

Far East Journal of Experimental and Theoretical Artificial Intelligence
Volume 1, Issue 2, 2008, Pages 137-150
Published online: August 12, 2008
This paper is available online at http://www.pphmj.com
 2008 Pushpa Publishing House

:phrasesandKeywords multiple sequence alignment, dynamic programming, particle

swarm optimization.

Communicated by K. K. Azad

Received June 18, 2008

INCORPORATING RANDOM PAIRWISE DYNAMIC

PROGRAMMING WITH PARTICLE SWARM

OPTIMIZATION IN SOLVING MULTIPLE

SEQUENCE ALIGNMENT

WANG-SHENG JUANG and SHUN-FENG SU

Department of Electrical Engineering

National Taiwan University of Science and Technology

No. 43, Sec. 4, Keelung Rd. Taipei, 106, Taiwan

Abstract

While solving Multiple Sequence Alignment (MSA) problems, Dynamic

Programming (DP) is a commonly-used approach. It is simple and

effective. However, when the number of sequences is large, multiple

dimensional DP often suffers from large storage and computational

complexities. Traditionally, progressive pairwise DP is employed for

MSA. It can be expected that such an approach also suffers from local

optimal problems. In our previous work, a hybrid algorithm by

combining the pairwise DP with the particle swarm optimization

(PSO) techniques to overcome the above drawbacks is proposed. The

experimental results show promising performance of that algorithm. In

this paper, we further propose to consider a random sequence order in

aligning pairwise DP progressively. Again, the PSO is employed to avoid

the result of alignment being trapped into local optima. From our

experiments, it can be found that the proposed algorithm indeed has

excellent performance.

WANG-SHENG JUANG and SHUN-FENG SU 138

I. Introduction

In molecular biology, biological sequences are sometimes checked by
aligning sequences with each other vertically to show possible similarities

or differences among these sequences. The similarities (or commonalties)
may reveal evolutionary history and are clues about common biological

functions of the sequences. This process is often referred to as the
Multiple Sequence Alignment (MSA). MSA may also be employed to
construct evolutionary trees from DNA sequences and for analyzing the

structures to help in designing new proteins. Generally speaking, MSA is
to find an alignment of multiple sequences with the highest score based

on a given scoring criterion among sequences. It can be expected that
multiple sequence alignment is a combinatorial problem with exponential

time complexity and there is no good approach that can solve it efficiently
[9].

While solving Multiple Sequence Alignment (MSA) problems,
Dynamic Programming (DP) is a commonly-used approach [15]. It is
simple and effective. DP converts the original problem to a problem of
searching for the shortest path in a weighted directed acyclic
k-dimensional graph. Unfortunately, such an approach is notorious for its
large consumption of processing time because DP methods with the sum-
of-pairs score have been proven to be an NP-complete problem [21]. As a
consequence, most of practical multiple sequence alignment algorithms
are based on heuristics and usually produce quasi-optimal alignment.
Several MSA algorithms have also been reported in the literature [4, 13,
17, 18, 26, 29]. A great majority is to consider the “progressive approach”
proposed in [6] or its variation [25]. This approach has the great
advantages of speed and simplicity. On the other hand, the main
disadvantage is the “local alignment” problem, which stems from the
greedy nature of the algorithm. Another kind of approach is to use an
extension of DP for simultaneously aligning multiple sequences, such as
the Carrillo-Lipman algorithm [2], MSA [11], DCA [22, 23]. In general,
these algorithms often have higher quality solutions than those of
progressive approaches. However, they have drawbacks of complexity in
running time and in memory requirements. Thus, they can only be
applied to problems with a limited number of sequences (probably fewer

… SOLVING MULTIPLE SEQUENCE ALIGNMENT 139

than 10). Another class of approaches used for solving MSA is iterative
and stochastic kind of approaches. These approaches include simulated
annealing (SA) [14], genetic algorithms (GA) [7, 16, 19, 30] and
evolutionary programming (EP) [3, 12, 27]. However, the GA and EP
methods introduced so far still suffer from long running time and may not
have good search performance. It is because they all start from a random
initialization of candidate alignments and therefore spend a lot of time to
gradually improve the solutions before reaching a solution near optimal.

In our previous work [8], a hybrid search algorithm referred to as

MDPPSO, which combines random pairwise DP and particle swarm

optimization (PSO) is proposed for finding solutions for MSA. In that

approach, PSO is an improver for a progressive pairwise DP. That

approach basically is a pairwise DP based approach and we propose to

employ PSO to resolve the local optimum problem. The MDPPSO is an

efficient method, but in the initial phase, it needs to calculate all possible

pairs’ scores. It will generate much computational burden. Thus, in this

paper, we propose a new approach referred to as Random Progressive

Pairwise Dynamic Programming with Particle Swarm Optimization

(RPPDPPSO). In our study, several data sets of Clusters of Orthologous

Groups (COGs) [24] of proteins are used as examples to demonstrate that

our approach is superior to the most widely used multiple sequence

alignment approach ClustalW.

II. Dynamic Programming

In this section, the idea of pairwise dynamic programming is briefly

introduced. In our study, the PSO techniques will be embedded into DP to

avoid local optima. The related PSO issues will be introduced in the next

section. The first use of the Dynamic Programming approach for the

alignment of biological sequences was reported in [15]. For a number of

useful alignment-scoring schemes, this method is guaranteed to produce

an alignment of two given sequences with the highest possible score.

There are four steps in a complete DP algorithm, the initialization, step,

the Matrix filling step, the Backtracking matrix constructing step and the

Alignment obtaining step. The detailed description can be found in [8].

WANG-SHENG JUANG and SHUN-FENG SU 140

The procedure of DP for finding the maximum score is shown in

Algorithm I, where ()jiF , is the maximum score at position (),, ji

()−σ ,ias denotes a score for a gap in sequence as at position i, and

()jbs,−σ denotes a score for a gap in sequence bs at position j. The

backtracking step is to determine the actual alignment that results in the

maximum score. The procedure for constructing the backtracking matrix

is described in Algorithm II. The Alignment obtaining step is to obtain

the best sequence alignment from the backtracking matrix. A detailed

example can be found in [8].

III. Incorporating PSO with DP

Particle swarm theory was first proposed in [5, 10]. Since then, many
researchers have employed the theory into the so-called particle swarm
optimization (PSO) technique and then apply this technique to
widespread areas [1, 20, 28]. PSO is a population based heuristic search
technique in which each particle represents a potential solution within
the search space and will be characterized by its positions, its velocity
and a record of its past individual and global best performance. A
modified PSO is

() () () (),21
Old
id

Old
gd

Old
id

Old
id

Old
id

New
id xPRandcxPrandcvwv −∗∗+−∗∗+∗= (1)

,New
id

Old
id

New
id vxx += (2)

where w plays the role of balancing the global search and local search,
which can be a positive constant or even a positive linear or nonlinear
function of time. It is noted that the result of using Eq. (1) to update
velocity idv is not an integer value. To cope with this problem, Eq. (1) is

modified as follows:

{ () ()Old
id

Old
id

Old
id

New
id xPrandcvwroundv −∗∗+∗= 1

() ()},2
Old
id

Old
gd xPRandc −∗∗+

where { }round is the round-off operation. Particle positions thereby can

be updated by Eq. (2). In our implementation of PSO for MSA, each

… SOLVING MULTIPLE SEQUENCE ALIGNMENT 141

particle in the problem space represents a string of gap positions =X

,21
22

2
2
1

11
2

1
1 21

m
n

mm
nn m

xxxxxxxxx where ,ijx for inj ≤≤1 and

mi ≤≤1 is the location of a gap existing in sequence i. Here, m is the

number of sequences and in is the number of gaps for sequence i. in is

obtained as ,ii lLn −= where il is the length of the i-th original

sequence and L is the length of sequences used in the algorithm and is
determined in the pairwise DP process.

Pairwise DP has a drawback of “once a gap always a gap.” If such a
gap is improper for the global alignment, it is impossible to modify it in

the later DP process. In that case, when more sequences are added into
the process, the result obtained will be more far away from the optimal

alignment. As mentioned previously, DP for simultaneously aligning
multiple sequences has an advantage of resulting in high quality

solutions. But, it suffers from large storage and computational
complexities, when the number of sequences is large. In fact, we have

proposed an approach MDPPSO for solving MSA [8]. It should be noticed
that DP is not an initialization mechanism for PSO. In our opinion, a

search using an approach of employing DP as an initialization
mechanism for PSO may easily be trapped into local optima. In fact, in
[12], the author has also used ClustralW as an initialization mechanism

for evolutionary programming and the results are not good owing to the
local optimum problem. The MDPPSO is an efficient method, but this

approach in the initial phase must calculate all possible pairs’ scores. If

there are n sequences to be aligned, then there are
()

2
1−nn

 possible

pairs. To compute all those possible pairs’ scores will need lots of

computational time. Thus, in this paper, we propose to use randomly
selected pairwise DP in the algorithm. The proposed algorithm is referred

to as Random Progressive Pairwise Dynamic Programming with Particle
Swarm Optimization (RPPDPPSO). The proposed algorithm is shown in

Algorithm III.

IV. Experiments and Discussion

In this section, the COG data sets are considered and the obtained

WANG-SHENG JUANG and SHUN-FENG SU 142

results are reported. Table 1 shows all related informations for those data

sets. The simulation platform is implemented in MATLAB R11 language,

the operating system is Windows XP, with Norton System Works 2003.

The processor is Intel Pentium®4 2.5G and the main memory size is

256M. The scoring scheme used is the BLOSUM62 scoring matrix for

protein sequences. A pair of gaps with any alphabet gives score –4. A gap

to gap pair gives a score of 0. In the process of PSO, the number of

particles is 5. The iteration number is 1000. The inertial weight w in the

PSO algorithm is set as a random value in the range [].1,0 Parameters

1C and 2C are sets 2 and 2, respectively. For the parameters used in

PSO, most of them are heuristically selected. In fact, in our study, we

simply use a commonly used value and the results are acceptable.

There are many tools being used for MSA. The first category like

ClustalW, is to find alignments in a fast way, but the resultant

alignments may not be the best solutions. The other category is to employ

some optimization search algorithms, such as genetic algorithms, to

search for the possibly best alignment. However, this kind of approach

may suffer from inefficiency. The proposed approach is compared to those

two kinds of approaches. The first one is ClustalW, which is one of the

most widely used multiple sequence alignment systems. As mentioned

earlier, ClustalW is a progressive approach. The other one is the method

proposed in [12]. The method is a stochastic and iterative approach and

has been shown to have good search performance. The performance

comparisons are shown in Table 2. For smoothing out the randomness of

the algorithm, 10 runs of alignment are independently conducted for each

data set. The maximum score, the average score and the standard

deviation of scores for RPPDPPSO are listed in Table 3. For comparison,

the results of using MDPPSO are also included in Table 3. From the

results, it can be found that even though MDPPSO has used the order of

pairs’ scores, the best results are mostly worse than that of using

RPPDPPSO. It can be concluded that the order of pair’s scores may not be

a good choice. By using random orders, although the deviation is large

and the average may not be good, the approach provide a chance to find

the best solution. The running times of the cases obtaining the best result

… SOLVING MULTIPLE SEQUENCE ALIGNMENT 143

and the average running time are also listed in Table 4. Notice that

“M.C.” denotes the numbers of match columns. Finally, the comparison

of RPPDPPSO with MDPPSO for running time of the best result

and average are shown in Table 5. From those results, it can be clearly

seen that the proposed approach in general is better than the other

two approaches. The running time is much shorter than those shown

in [12] and [8], especially when the number of sequences is large. The

ClustalW simulation platform is obtained from the web site

http://www.ebi.ac.uk/Tools/clustalw/index.html#, in which alignment

result is performed by using default parameters. The experimental

results show that RPPDPPSO has better performance.

V. Conclusions

In this paper, an approach of combining modified dynamic
programming and particle swarm optimization was proposed for multiple
sequence alignment problems. Our previous approach has already
proposed this idea. In that approach, when implementing progressive DP,
the order of pairs’ scores is used. Such an approach may require much
computational burden. Besides, such a progressive order may not also be a
good choice. Thus, in this paper, we proposed to use a randomly selected
order of pairs of sequences. The experimental results reveal that the
proposed approach is indeed promising.

References

 [1] M. A. Abido, Optimal design of power-system stabilizers using particle swarm
optimization, IEEE Transaction on Energy Conversion 17(3) (2002), 406-413.

 [2] H. Carrillo and D. J. Lipman, The multiple sequence alignment problem in biology,
SIAM J. Appl. Math. 48 (1988), 1073-1082.

 [3] K. Chellapilla and G. B. Fogel, Multiple sequence alignment using evolutionary
programming, Proceedings of the 1999 IEEE Congress on Evolutionary
Computation, 1999, pp. 445-452.

 [4] S. C. Chen, A. K. C. Wong and D. K. Y. Chiu, A survey of multiple sequence
comparison methods, Bull. Math. Biol. 54 (1992), 563-598.

 [5] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory,
Proceedings of the Sixth IEEE International Symposium on Micro Machine and
Human Science, 1995, pp. 39-43.

WANG-SHENG JUANG and SHUN-FENG SU 144

 [6] D. F. Feng and R. F. Doolittle, Progressive sequence alignment as a prerequisite to

correct phylogenetic trees, Journal of Molecular Evolution 25 (1987), 351-360.

 [7] M. Isokawa, M. Wayama and T. Shimizu, Multiple sequence alignment using a

genetic algorithm, Genome Informatics 7 (1996), 176-177.

 [8] Wang-Sheng Juang and Shun-Feng Su, Multiple sequence alignment using modified

dynamic programming and particle swarm optimization, Journal of the Chinese

Institute of Engineers 31 (2008), 1-15.

 [9] K. Karadimitriou and D. H. Kraft, Genetic algorithms and the multiple sequence

alignment problem in biology, Proceedings of the Second Annual Molecular Biology

and Biotechnology Conference, 1996, pp. 7.

 [10] J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE International

Conference on Neural Networks, 1995, pp. 1942-1948.

 [11] D. J. Lipman, S. F. Altschul and J. D. Kececioglu, A tool for multiple sequence

alignment, Proc. Natl. Acad. Sci. USA 86 (1989), 4412-4415.

 [12] K.-H. Liu, Multiple Sequence Alignment: An Evolutionary Programming Based

Algorithm with Local Search, Master Thesis, National Taiwan University of Science

and Technology, Department of Electrical Engineering, 2003.

 [13] M. A. McClure, T. K. Vasi and W. M. Fitch, Comparative analysis of multiple protein

sequence alignment methods, Molecular Biology and Evolution 11 (1994), 571-592.

 [14] E. W. Myers and W. Miller, Multiple sequence alignment using simulated annealing,

Computer Applications in the Biosciences 4(1) (1988), 11-17.

 [15] S. B. Needleman and C. D. Wunsch, A general method applicable to the search for

similarities in the amino acid sequences of two proteins, Journal of Molecular

Biology 48 (1970), 443-453.

 [16] C. Notredame and D. G. Higgins, SAGA: sequence alignment by genetic algorithm,

Nucleic Acids Research 24(8) (1996), 1515-1524.

 [17] C. Notredame, Recent progresses in multiple sequence alignment: a survey,

Pharmacogenomics 3(1) (2002), 131-144.

 [18] C. Notredame, Recent evolutions of multiple sequence alignment algorithms, PLOS

Computational Biology 3(8) (2007), 1405-1408.

 [19] M. F. Omar, R. A. Salam, N. A. Rashid and R. Abdullah, Multiple sequence

alignment using genetic algorithm and simulated annealing, Proceeding of the 2004

IEEE 12th Conference on Signal Processing and Communications Application, 2004,

pp. 28-30.

 [20] J. Robinson and Y. Rahmat-Samii, Particle swarm optimization in electromagnetics,

IEEE Trans. Antennas and Propagation 52(2) (2004), 397-407.

 [21] T. F. Smith and M. S. Waterman, Identification of common molecular subsequences,

Journal of Molecular Biology 147(1) (1981), 195-197.

… SOLVING MULTIPLE SEQUENCE ALIGNMENT 145

 [22] J. Stoye, V. Moulton and A. W. Dress, DCA: an efficient implementation of the

divide-and-conquer approach to simultaneous multiple sequence alignment,

Computer Applications in the Biosciences 13(6) (1997), 625-626.

 [23] J. Stoye, Multiple sequence alignment with the divide-and-conquer method, Gene

211(2) (1998), GC45-GC56.

 [24] R. L. Tatusov, E. V. Koonin and D. J. Lipman, A genomic perspective on protein

families, Science 278(24) (1997), 631-637.

 [25] J. D. Thompson, D. G. Higgins and T. J. Gibson, CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice, Nucleic Acids Research

22(22) (1994), 4673-4680.

 [26] J. D. Thompson, F. Plewniak and O. Poch, A comprehensive comparison of multiple

sequence alignment programs, Nucleic Acids Research 27(13) (1999), 2682-2690.

 [27] R. Thomsen, G. B. Fogel and T. Krink, A Clustal alignment improver using

evolutionary algorithms, Proceedings of the 2002 IEEE Congress on Evolutionary

Computation 1 (2002), pp. 121-126.

 [28] D. W. Van der Merwe and A. P. Engelbrecht, Data clustering using particle swarm

optimization, The 2003 IEEE Congress on Evolutionary Computation 1 (2003),

pp. 215-220.

 [29] I. M. Wallace, G. Blackshields and D. G. Higgins, Multiple sequence alignments,

Current Opinion in Structural Biology 15 (2005), 261-266.

 [30] C. Zhang and A. K. C. Wong, Toward efficient multiple molecular sequence

alignment: a system of genetic algorithm and dynamic programming, IEEE

Transactions on Systems, Man, and Cybernetics-part B 27(6) (1997), 918-932.

Table 1. List of datasets

ID
Number of
Sequences

Average Length of Sequences
(min, max)

COG2178 3 211 (196, 222)
COG1983 4 118 (65, 158)
COG1603 4 222 (199, 245)
COG2157 4 72 (57, 78)
COG1476 5 71 (66, 79)
COG2097 6 96 (81, 113)
COG1510 6 170 (152,185)
COG1761 6 105 (85, 142)
COG0219 9 158 (151, 166)
COG2003 9 206 (148, 243)

WANG-SHENG JUANG and SHUN-FENG SU 146

Table 2. The comparison with ClustalW, the best result in [12] and the

best result in MDPPSO for COG datasets

RPPDPPSO
Best Result

ClustalW Result
The Best Result

in [12]
The Best Result

in MDPPSO ID
Score M.C. Score M.C. Score M.C. Score M.C.

COG2178 654 44 384 41 653 44 654 44
COG1983 –361 13 –659 11 –323 15 –351 14
COG1603 680 17 149 10 624 16 639 16
COG2157 610 18 499 12 608 18 610 18
COG1476 1677 22 1657 22 1668 21 1674 22
COG2097 2040 12 1781 12 1993 12 1998 12
COG1510 2240 8 1650 4 2157 6 2205 6
COG1761 485 9 –144 7 43 6 423 9
COG0219 10306 26 9734 24 10358 25 10204 25
COG2003 6865 23 5152 18 6442 19 6656 22

Table 3. The comparison with MDPPSO for the maximum, the average

and the standard deviation of scores

RPPDPPSO MDPPSO
ID Max.

Score
Average

Score
Standard
Deviation

Max.
Score

Average
Score

Standard
Deviation

COG2178 654 623.4 31.0 654 647 4.8

COG1983 –361 –379.7 26.3 –351 –361.3 3.9

COG1603 680 636.2 35.8 639 630.1 6.6

COG2157 610 595.2 10.7 610 609.5 0.5

COG1476 1677 1665.5 13.1 1674 1674 0.0

COG2097 2040 1967.5 51.0 1998 1976 15.5

COG1510 2240 2052.4 108.6 2205 2168.1 16.2

COG1761 485 307.6 196.5 423 418.5 2.8

COG0219 10306 10085.0 185.9 10204 10073.7 75.5

COG2003 6865 6562.0 201.2 6656 6586 53.6

… SOLVING MULTIPLE SEQUENCE ALIGNMENT 147

Table 4. Running time of the best result and the average running time

for COG datasets

ID Running time of the best result
(sec.)

Average running time (sec.)

COG2178 2097 2206.2
COG1983 3386 3528.3
COG1603 5944 6092.0
COG2157 1470 1549.8
COG1476 3019 2969.4
COG2097 7792 7995.4
COG1510 15122 14451.1
COG1761 10171 10013.7
COG0219 38504 40392.7

COG2003 65651 64838.4

Table 5. The comparison with MDPPSO for running time of the best

result and average

MDPPSO RPPDPPSO

ID Running time of
the best result

(sec.)

Average running
time (sec.)

Running time of
the best result

(sec.)

Average running
time (sec.)

COG2178 2097 2206.2 2127 2322.0
COG1983 3386 3528.3 4856 4196.1
COG1603 5944 6092 4605 6551.9
COG2157 1470 1549.8 1279 1455.7
COG1476 3019 2969.4 1922 2076.2
COG2097 7792 7995.4 4471 6105.5
COG1510 15122 14451.1 12453 11493.3
COG1761 10171 10013.7 6263 7531.6
COG0219 38504 40392.7 15153 25860.1
COG2003 65651 64838.4 46459 36200.2

WANG-SHENG JUANG and SHUN-FENG SU 148

Algorithm I. Dynamic programming for global alignment

Aligning sequences as and bs of length m and n, respectively, with

linear gap penalty. Begin

Initialization

()

()















−=

=

−=

=

end

0,

doto1:for

end

,0

doto0:for

jgjF

nj

igiF

mi

matrix fill

() { () () () () }

















+−+−σ+−−=

=

=

end

end

1,,,1,,1,1max,

doto1:for

doto1:for

gjiFgjiFssjiFjiF

mj

ni

j
b

i
a

end

… SOLVING MULTIPLE SEQUENCE ALIGNMENT 149

Algorithm II. Backtrack matrix construct

Aligning sequences as and bs of length m and n, respectively, with

linear gap penalty.

begin

for 1:=i to n do

for 1:=j to m do

Up_Value ()jiF ,1−=

Left_Value ()1, −= jiF

Up_Left_Value ()1,1 −−= jiF

if ()ibj
a ss =: do

() =ji,BM ‘∗’

else

if (Left_Value>= U_Value) do

if (Left_Value+gap_penalty>=Up_Left_Value+Mismatch) do

fill ()ji,BM with ‘−’

else

fill ()ji,BM with ‘∗’

end

else

if (Up_Value+gap_penalty>=Up_Left_Value+Mismatch) do

fill ()ji,BM with ‘#’

else

fill ()ji,BM with ‘∗’

end

end

end

end

end

end

WANG-SHENG JUANG and SHUN-FENG SU 150

Algorithm III. RPPDPPSO

Align multiple sequences nSSS ...,,, 21 with BLOSUM62 scoring

matrix scheme.

// Combine modified progressive dynamic programming with PSO to align
multiple

// sequences in random pair order. Suppose aS is selected as row

sequence and

// bS is the column sequence.

begin

To generate a random integer permutation []npppp ...321

// { } nnii pppnp ≠≠≠∈= 21...,,2,1, ,...,,2,1

Select
1pS as row sequence aS

for 2:=i to n do

Select
ipS as column sequence bS

Align ()ba SS , using modified DP

Improving the result of alignment for sequences pair ()ba SS ,

using PSO

Remove all full spaces column

Replace aS with the results of improvement

end

Output result of multiple sequence alignment

end

