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Abstract

This paper concerns the study of the numerical approximation for the
following initial-boundary value problem

ug = ((P(ux))x - u_p7 X € (07 1)7 le (O’ T):
ue(0,8) =0, u,(1,¢)=0, te(0,7),
u(x, 0) = yg(x) > 0, x €0, 1],

where p >0, ¢(s) is positive, increasing and s¢’(s) < 0 for positive
values of s. We show that the solution of a semidiscrete form of the
above problem quenches in a finite time and estimate its semidiscrete
quenching time. We also prove that, under some assumptions, the
semidiscrete quenching time converges to the real one when the mesh
size goes to zero. Finally, we give some numerical experiments to

illustrate our analysis.
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1. Introduction

Consider the following initial-boundary value problem
w = (0(uy)), —u™?, x€(0,1), te(0,7),
u,(0,t)=0, u,(1,t)=0, te(0,7),

u(x, 0) = ug(x) > 0, x [0, 1],

where p >0, up(0)=0, uy(l)=0, ¢(s) is positive, increasing and

50"(s)< 0 for positive values of s. The first equation may be written as

= ¢ty gy — 0P
Thus the problem is equivalent to
u = @(uy)uy, —u?, xe(0,1), t (0, T), (1)
u(0,8)=0, u,(1,t)=0, te(0,7), 2)
u(x, 0) = up(x) > 0, x [0, 1] 3)

When ¢(s) = arctan(s), it is not hard to see that the above hypotheses on

¢ are satisfied and in this case, (1) becomes u; = uxxz —u P, The above
1+ uy

problem has a lot of applications in physics (see for instance [5], [8], [10]).

Here (0, T) is the maximal time interval of existence of the solution

u. The time T may be finite or infinite. When T'is finite, then the solution

u develops a singularity in a finite time, namely
Lim| w(-, t)|... =0,
Tt 1)

where |u(, t)|: = minge,< u(x, t). In this last case, we say that u

inf
quenches in a finite time and the time 7 is called the quenching time of

the solution w.

The theoretical study of solutions which quench in a finite time has
been the subject of investigations of many authors (see [2], [4], [10-12]
and the references cited therein). In particular in [10], the authors have
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considered the problem (1)-(3). They have shown that the solution of

(1)-(3) quenches in a finite time and the quenching time is estimated.

In this paper, we are interested in the numerical study using a
semidiscrete form of (1)-(3). Let I be a positive integer, and define the grid
x; =ih, 0 <i <1, where h =1/I. We approximate the solution u of the
problem (1)-(3) by the solution Uy(t) = (Uy(2), Uy (2), .., UI(t))T of the

following semidiscrete equations

dlcji—it(t) = YU - U@, 1<i<I teOTh. @
Ui(O)Z(pi>0, 0<i<I, 5)
where
82U0(t) _ 2Ul(t) _22U0(t) , 52U1(t) _ 2UI—1(t)2_ 2Ul(t),
h h
52U (t) = Ui (t) - 2U;() + U; 4 (t) l<i<I-1
1 hz ) = = )

50U (t) = w 1<i<I—1, 8°Uyt)=0, 8°U;(t)=o0.

Here (0, th) is the maximal time interval on which | Up(¢)|;,, > 0 with
| Up(#) ;¢ = ming<;<y Ui(t). When the time th is finite, we say that

Uj,(t) quenches in a finite time and the time th is called the quenching

time of the solution Uy, (t).

Firstly, we give some conditions under which the solution of (4)-(5)
quenches in a finite time and estimate its semidiscrete quenching time.
Secondly, under some assumptions, we also show that the semidiscrete
quenching time converges to the real one when the mesh size goes to zero.
An analogous study has been undertaken in [13] by Nabongo and Boni,
where they have considered a heat equation with a singular boundary
condition. Our work was also motived by the studies in [1], [6], [7], [9],
[14], [16], where the authors have obtained comparable results
concerning the phenomenon of blow-up (we say that a solution blows up

in a finite time if it reaches the values infinity in a finite time). Also in
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[3], the phenomenon of extinction is studied by a numerical method (a
solution extincts in a finite time if it reaches the value zero in a finite

time but there is no singularities on the term of reaction).

Our paper is written in the following manner. In the next section, we
prove some results about the discrete maximum principle. In the third
section, we show that under some assumptions, the solution of (4)-(5)
quenches in a finite time and estimate its semidiscrete quenching time.
In the fourth section, we prove the convergence of the semidiscrete
quenching time. Finally, in the last section, we give some numerical

results to illustrate our analysis.
2. Properties of the Semidiscrete Scheme

In this section, we prove some results about the discrete maximum
principle. The following lemma is a discrete form of the maximum
principle.

Lemma 2.1. Let a,(t), c;(t) € C°([0, T), R, a,,(t) = 0 and let Vi (¢)
e CY([0, T), R'*) such that for t < (0, T),

%it(t) a0V + Vi) 20, 0<i<, ©
Vi(0)>0, 0<i<I (7

Then we have V;(t) >0, 0<i< I, t € (0, T).

Proof. Let T < T and define the vector Z,(t) = ¢V}, (t), where L is
such that ¢;(t)-A >0 for t € [0, Tp], 0 <i < I. Let m = ming<j<s, 0<<7,
Z;(¢). Since for i € {0, ..., I}, Z;(t) is a continuous function, there exists
to €[0,Tp] such that m = Z; (ty) for a certain iy € {0, ..., I}. It is not
hard to see that

le()(tO) - lim Zio(t())_ Zio(to - k) <
dt k>0 k

0, ®

ay, (to)5°Z;, (ty) = . )
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From (6), we have

dz;,(t)

2—15 = ay, (608 Zi (to) + (ciy (to) — 1) Zi (to) = O, (10)
which implies that (c;,(¢9) — 1)Z;,(to) = 0 because of (8) and (9). Due to
the fact that c; (¢p) -2 > 0, we see that Z; (t) > 0. We deduce that

V,(t) > 0 for ¢ € [0, Tj] and this leads us to the desired result. 0

Another version of the discrete maximum principle is the following

comparison lemma.

Lemma 2.2. Let Vj(t), U,(t) € CH(0, T), R™*), fe CO(R xR, R)
and ay(t) = 0 such that for ¢t € (0, T),

dd‘t/i - q;(t)8%V; + fF(Vi(e), t) < d(gi - a;(t)8%U; + f(U;(t), t), 0 < i < I,(11)
Vi(0) < U;(0), 0<i<I. 12

Then we have V;(t) < U;(t), 0<i<I, t € (0, T).

Proof. Define the vector Zj(¢) = Up(t) — V3, (). Let ¢y be the first
t >0 such that Z,(t) > 0 for ¢ € [0, ty), but Z; (¢)) = 0 for a certain
ig € {0, ..., I}. We observe that

dzZi (to) .. Zi(to) — Zi,(to — k) 9
7 ]11_1)% 7 <0, & Zio(to) >0,

which implies that

dzZ; (ty)
g—t — a;, (t0)8°Z;, (to) + Uy, (to): to) — F(Vi, (o). o) < 0.
But this inequality contradicts (11) and the proof is complete. 0

To end this section, let us give a property on the operator 52.

Lemma 2.3. Let Uj, € R'*! such that U), > 0. Then we have

§HUP); 2 —pU;P18%U; for 0 <i < I.
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Proof. Applying Taylor’s expansion, we get

- —p— +1) —p-
3*UP)y = -pUsP 182U + (U - Uo)z%eop %,

_ - +1) _pHo
SEUTY, = U6+ Uy - Uy P2 D gt

+ (Uin —Ui)Z%n;p‘z if1<i<-1,

_ e 9 +1) o
Uy = U6y + U U P Do,

where 0; is an intermediate value between U; and U;,; and n; is the
one between U; and U;_;. Use the fact that Uj;, > 0 to complete the rest
of the proof. 0

3. Quenching Solutions

In this section, under some assumptions, we show that the solution of
the semidiscrete problem quenches in a finite time and its semidiscrete
quenching time is bounded from above and below.

Theorem 3.1. Let Uy (t) be the solution of (4)-(5). Suppose that there

exists a positive constant A <1 such that
¢ (8%9;)8%0; — ¢;? < -Ag;?, 0<i<I (13)

Then the solution Uy(t) of (4)-(5) quenches in a finite time th which

, o 1 len B
obeys the following estimate Ty < Z(1+—1;§

Proof. Since (0, th ) is the maximal time interval on which || U (¢) |,

>0, our aim is to show that th 1s finite and satisfies the above

inequality. Introduce the vector J,(¢) defined as follows

du;(t)

Ji(t) = d't +AU) P, 0<i<I, telo, T (14)




NUMERICAL QUENCHING ... 619
A straightforward computation reveals that

d?U;

ddJ; , d8 U;
=L - ¢(3°U;)8%J; 2 (00

dt

1 dU;
U - g N

Ap
- Ag(3°U,)8*U; P,

From Lemma 2.3, we have 82Ui_p > -pU P~ 152U, which implies that

ddJ; dU ,
a6, < GG ve)s)
- pav; 7 (L - g6'v)5°U
t
y d 6 U:
¢"(8°U;) ( )62Ui.

Use (4) to obtain

J;
dt

d(6 U)

~¢/(8°U;)J; < —pU; PN, + ¢"(3°U;) == 57U, (15)

From the expression of J(¢) in (14), we derive the following equality

d(8°U;)

8%, = L+ AUrP,

0 .
which allows us to obtain 450y = SOJL- - ASOUL._ P Taking into account

this equality, the last term on the right hand side on the inequality in
(15) can be rewritten in the following manner

ds® Ul

¢"(3°U;) =21 8%U; = ¢"(3"U;)8%U;8"J; — A¢"(8°U;)8°U;8°U; 2. (16)

On the other hand, from (4) and (14), we find that
Ji(t) = ¢(6°U;)3°U; — (1L - A)U;P.

We deduce from (16) and the above equality that

” d 80U "
o'e°0;) X0 570, = (60820,
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- Acp"(aoUi)soUip[J"(t) r 0o 407 ] a7

¢ (8°0;)
Using (17), we arrive at

% - ¢'(3°U;)d; < ¢"(5°U;)5%U;8°; - [p U7Pt 4

Ag'(8°U;)8%U; P ]J‘
¢'(3°U;) l

Ag'(8°U;)8°U; P

AL AT )

By the mean value theorem, it is not hard to see that SOUi_p =

—pii_p_léSOUi, where &; is an intermediate value between U;_; and U, ;.

Using this equality and the fact that s¢"(s) < 0, we find that

% — ¢/(8°U;)J; < ¢"(3°U;)8%*U;8%; — | pU; P! +

A¢'(8°U;)8°U; P
o' (8°U;)

i.

From (13), we observe that J;(0) < 0. We deduce from Lemma 2.1 that
Jp @) <0 for t € (0, th). Obviously UP(¢)dU;(t) < —Adt. Integrating the

above inequality over (¢, th ), we get

. 1+p
Tf—tsiberosigl, (18)
A (1+p)
UL0) [1F
which implies that 7' < L1 Oia” 556 e fact that [ULO0) || =
A (1+p) n
| @5 [l;y¢ to complete the rest of the proof. 0

Remark 3.1. The inequality (18) implies that

1
Th 4 <L | Un(to) lind’

for ty € (0, M),
q 0 A (1+p) Oroe( q)

and there exists a constant C > 0 such that

1
U; 2 C(TP ~thep for t € (0, T)), 0<i<I
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Theorem 3.2. Let U (t) be the solution of (4)-(5). Then we have

1
Lo ll?
T (p+)
Proof. Let iy be such that | Uy(t)[;,; = Uj, (t)- It is not hard to see

that

Uig41(8) = 2U3 () + U1 (1)

2 . .
8°U;, (t) = 2 >0if1<iy<T-1,
5°U;, () = w >0 if iy =0,
h
52U, (1) = O - 2010 5 4 - .
h
. . . dy; _ S
Use the above inequalities and (4) to obtain dtO > _Uiop , which implies

that UZ.‘ZdUiO > —dt, 0 <i < I. Integrating this inequality over (0, th),

: n . T, )P
we arrive at Ty > o) Use the fact that U; (0) = | ¢p [l to
complete the rest of the proof. 0

4. Convergence

In this section, under some assumptions, we prove that the quenching
time of the solution of the semidiscrete problem converges to the real one
when the mesh size tends to zero. Firstly, we show the convergence of our
scheme by the following theorem.

Theorem 4.1. Assume that (1)-(3) has a solution u e C*([0, 1] x
[0, T —t]) such that minggep .| ul, t)],,; =a >0 with e (0,T)
Suppose that the initial data at (5) satisfies

[ on — uz(0)],, = o) as A — 0, (19)

where uy(t) = (w(xg, t), ..., w(xg, t))F. Then, for h sufficiently small, the
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problem (4)-(5) has a unique solution U, e C}([0, T - 1], RI+1) such that

max || Uy (t) —up@)|, = O( op —up(0)]|, + h?) as h — 0.
0<t<T -7

Proof. The problem (4)-(5) has for each h, a unique solution U} €

c(o, T;), RI*1). Let ¢(h) be the greatest value of ¢ > 0 such that
|UR(@) - up@) ], < % for ¢ < (0, t(h)). (20)

The relation (19) implies that ¢(h) > 0 for A sufficiently small. Let

t*(h) = min{t(h), T — t}. By the triangle inequality, we obtain

o %
[URE) e = | un@) e = | Un@) = up @) |, = 3 for ¢ € (0, t7(h)). (21)
Applying Taylor’s expansion, we get

%u(xi, 1) = ¢/(8%ulx;, £)5%u(x;, £) — u P (x;, £) + M(x;, H)h2, 0<i<I,

where M(x,t) is a bounded function. Let e, (t) = Uy, (t) — uy(¢) be the error

of discretization. A routine computation yields

d%t(t) = (@(8%(x;, 1)) — ¢'(5°U;)8%ul(x;, £) + ¢'(5°U;) (8%ulx;, t) — 52U7)

+ M(x;, t)h* - (W P(x;, t)-U;P), 0<i<I

Use the mean value theorem to obtain

d L t " !
94 - grstuter, D) + 06°0)ei(0)

+ M(x;, t)h® — po; P e(t), 0<i<I,

where 0;, &; and y; are intermediate values between U;(¢) and u(x;, ¢),

which implies that

d‘%t(t) < ¢(5°U,)5%;(t) + Kh? + pK| e;(t)], 0<i <1, t < (0, " (k).
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Consider the vector Z; defined as follows

Zi(t) = &KV op -, (0)||,, + Kh?), 0<i<

A
~

(22)

A direct calculation yields

dfl—it(t) > ¢'(8°U;)8%Z;(t) + pK| Z;(t)| + Kh®, 0

IA
™~
IA

)

Z;(0) > ¢;(0), 0<i<I
It follows from comparison Lemma 2.2 that
Z;(t) > ¢;(t) for t € (0,¢"(h)), 0<i<I
By the same way, we also prove that
Z;(t) > —e;(t) for t € (0,t"(h)), 0<i<I,
which implies that
| U@) - up @1, < K (| 0p =24 0)],, + KR®), ¢ € (0, £*(R)).

Let us show that ¢*(h) = T' — 1. Suppose that 7 — 1 > ¢(h). From (20), we

obtain
&= | UBER) - un ) ], < KTy - O)], + KR @3

Since term on the right hand side of the above inequality goes to zero as h

goes to zero, we deduce that % < 0, which is impossible. Consequently
t*(h) = T — 1, and the proof is complete. 0

Now, we are able to prove the main theorem of this section.

Theorem 4.2. Suppose that the problem (1)-(3) has a solution u which
quenches in a finite time T such that u e C*'([0,1]x [0, T)) and the
initial condition at (5) satisfies || op —uy(0)|,, = o(1) as h — 0. Under the

assumption of Theorem 3.1, the problem (4)-(5) has a unique solution Uy,

which quenches in a finite time th and we have limy,_,q th =T.
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Proof. Let ¢ > 0. There exists o > 0 such that

y1+p g

S_a
1+p) 2

0<y<o. (24)

NI

Since the solution u quenches at the time 7, there exists a time Tj €

< for t € [Ty, T). Setting T} =

mf =

[T _%, Tj such that 0 < | u(, )|

TO;_T, it is not hard to see that 0 < | u(;, ¢) |, <% for ¢ € [0, T} ].

From Theorem 4.1, the problem (4)-(5) has a solution Uj(t) and the
following estimate holds |U,(t)-uy(t)|, <o for tel0, 1], which

implies that | U,(T}) - up(T1)],, % Applying the triangle inequality,

we get

| UAT) g < N (T) e + 1 UR (D) = (D], < 5 + 5 = e
272

From Theorem 3.1, U quenches in a finite time th. We deduce from

Remark 3.1 and (24) that

1

h h
T3 =TI <| T T |+ | T~ T < 3 s o+ 5

which leads us to the desired result. O
5. Numerical Results

In this section, we give some computational results to approximate
the quenching time of the continuous problem. We consider the problem
(1)-(3) in the case where ¢(s) = arctan(s). We approximate the solution u

of (1)-(3) by the solution U}(Ln) of the following explicit scheme

ugt - ol aul 2U()

= - gy P, (25)

n

U?”J—Uﬁ)_4aﬂm )y

Al + (Uz+1 Uz(:q )2
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_ (U_(n))—P—lUi(”*l), 1<i<I-1, (26)

2

Uyt —up 20 - 208 ) e
A W2 piC) SO e @0

2 + cos(inh)

10 , 0<i<1, (28)

vl -

2
where n > 0, At, = min[%, 1 U,(ln) "HPJ with t© = const e (0, 1).

inf

We also approximate the solution u of (1)-(3) by the solution U™ of

the implicit scheme below

U(()n+1) _ U(()n) _ 2U1(n+1) _ 2U(()n+1) ~

AL, 12 gy P, (29)
Ui(n+1) B Ui(n) ) 4(U§ff1) _ ZUL.(””) + Ui(ffl))
Aty, a2+ U —u)y?
— @My Pyl << -, (30)
U?HIA)I; vy ZUYL_?)h—ZQUETMU - @Py P oy, (31)
(o) _ 2+ cos(inh) 0<ic<I, (32)

i 10 ’
where n 2 0, At, = 1| U [1"? with © = const e (0, 1).
We need the following definition.
Definition 5.1. We say that the solution U}(Ln) of the explicit or the
implicit scheme quenches in a finite time if lim,_, || U,(ln) line =0 and
the series ZZO At, converges. The quantity Z::o At, 1is called the

numerical quenching time of the solution U}(Ln).
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In the following tables, in rows, we present the numerical quenching
times, the numbers of iterations, CPU times and the orders of the
approximations corresponding to meshes of 16, 32, 64, 128, 256. We take

for the numerical quenching time 7" = ZT_L_I At;

0Bt which is computed at

the first time when At, =|T""™' —T" | <1076, The order (s) of the

method is computed from

s = og((Typ = Top)/(Ton — Th))
log(2) '

Table 1. Numerical quenching time, number of iterations, CPU time

(seconds) and order (s) of the approximations obtained with the explicit

scheme

I " n CPU time | s

16 0.005539 | 3495 0.8
32 0.005524 | 13300 | 1.2

64 0.005520 | 50538 | 4 1.91
128 | 0.005518 | 191497 | 32 1.00
256 | 0.005517 | 723210 | 240 1.00

Table 2. Numerical quenching time, number of iterations, CPU time
(seconds) and order (s) of the approximations obtained with the implicit

scheme

I " n CPU time | s

16 0.005540 | 3495 0.9
32 0.005525 | 13301 | 2

64 0.005521 | 50538 | 8 1.91

128 | 0.005519 | 191497 | 60 1.00

256 | 0.005518 | 723210 | 454 1.00
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