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Abstract

In this paper, generalized intuitionistic fuzzy matrices (GIFMs) are
defined. In fact, all GIFMs are intuitionistic fuzzy matrices (IFMs) but
all IFMs are not GIFMs. Also, some operations are valid for IFMs but
they are not valid for GIFMs. The relational properties, i.e., four types of
reflexivity and irreflexivity, symmetricity and transitivity are studied
here. Finally, some new operations over GIFMs are studied here.

1. Introduction

In 1965, Zadeh [28] introduced the concept of fuzzy subsets. Latter
many authors generalized the concept of fuzzy subsets in different
directions, like veg set [8], rough set [22], etc. After two decades,
Atanassov [1] introduced the concept of intuitionistic fuzzy sets, which is
a generalization of fuzzy subsets. Recently, Mondal and Samanta [15]

further generalized the concept of IFSs to generalized intuitionistic fuzzy
sets (GIFSs).
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Several authors presented a number of results on fuzzy matrices. Kim
and Roush [14] studied the canonical form of an idempotent matrix.
Hashimoto [9] studied the canonical form of a transitive matrix, Xin [27]
studied controllable fuzzy matrices. Hemasinha et al. [10] investigated
iterates of fuzzy circulant matrices. Thomason [26] defined the adjoint of
square fuzzy matrix. Pal and Shyamal [20] defined two new operators on
fuzzy matrices. Ragab and Emam [25] give min-max composition of fuzzy
matrix. Emam [7] investigate some results on circulant fuzzy matrices.
Pal [16] introduced intuitionistic fuzzy determinant. Pal et al. [18]
introduced intuitionistic fuzzy matrices. Pal and Shyamal [19] define the
distance between two intuitionistic fuzzy matrices. Khan and Pal [11]
studied some operations on intuitionistic fuzzy matrices. Pal and Khan
[17] introduced intuitionistic fuzzy tautological matrices and studied

several properties.

In this paper, we introduce generalized intuitionistic fuzzy matrices

and studied their various results.

In Section 2, we recall the definitions of IFMs and generalized
intuitionistic fuzzy sets. We define GIFM and some relevant basic
preliminaries. Also, we studied some relational properties. In Section 3,
we shown by examples that some operations are valid for IFMs but they
are not valid for GIFMs. In Section 4, we define some new operations on
GIFMs with examples for the implementation of the operation in real life

problem.
2. Preliminaries and Definitions

Here we define the intuitionistic fuzzy set invented by Atanassov and
generalized intuitionistic fuzzy sets introduced by Mondal and Samanta
[15].

Definition 1. Let E be a fixed set. An intuitionistic fuzzy set A of E is
an object having the form A = {{x, py(x), v4(x))|x € E}, where the
function pny : E —» [0,1] and vy : E — [0,1] define respectively the

degree of membership and degree of nonmembership of the element
x € £ to the set A, which is a subset of E and for every x € E,

0 <puy(x)+vylx) <1,
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Definition 2 [15]. Let E be a fixed set. A generalized intuitionistic
fuzzy set A of E is an object having the form A ={(x,pu4(x), v4(x))|x € E},
where the function py : E —[0,1] and v4: E —[0,1] define respectively

the degree of membership and degree of nonmembership of the element
x € E to the set A, which is a subset of E and for every x € E satisfy the

condition

pg(x)Ava(x)<0.5 forall x € E.

This condition is called generalized intuitionistic condition (GIC). In fact,
all GIFs are IFSs but all IFSs are not GIFSs.

Based on the definition of IFSs Pal et al. [18] have defined IFM which

1s given below.

Definition 3 [18]. An IFM A of order m xn 1is defined as A =

(%, Qiju> Wijy)mxn, Where a;;, and a;;, are called membership and
nonmembership functions respectively of the element x;; in the IFM A

with the condition 0 < a;; <1.

i + Qijjy
For simplicity we referred the IFM A as A = [(a;;,, @;,)] instead of
A = [(x5, ayys @)l

Now, we define two operators v and A. The operators v and A are

defined as a v b = min(a, b) and a A b = max(a, b).

Definition 4. A GIFM A of order mxn 1is defined as A =

[(xij» s @iju)lmwm» Where a;, and ag, are called membership and
nonmembership functions respectively of the element x;; in the IFM A

with the GIC condition

Qjj A Qjjy < 0.5.
Here also we referred the IFM A as A = [(@;,, a;j,)] instead of A =
[(xi5 @ijus @)l

In the following we define some basic operations on GIFMs.
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Definition 5. If A = [(a;;,, ;)] and B = [(b,, bjj,)] are two GIFMs
of same order, then

() A = B iff a;, = b, and a5, = byjy.

(i) A < B iff a;;, < by, and g5, 2 b;;

ju v

(iii) A > B iff B < A.
< b;;

v

iv) A < B iff a;, < by, and g5, <

() AN B = [(min(ay;,, bjj, ), max(ajj, bjy )]
(i) AU B = [(max(a;j,, by, ) min(ayjy, by ).
Two operations o and * are define on GIFMs below.

Definition 6. Let A = [(a;;,, a;;,)] and B =[(b;,, bj,)] be two GIFMs

of order m x n and n x p. Then

<Z Qi - bkju H Qjpy + bkjv >]
k

AoB =
k

and

A*xB =

<H (it + bpj ) Z(aikv “brjy )>]
k

k

Theorem 1. If A, B and C are three GIFMs of same order, then
) A<B=> AoB<BoCand CoA<CoB.

(@ A<B=>AoC<BoCand CoA=<CoB.

(iii) A< B=> Ao A< BoB

(iv) AoB = Bo A.

Proof. (i) Since, A < B, therefore, q;;, < b;;, and a;;, > b,.

ijp

Let F=CoA and G=CoB, so fijp.:Z(Cikp'akj},l)? Siju =
k

D (Cipy - brjy) and fii, = [ ] (Ciry + agjy) and gy = [ ] iy + brjy)-
% 3 %
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Since m < bij;,u S0, Qpjy, < bkju for any &k € {1, 2, ..., n}

Therefore, Ciku * Qkju S Cikp -bkj“ or ZCiku “Qpjy < ZCiku “ Dpjy-
k k
Thus, fij, < 8-
Also, a;j, > b;j, s0 ayj, = by, and hence ¢, + agjy, = cipy + byjy, 1€,
T Ciry + arj) = T Ciny + brjp)- So, fijv = &ijy-
k k

Hence, Co A < Co B.
Similarly, Ao C < BoC.
The proofs of remaining results are similar. 0

Theorem 2. If Band A,,, n € I are GIFMs of same order, then

() (UA,) > B = LJ(A,L o B).
(i) (NA,)e B = Q(An ° B).
Proof. (i) Let C = (UA,) > B. Then
Ciju = VrlVp=1 apiry) A i}

= Vi ivVpe1 (@pigy A bpjp )}

n
Vici Ve (@piky A bpjy)}
n
= Vi=1%pijp-
Similarly it can be shown that c;;, = viljap;j, -

Hence, (UA,)o B = U(4,, ° B).

(11) Proof is similar to (i). 0
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Example 1. Let

(0.8,0.3) (0.6,0.5) (0.1, 0.9)
A =(0.6,0.3) (0.7,0.3) (0.6,0.3)],
(0.6,0.5) (0.0,0.3) (0.3.0.6)

and
(0.3,0.5) (0.4, 0.6) (0.2,0.7)
B =|(0.4,0.7) (0.5,0.5) (0.7,0.4)|.
(0.5, 0.4) (0.6, 0.3) (0.2, 0.6)
Then
(0.4, 0.5) (0.5, 0.5) (0.6, 0.5)
Ao B =1(0.504) (0.50.3) (0.7,0.4)
(0.3, 0.5) (0.4, 0.5) (0.2, 0.4)
and

(0.4,0.5) (0.4, 0.5) (0.4, 0.6)
BoA =|(0.6,05) (0.5 0.4) (0.5, 0.3)|
(0.6,0.3) (0.6, 0.5) (0.6, 0.3)

This shows that Ao B = B o A.
Example 2. Let

(0.3,0.5) (0.4,0.6) (0.2, 0.7)
A =[(0.4,0.7) (0.5, 0.5) (0.7, 0.4,
(0.5, 0.4) (0.6,0.3) (0.2, 0.6)

and
(0.7, 0.4) (0.4, 0.5) (0.5, 0.3)
B =1(0.6,0.2) (0.6,0.4) (0.6,0.2)|
(0.7,0.3) (0.8, 0.2) (0.4, 0.5)
Then

(0.4, 0.5) (0.4, 0.6) (0.4, 0.6)
AoA=[(0504) (0.6 04) (0.5, 0.5)],
(0.4,0.3) (0.5,0.5) (0.6, 0.4)
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and
(0.7,0.3) (0.5,0.4) (0.5, 0.3)

BoB=(0.6,02) (0.6,04) (0.6 02)|
(0.7,0.3)  (0.6,0.2) (0.6, 0.2)

This shows that Ao A < Bo B, where A < B.

Here we define some special types of reflexivity of a GIFM.
Definition 7. Let A be a GIFM of any order. Then

=1 and gy,

(1) T7 : A 1is a reflexive of type-1 if q; = 0, for all

i
1=1,2, .., n.
(2) Ty : A is reflexive of type-2 if a;;, =1 and (a;;, v aj;y) < @5, for

alli,j=1,2, .., n

(3) T3 : A is reflexive of type-3 if (a;;, A )>(0.5v a;;,) and

@jjn iju

ajy, =0, forall i, j=1,2,..,n

(4) Ty : A is reflexive of type-4 if (a;, A @jj,) > a5, and (a;, v ajj,)

< ajjy, forall i, j =1, 2, ..., n.

Theorem 3. (1) Reflexivity of type-1 = Reflexivity of type-2, type-3 and
type-4.

(i1) Reflexivity of type-2 = Reflexivity of type-4.

(ii1) Reflexivity of type-3 = Reflexivity of type-4.

The proof follows from the definition. Here we are showing by the

numerical example that the above theorems is obvious. 0
Example 3. Let A be a GIFM of type-1, where
(1, 0) (0.4,0.6) (0.7, 0.3)
A =1(0.3, 0.6) (1, 0) (0.8, 0.4) |.
(0.1, 0.8) (0.4, 0.8) (1, 0)

Then Ty, T5 and T, are obvious.
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Example 4. Let A be a GIFM of type-2, where
(1,0.4) (0.3,0.6) (0.4, 0.8)
A =1(0.3,09) (1,0.3) (0.2,0.7)|.
(0.7,0.4) (0.3,0.7) (1, 0.4)

Then T, are obvious.
Example 5. Let A be a GIFM of type-3, where
(0.7,0) (0.6,0.3) (0.8,0.4)
A=[(04,05) (0.8,0) (0.2 0.7)|
(0.6,0.4) (0.7 0.3) (1, 0)

Then T, are obvious.

Here we define some special types of irreflexivity of a GIFM.

Definition 8. Let A be a GIFM. Then

(1) T{ : A 1s a irreflexive of type-1if a;;, = 0 and q;, =1, for all
1=1,2,.., n

(2) T3 : A is irreflexive of type-2 if a;, =0 and (a;, A ajj) 2
(0.5 v aijv), forall i, j=1,2, .., n.

(3) T3 : A is irreflexive of type-3 if (a;y, v aj;,) < @, and a;, =1,
forall i, j =1, 2, ..., n.

(4 Ty:A is irreflexive of type-4 if (a;, vaj,)< a;, and
(aiiy A ajjy) > ajjy, forall 4, j =1,2, .., n

Theorem 4. (i) Irreflexivity of type-1 = irreflexivity of type-2, type-3
and type-4.

(11) Irreflexivity of type-2 = irreflexivity of type-4.

(ii1) Irreflexivity of type-3 = irreflexivity of type-4.

Remark 1. It can easily be shown by constructing examples that
reflexive (irreflexive) of type-4 = reflexive (irreflexive) of type-3 =%

reflexive (irreflexive) of type-2 = reflexive (irreflexive) of type-1.
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Theorem 5. (i) If A is reflexive of any type, then A < A o A.
(1) If A is irreflexive of any type, then A > A * A.

Proof. (i) Let A = [(a;j,, ajjy)] and R = Ao A. Then

mxn

<Z (@ - g [ ] @i + g )ﬂ
k k

R =

Therefore,
Tijn = V(@i A @)
= (Giiy A @ijp) v Vier Qg A agj)}

= @iy V Vi (@py A apjy )}, for any type of reflexivity

v

Qiips
v = Ap(@iny v agjy)
= (@iiy v @ijy) A IApsi(Qipy Vv gy )}
= @iy A AR (Qipy Vv gy )}, for any type of reflexivity
< Qjjy, -
Hence A < R, i.e., A < Ao A.
(11) Proof is similar to above case. 0

Example 6. Let A be a GIFM of any type, where

(0.8,0.3) (0.6,0.5) (0.1,0.9)
A =1(0.6,0.3) (0.7,0.3) (0.6,0.3)]|
(0.6,0.5) (0,0.3) (0.3, 0.6)
Then

(0.8,0.3) (0.6,0.5) (0.6, 0.5)
AoA=1[(0603) (0.703) (0.6 0.3)].
(0.6,0.3) (0.6,0.3) (0.3, 0.3)

This shows that A < A o A, but A is not reflexive of any special type.
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Example 7. Let A be a GIFM of any type, where

(0.4,0.3) (0.6,0.5) (0.3, 0.6)
A =1(0.6,0.3) (0.7,0.3) (0.6,0.3)|.

(0.3,0.5) (0.4, 0.5) (0.3, 0.6)

Then
(0.3,0.5) (0.4, 0.5) (0.3, 0.6)
AxA=|(06,0.3) (0.6, 0.3) (0.6, 0.3)|

(0.3,0.5) (0.4, 0.5) (0.3, 0.6)

This shows that A > A * A, but A is not reflexive of any special type.

Theorem 6. (1) If the GIFM A is reflexive (irreflexive) of any type, then
Ao A (A A) is reflexive (irreflexive) of same type.

(1) If the GIFMs A and B are reflexive (irreflexive) of a particular
type, then AN B (A U B) is reflexive (irreflexive) of same type.

(1) If the GIFMs A and B are reflexive (irreflexive) of the type say i,
then AU B (A N B) is reflexive (irreflexive) of same type.

@1v) If the GIFM A is reflexive (irreflexive) of type-1 and B is a GIFM,
then A U B (A N B) is reflexive (irreflexive) of same type.

Proof. (i) Let Abe a GIFM and R = A o A. Then
Tin = Vp(Qipy A agjy)
= (i A @) v Vier (@ipy A apiy)}
= @i vV Vier (@py A apiy)}
= iy, fori=1,2, .., n (1)
Similarly,
Tiv = Giiy- )

If A is reflexive of type-3 or type-4, then we have for & = i.
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T = V(@i A )

= (aiip A aijp) v (aiju A ajju) v {Vk;ti,k;tj(aikp A akju)}

= @iy v (@i A @)V Visk, ke j (G A Oy}

< Qi A @y, SINCE Qg A Qi 2 Gy
= Tyin A Tiju by (D] 3

If A 1s reflexive of type-3, then

Tin = @iy = 0.5, also r;, = 0.5.
So, 7y, A Tjjy 2 0.5.
Therefore,
05V T < (i A ) @

If A is reflexive of type-2 or type-4, then we have for i # j.
Tiv = Ak(@igy v agjy)

= (iiy Vv @ijy) A (@ijy v @jy) A A kgi ke j(Qiry v agjy )}

Qijy A @iy v @jjy) A NVisk e @iy v Qpiy)}

> iy V ajjv, since a;;y Vv ajjv < aijv

= Tiiy v Tjjy [by (2)]. (5)
Hence by equations (1-5), A o A is reflexive of the type as that of A.

(ii) Let C = A B. Then Ciju = Qjy A b foralli=1,2, ..., n.

ijuo
Now, for i = j

Ciju = Qiju A ijy

IA

(@iiy A @jjp) A Bizy A bjjy)
= (@i A i) A (@i A bj)

= (@ A bjjy)-
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Similarly, c¢;;, > 0.5.

ijp

.. >
So, ¢y v ¢jjy 2 0.5.

Therefore, (0.5 v ¢;,) < (¢ v Cjjp)-
Similarly, we can establish the result for c;;,.

Hence, from above C = A () B of the type as that of A and B.
The proof of irreflexivity is similarly to that of reflexivity.
(i11) The result is obvious for the type-1 and type-2.
Let
C = ayju v by
< (aiiM A ajjy) v (biiH v bji,)
= {(aiiy A ajjp) v By v @y A ajiy) v (05}
= @i v bj) A~ @i v Biig)} A i v bjj) A (@i v bjj )}
= (@i v bjj) v (@ v bjiy)
= Ciip A Cljue
For reflexivity of type-3,

Ciip = aii“ vb

iju > 0.5, (since iy 2 0.5).

Similarly cj;, > 0.5, so, ¢;;, A cjj, 2 0.5.

i
Therefore, 0.5 v ¢, < ¢, v ¢y

Similarly, we can establish the property for Cijy-

Hence, from the above A U B is reflexive of the same type as that of
both A and B.

The proof of irreflexivity is similar to that of reflexivity.

(iv) The proof is similar to above cases. 0
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Example 8. Let A be reflexive of type-1 and B be any GIFMs of same

order, where

[ (1,0.0) (0.4,0.6) (0.7,0.3)]
A=1[(0.3,06) (1,00) (0.8, 0.4)],
1(0.1,0.8) (0.4,0.8) (1,0.0) |
[(0.4,0.5) (0.5, 0.5) (0.6, 0.5)]
B =(0.5,0.4) (0.5,0.3) (0.7, 0.4)|.
1(0.3,0.5) (0.4, 0.5) (0.2, 0.4)]

Then
(1,0.0) (0.5, 0.5) (0.7, 0.3)
AUB=|(0.5,04) (1,0.0) (0.8, 0.4)|.
(0.3,0.5) (0.4,0.5) (1, 0.0)

This shows that A U B 1is reflexive of type-1.

Remark 2. It can be easily shown by examples for the reflexivity of
type-2, type-3 and type-4, the condition that only one of GIFMs A and B is
reflexive does not imply reflexivity of A U B.

Example 9. Let
(1,0.4) (0.3,0.6) (0.4, 0.8)
A =0(0.3,0.9) (1,0.3) (0.2, 0.7)
(0.7, 0.4) (0.3,0.7) (1, 0.4)
and
(0.4, 0.6) (0.6,0.3) (0.2, 0.5)
B =1(0.6, 0.2) (0.3, 0.8) (0.2, 0.6)|.
(0.5,0.6) (0.2,0.7) (0.7, 0.5)

It may be observed that A is reflexive of type-2 and B is any type of
GIFM.

Therefore,
(1,0.4) (0.6, 0.3) (0.4, 0.5)
AUB=|(06,02) (1,0.3) (0.2, 0.6)|.
(0.7, 0.4) (0.3,0.7) (1, 0.4)

Here, A U B is not reflexive of type-2.
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Theorem 7. (1) If A is symmetric GIFM, then Ao A, i.e., A°? s
symmetric GIFM.

(1) If A and B are two symmetric GIFMs, then Ao B # B o A.
Example 10. Let

(0.6,0.4) (0.3,0.2) (0.4, 0.7)
A =(0.3,02) (0.3,0.7) (0.7,0.3)],
(0.4,0.7) (0.7, 0.3) (0.2, 0.8)

then

(0.6,0.2) (0.4, 0.4) (0.4, 0.3)
A% =1(0.4,0.4) (0.7,0.2) (0.3,0.7)].
(0.4,0.3) (0.3,0.7) (0.7, 0.3)

It follows that A°Z is symmetric.

Here we shall define transitive and c-transitive GIFM and some of

their properties.
Definition 9. (i) A GIFM A is transitive if A > A o A.

(i1) A GIFM A is c-transitive if A < A * A.

Remark 3. A GIFM A of order nxn converges to A°°, where
¢<(n-1) [where A = Ao Ao A---c times].

Definition 10. Let A be a GIFM of any order. Then
@ A=AtTUA2UABU--UA™ = UM, A%
() A=A"TNAZNAS N NA" =N A"
where A' = A, A2 =A0A, ., A" =AocAcA---n times, A*! = A,
A2 =A% A, .., A" = Ax A* A--n times.

Theorem 8. If A is a GIFM and B is a transitive GIFM of order
nxn, then
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() A < A.

(i) If A < B, then A < B.

Proof. (1) Straightforward.

(11) Let us take A < B, B is transitive, i.e., B°? < B. Now using

Theorem 1(iii), we get A°> < B2 < B.

Similarly, A°® < B, ---.

noo. .
Therefore, U A < B= A < B. 0
i=1

Theorem 9. If A is a GIFM and B is a c-transitive GIFM of n x n,
then

() A > A.
(ii) If A > B, then A > B.
Proof. The proof is analogous to that of Theorem 8. 0

Example 11. Let

(0.7,0.3) (0.5,0.4) (0.6,0.3) (0.4, 0.4)
A 41 _|(06,04) (06,0.4) (05,05) (0.4,086)
-7 1(0.7,0.3) (0.5,0.5) (0.8,02) (0.5 0.3)
(0.4,0.5) (0.6,0.4) (0.4,0.3) (0.6,0.1)
Then

[(0.7,0.3) (0.5,0.4) (0.6,0.3) (0.5, 0.3)]

a2 _|(06,0.4) (06,0.4) (0.6,04) (05,0.4)
(0.7, 0.3)  (0.5,0.4) (0.8,0.2) (0.5,0.3)[

(0.6, 0.3) (0.6,0.4) (0.5,0.3) (0.6,0.1)]

[(0.7,0.3) (0.5, 0.4) (0.6,0.3) (0.5, 0.4)]

a8 _ | (0:6,04) (06,0.4) (0.6,0.4) (0.5,0.4)
1(0.7,0.3) (0.5, 0.4) (0.8,0.2) (0.5, 0.3)[

(0.6, 0.4) (0.6, 0.4) (0.6,0.3) (0.6, 0.1)]
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and
(0.7,0.3) (0.5,0.4) (0.6,0.3) (0.5, 0.4)
ot |(06.0.4) (06,0.4) (06,0.4) (05 0.4)
(0.7,0.3) (0.5,0.4) (0.8,0.2) (0.5, 0.3)
(0.6,0.4) (0.6,0.4) (0.6,0.3) (0.6, 0.1)
So, A°3 = A% ie., A converges for ¢ = 4.
Now,
(0.7,0.3) (0.5, 0.4) (0.6, 0.3) (0.5, 0.3)
Aoatyayas - |0604) (0604 (0604) (05 04)
(0.7,0.3)  (0.5,0.4) (0.8,0.2) (0.5 0.3)
(0.6,0.3) (0.6,0.4) (0.6,0.3) (0.6, 0.1)

It follows that A < A.

Theorem 10. If A and B are two GIFMs, then
A<B=A<Band A>B.

Corollary 1. For any GIFM A, A<Ac<A.

Corollary 2. (1) If GIFM A is any type of reflexive and transitive, then
A=A-A.

(1) If GIFM A is any type of irreflexive and c-transitive A = A * A.
3. Comparison for the Operations of IFMs and GIFMs

We first recall some operations for IFM defined in [18] and show by
means of examples that these operations are not valid for GIFM.

Definition 11 [18]. If A = [(a;,, ;)] and B = [(by,, bjj,)] are two
GIFMs, then

(1) A® B = [((ajj, + biju — iy - by ) (@5, - bijy )]

(2) Ao B = [((a, - biju): (@jjy + bijy — jjy - bijy ).

_ aiju + bijp. aij\, + bijv
(3)A@B—{< “ i St B
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@) A$B = [(Jay, - by Jayy - by )
b

0 aen-[[Lom e 2o b))
Gjjy + Oy agjy + by

Example 12. Let

(0.3,0.7) (0.5 0.3) (0.8, 0.4)
A =(0.4,08) (0.4,086) (0.7,0.4)
(0.3,0.4) (0.8,0.4) (0.4, 0.6)

and
(0.2,0.6) (0.4,0.7) (0.8, 0.4)
B =(0.4,0.8) (0.3,05) (0.3 0.6)|
(0.6,0.2) (0.4,0.8) (0.4, 0.4)

Let A®B=C, AoB=D, A@B=E, A$B=F and A#B=G.
Then
Co1y = @21y + b9y, — Agqy - o1, = 0.64 > 0.5
C21y = Qg1y - bg7, = 0.64 > 0.5

di3, = a1y ~bygy = 0.64 > 0.5
d13v =3, + b13u — 3, 'b13u =0.64 > 0.5

agg, + b
eyzy = = 0.6 > 05

emv=ﬂﬁ%?ﬁi=05>05

fazu = a2, - baz, = ¥0.32 > 0.5

fazy = Vaggy - bz, =0.32 > 0.5

B 2- asap 'bg2u _ 0.64

g32“ = > 0.5

a32},l + b32].1. 1.2

2-a - b 0.64
Zs9y = 32v ; 32v — > 0.5.
aggy + b3y 1.2
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Since at least one element of A® B, A©B, A@B and A$ B,
A# B are not satisfy the GIC and thus A®B, Ao®B, A@B, and
A$ B, A#B are not GIFMs.

4. New Operations for GIFMs

Definition 12. For any two GIFMs A and B, we define

Ao B - K G * by iy + by >}
2(aiju . biju + 1) 2(aijv . bijv + 1)

A0 B = [{(aj - byu). (@jjy by )]

Note 1. As for a, b € [0, 1], 2(a +b)

T ) < 1
@1~ 0.5. Therefore A ® B is a

GIFM.

Definition 13. Let A; for i =1, 2, ..., n be a set of GIFMs. Then the

n
product ® A; = A (say), whose membership functions and non-
1=1

membership functions are respectively defined as follows:

1 . .
3 1qui:1forz:1,2,...,n,
n-1
= k+1
RA= 1D IEDM DT (hay hay, hay)
k1 o <ip<<ip otherwise
201+ (1) (g, - pa, 14, )]
(6)
where 7, =1, 2, ..., n and
1 . .
5 lfVAi =1fori=1,2,...,n,
n-1
— k+1
AR T (vay vay, vay) (M
kel o <ip <<ty otherwise

2+ (-1)"(va,va,va,)]

where i, =1, 2, ..., n.
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Theorem 11. If a; € [0,1], for i =1, 2, .., n and a; # 1 for at least

one i, then following inequality holds good:

—_

S (-1)** Z (a; - aj, - a;)

1 > k= o <ip << , fori,=1,2, .., n
2 201 + (-1)"(ay - ag -~ ay,)]

il

Proof. We have

k
H(l — ai) >0
i=1

n-1
- 1+Z (-1 Z (ay, - az, - az, )| 2 0
k=1 i1<i2<--~<ik

3
iR

=1+ ('@ agay) 2 Y LAY (@ a0 )

k=1 i) <ig <---<ip,
n-1 L
1
D (e )
1>k L1<12;...<Lk (as a -ag---a, #1)
20+ (-1)"(aq - ag -+ ay)]
n-1 L
1
Y (@ ey ay,)
N l > k=1 i) <ig<--<ip ) 0
2 201 + (1) (ay - oy ay)]

n
Theorem 12. Let ® A; = A. Then A is a GIFM. In fact py < 0.5
i=1

and v, < 0.5.
n

Proof. The proof follows from Theorem 11. Note that ® A; = A is
i=1

not only a GIFM but also an IFM. 0

We take an example in practical field to illustrate this operation.
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Example 13. In a company, director wish to give promotion of three
employees X = {x;, x9, x3}. An appraisal report has to be made by three

supervisors regarding the dedication, expertness, job satisfactory of these

employees (Y ={dedication, expertness, job satisfactory}). Each supervisor

give his statement as “for and against” of the employees in the form of
GIFMs. Then the generalized intuitionistic fuzzy matrix represent the

relation R between the sets X and Y is given as follows:

X1
Al = .X'Z
X3

X1
Ay = x9

X3

X1
Az = x9
x3

dedication

(0.6, 0.5)
(0.4, 0.7)
(0.2, 0.8)

dedication

(0.5, 0.3)
(0.4, 0.4)
(0.3, 0.8)

dedication

(0.5, 0.2)
(0.3, 0.5)
(0.5, 0.6)

expertness

(0.3, 0.1)
(0.2, 0.8)
(0.4, 0.1)

expertness

(0.4, 0.6)
(0.5, 0.4)
(0.9, 0.1)

expertness

(0.6, 0.3)
(0.4, 0.6)
(0.3, 0.7)

job satisfactory

(0.2, 0.3)]
(0.4, 0.5) |,
(0.3, 0.7)

job satisfactory

(0.2, 0.5)]
(0.6, 0.3)
(0.4, 0.5)]

job satisfactory

(0.7, 0.4)]
(0.4, 0.4)|.
(0.8, 0.1)

3
Then the final conclusion by the experts are givenby ® A, = A
=1

dedication expertness job satisfactory
, x1[(0.44, 0.36)  (0.41, 0.37) (0.4, 0.38)
A= ® A; = x,|(0.37,0.44) (0.38,0.47) (0.42, 0.38)|.
= x5((0.3,0.49)  (0.48,0.5)  (0.45, 0.42)
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