvD e+=  Here, molecular diffusion is negligible 

compared to dispersion, hence ( )vD  is approximated by ( ),vDe  i.e., 

( ) pvvD =  with p experimentally observed to be .21 ≤≤ p  If the 

adsorption process is bimolecular and the desorption process is 
monomolecular [12], then the equilibrium condition is 

.κ=
a

f
c

cc
 

Since, ,fa ccc +=  the locally free concentration is given by 

,
1 1c

ccf −κ−
=  

where κ is the equilibrium constant. Equation (1) takes the form 

( )

( )
( ( ) ) ( ).

1
1

21 Vff
f

f
ccvDt

c

c
⋅∇−∇θ⋅∇=

∂
θ∂

κ− −
 (2) 

In most transport problems, water flow is adequately modelled by 
steady state flows rather than transient flows. The one dimensional 
version of the adsorption-diffusion equation was considered in [8]. For 
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two dimensional steady saturated water flows, where ,sθ=θ  along with 

Darcy’s law ,Φ∇−= sKV  equation (2) reduces to 

( )
( )( ) ,

1
1

21 ckcvDt
c

c
∇⋅Φ∇+∇⋅∇=

∂
∂

κ− −
 (3) 

wherein we have, without loss of generality, dropped the subscript f. 
Here, sss kvKk θΦ∇=θ= ,,  is the volumetric water content at 

saturation, Φ is the total hydraulic pressure head and sK  is hydraulic 

conductivity at saturation. Note that, for flow in saturated soils the 
equation of continuity is given by 0=⋅∇ V  together with Darcy’s law 

implies Laplace equation .02 =Φ∇  The problem is difficult, when v must 
be the modulus of the potential flow velocity field for incompressible 
fluid. However, the Laplace preserving transformations or the conformal 
mappings from the Cartesian to streamline coordinates result in an 
easier to handle equation [3, 4, 7]. In our case equation (3) reduces to 

( )
[ ( ) ] .

1
1 22

21 φ∂
∂+∇⋅∇=

∂
∂

κ− −
cvcvDvt

c
c

 (4) 

Here, ., 






ψ∂
∂

φ∂
∂=∇  Equating κ to unity and introducing normalised 

concentration and time, sccC =  and ,sttT =  with sc  and st  being the 

suitable concentration and time, we rewrite equation (4) as 

( )
[ ( ) ] .

1
1 22

2 φ∂
∂+∇⋅∇=

∂
∂

−

CvCvDvT
C

C
 (5) 

3. Lie Point Symmetry Reduction for Equation (3) 

In the ADE (3), we assume that ( )vD  is a constant, say ( ) .1=vD  

Since, one may choose a length scale sl  and a time scale st  so that, 

.2 Dtl ss =  Introducing dimensionless variables ss ccCttT == ,  and 

slxx =∗  and slyy =∗  and taking ,1=κ  we then, consider a system of 
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equations 

( )
,

1
1 2

2 CkCT
C

C
∇⋅Φ∇+∇=

∂
∂

−
 (6) 

.02 =Φ∇  (7) 

With no confusion arising, we may drop the subscript ∗  of the spatial 

variables, so that, ., 






∂
∂

∂
∂=∇ yx  k may be interpreted as the Pèclet 

number [3]. Very few solutions for this system are known, even for the 
case of non-reactive, non-adsorbing solutes (see, e.g., [3]), except for the 
one dimensional steady water flow (see, e.g., [11]). Point symmetry 
analysis for this system reveals finite six Lie algebra plus an infinite 
symmetry being admitted, namely 

( ) ,,,,1 4321 xyTxxyyCC
∂
∂=Γ

∂
∂=Γ

∂
∂=Γ

∂
∂+

∂
∂+

∂
∂−=Γ  

xyyxTTxxyy
∂
∂−

∂
∂=Γ

∂
∂+

∂
∂+

∂
∂=Γ 65 ,2  and ( ) ,7 Φ∂

∂=Γ Tg  (8) 

where g is an arbitrary function of T. Using the methods in [10], we 
obtain the one dimensional optimal system 

{ },,,,,, 43422556651 ΓΓΓ±ΓΓ±ΓΓ+ΓΓ+Γ+Γ aba  

where a and b are constants. Upon attempting to classify single equation 
(6), to choose only that function Φ satisfying equation (7), we obtained 
some long linear combination of the function Φ together with its 
derivatives with respect to the spatial variables. We herein, omit this 
linear combination. Full symmetry classification of this equation appears 
to be a major task. However, we obtain reductions listed in Table 1 using 
the elements of the optimal systems of the Lie algebras admitted by the 
system of equations (6) and (7). Wherever, they appear 21, cc  and 3c  are 

constants. Since, among others, 1Γ  and 6Γ  span a two dimensional 

Abelian Lie subalgebra, a complete reduction of the system to O.D.E.s is 
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possible. The reduction by a group of rotations leads to the functional 
form 

( ),RH=Φ   where ,22 yxR +=  

with H satisfying the ODE 

.01 =′+′′ HRH  

Hence, 

.ln 22
21 yxcc ++=Φ  

Also, ( ),, tRGC =  where G satisfies 

( )
( ) .1

1
2

2 RRR
t GGR

kc
G

G
+

+
=

−
 (9) 

Now, equation (9) admits ,1Γ  which in new variables may be written as: 

( ) RRGG
∂
∂+

∂
∂−=Γ 11  

and leads to the functional form 

( ),1 tRfG +=  

where f satisfies the O.D.E. 

( ) .1 3
2 fkcf +=′  

Thus, in original variables we obtain 

( ) .121
23

22

tkcc
yxC
+−

+±=  
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Table 1. Reductions for the system (6) and (7) 

Symmetry Functional form and reduced equations 

651 Γ+Γ+Γ ba
 

( ) where,ρ=Φ H ( )xyb
a 1tan1 −+=ρ ( )22ln yxb +−  

and .0 21 ccH +ρ=Φ⇒=′′  Equation (6) is 
impossible to be reduced, since the second invariant 
cannot be determined. 

56 Γ+Γ a  ( ),ρ=Φ H  where ( ) 221 lntan yxxya +−=ρ −  
and .0 21 ccH +ρ=Φ⇒=′′  Equation (6) is 
impossible to be reduced, since the second invariant 
cannot be determined. 

25 Γ+Γ  ( ) ( ),,, γρ=ρ=Φ GCH  where ,
1

,
+

=γ=ρ
T

x
x
y  

where H and G satisfy ( ) ,0212 =ρ++ρ ρρρ HH  i.e., 

,tan 1
21 





+=Φ −

x
ycc  and 

( )
γ












ργ+

−
Gkc

G
221

1  

( ) .1
1

2 222
2

2
γγρρρ γ+ρ+








+ρ

ρ+
+ρ= GGGkc  

42 Γ+Γ  ( ) ( )yGCyH ,, ρ==Φ  with xT −=ρ  so that 

21 cyc +=Φ  and G satisfies the PDE 
( )

ρρ
ρ =

−
G

G

G
21

 

.2 ρ++ GkcGyy  

4. Lie Point Symmetry Reduction for Equation (5) 

In the analysis of equation (5), we consider three cases for dispersion 
coefficient ( ),vD  with both radial and point vortex water flow. For 

saturated radial water flows from a line source of strength Q, in terms of 
the radial coordinate r, the Darcian flux is rQ=V  and the pore velocity 

is .sθ= Vv  The velocity potential is ( ) rQ s logθ−=φ  and the stream 
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function is ( )sQ θ−=ψ arctan ( ).xy  For the relevant normalised point 

water source, ψ−=φ ,log R  is simply the clockwise polar angle 

coordinate–arctan ( )XY  and .φ= ev  Point vortex water flow is 

conjugate to the point source flow. For relevant normalised point vortex 

water flow, ,log R=ψ  ( )XYarctan−=φ  and .ψ−= ev  We consider 

three cases: 

Case (a). Point source water flow, ( ) φ== evvD ,1  

The case ( ) ,,1 φ== evvD  corresponds to the solute transport with 

constant dispersion coefficient under radial water flow. In this case, 
equation (5) admits a four dimensional Lie algebra spanned by the 
vectors 

( ) TTTCC
∂
∂=Γ

∂
∂+

∂
∂−=Γ 21 ,21  

( ) ,13 φ∂
∂+

∂
∂−=Γ CC  and .4 ψ∂

∂=Γ  

The one dimensional optimal system is given by 

{ },,,, 431234232 Γβ+Γα+ΓΓ±Γα+ΓΓ±ΓΓ  

where α and β are arbitrary constants. The reductions by elements of the 
optimal system are given in Table 2. Transport with constant dispersion 
coefficient of non-reactive solutes has been extensively studied in [9]. 
Since, 1Γ  and 3Γ  span a two dimensional Abelian Lie subalgebra, then 

reduction of the governing equation to an O.D.E. using these symmetries 
is possible. 1Γ  leads to a functional form 

( ),,1 21 ψφ−= − FTC  

where F satisfies the reduced P.D.E. 

.0
2

1
22

2

2

2
=+

φ∂
∂+

ψ∂

∂+
φ∂

∂
φFe

FFF  (10) 
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The reduced equation (10) inherits the symmetry ,3Γ  which now 
takes the form 

FF
∂
∂−

φ∂
∂=Γ3  

and leads to the reduction 
( ),ψ= φ− geF  

with 
.012 =+′′gg  (11) 

Table 2. Reduced partial differential equations: ( ) .1=vD  

Symmetry Functional form and reduced equations 

32 Γ+Γ  ( ) 1,, +γψ=−φ=γ − FeCT t  with F satisfying  

0111
22 =+



 +++

γγγψψγγ
Fe

F
e

FF  

234 Γ+Γα+Γ  ( ) ,1,,1, +γρ=φ
α

−=γψ−=ρ α FeCTT T  with F 

satisfying

[ ] 



 ρ−+γγ
α

=α−+ ρρ
γ−

γρ FFFeFFF
F 2

2
2

11  

431 Γβ+Γα+Γ
 

,, 22 βψ−α− =γφ=ρ tete  ( ) ( ) 1,21 +γρ= α+− FtC  

with F satisfying ρ
α−α−




 ρ

α
+ρ

α
+ρ F

F
11

22
24  

γγρρ
α−

γα
γ

ρβ
+ρ

α
=α+−









ρβ
−γ+ FFFF

F
2

22
2

222
44

2
14

 

Equation (11) is a form of Newton’s second law with potential energy 

function ( ) ,2
log g  and integrates to the first order energy function 

( ) ( ) ,2
log

2
2

Egg =+
′  (12) 

where E is a constant. The trivial solution to equation (12) is ,2Eeg =  
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however, this is not necessarily the solution to equation (11) (this is 
because upon integrating, we first multiplied equation (11), by the first 
derivative of (g). Hence, it may be erroneous to write the solution of the 
original PDE (5) in terms of this trivial solution. The nontrivial solution 
which satisfies both equations (12) and (11) is given by 

( )

∫
ψ

−
±=+ψ

g

sE
dsc ,

log21  

where 1c  is a constant. 

Case (b). Point source water flow, ( ) φ== 22 evvD  

For a radial flow with the power law velocity dependent dispersion 

coefficient ( ) ,pvvD =  the case, 2=p  is in accord with Taylor’s theory 

[14] of dispersion and has been used as a reasonable model for dispersion 
in porous media [5, 11]. In this case, the admitted Lie algebra is three 
dimensional and spanned by base vectors 

( ) ,,21 21 TTTCC
∂
∂=Γ

∂
∂+

∂
∂−=Γ  and .3 ψ∂

∂=Γ  

The one-dimensional optimal system is 

{ },,, 23312 Γ±ΓΓα+ΓΓ  

and reductions are given in Table 3. 

Table 3. Reduced partial differential equations: ( ) φ= 2evD  

Symmetry Functional form and reduced equations 

31 Γα+Γ  ( )ρφφφφφρρ ρ+=





 +++ρ FF

Fe
F

e
FF 242

2
2

112  

23 Γ+Γ  01
12

2
1
2 =







−
−






 +++ ρφφρρφφ FFF

e
FF  
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Following reductions by ,1Γ  and the elements listed in Table 2, the 
reduced equations admit only translation in ψ. The problem appears to be 
enormously difficult for this case. 

Case (c). Point vortex flow, ( ) ψ−== pp evvD  

For arbitrary constant p, we obtain three symmetry generators 

( ) ,,21 21 TTTCC
∂
∂=Γ

∂
∂+

∂
∂−=Γ  and .3 φ∂

∂=Γ  

The Lie algebra extends for the case, .0=p  This case represents 
contaminant transport with a constant dispersion coefficient. For ,0=p  
we obtain an extra point symmetry: 

( ) .2124 φ∂
∂+

ψ∂
∂+

∂
∂−=Γ CC  

We observe here, that the symmetry 1Γ and 4Γ  span a two 
dimensional Abelian Lie subalgebra. Hence, reduction of the governing 
P.D.E. to an O.D.E, which may or may not be solvable, is possible using 
these two point symmetries. Reduction by 1Γ  leads to a functional form 

( ),,1 21 ψφ−= − FTC  

with F satisfying the P.D.E. 

.02
2

=+++
ψ

φψψφφ F
eFFF  (13) 

Equation (13) admits 4Γ which now takes the form 

φ∂
∂+

ψ∂
∂+

∂
∂=Γ 224 FF  

and leads to the reduction 

( ) φ−ψ=ρρ= ψ
2,geF  

with g satisfying the O.D.E. 

.02425 =++′+′′ gggg  (14) 
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The reduced O.D.E. (14) admits only a translation in ρ, and 
integrates once to Abel’s equation of first kind 

,02425 =−−+′ ggfff  

where f depends on g. 

5. Conclusion 

The nonlinear adsorption-diffusion equations describing transport of 
adsorbing solute have proved to be harder to solve than their linear 
counterparts. However, Lie point symmetry reductions have been 
performed and some invariant solutions are constructed. 
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