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Abstract

The two dimensional problem of free convective MHD flow of a
non-Newtonian electrically conducting fluid in porous medium confined
between two long vertical wavy walls has been investigated under the
assumption that the wavelengths of the wavy walls are large. The
amplitude of the wavy walls considered are different. A uniform
magnetic field is assumed to be applied perpendicular to the walls in the
absence of waviness. Regular perturbation technique is used to solve the
problem, where perturbation parameter is inversely proportional to the
wavelength. Expressions for dimensionless velocity, temperature and
shearing stress at both the walls have been obtained and numerically
worked out for different values of the parameters involved in the
solution. The shearing stress has been presented graphically for various

non-Newtonian parameters.

2000 Mathematics Subject Classification: 76A05, 76A10.

Keywords and phrases: non-Newtonian, free convective, MHD flow, porous medium, heat
transfer, shearing stress, nusselt number, regular perturbation technique.

Received October 23, 2007



200 RITA CHOUDHURY and DEBASISH DEY

1. Introduction

Analysis of non-Newtonian fluid through porous media over a wavy
wall has received special attention as a result of increasing practical
interest in different areas of modern technology and in industrial
applications. The interest in MHD flow stems from the fact that the
liquid metals that occur in nature and industry are mathematically
interesting and physically useful but the dynamical study of such flow
problems is quite complicated. However, these problems are usually

investigated under various simplifying assumptions.

Benjamin [2] was probably the first to consider the problem of the
flow over a wavy wall. His analysis is based on the assumption of parallel
flow in absence of waviness. The steady streaming generated by an
oscillatory viscous flow over a wavy wall under the assumption that the
amplitude of the wave is smaller than the Stoke’s boundary layer
thickness has been investigated by Lyne [6]. Lekoudis et al. [4] have
presented a linear analysis of compressible boundary layer flow over a
wavy wall. Shankar and Sinha [8] have made the detailed study of the
Rayleigh problem for a wavy wall. It was found that at the low Reynolds
number, the waviness of the wall quickly ceases to be of importance as
the liquid is dragged along the wall, while at large Reynolds number, the
effect of viscosity are confined to a thin layer close to the wall. Lessen and
Gangwani [5] made a very interesting analysis of the effect of small
amplitude wall waviness upon the stability of laminar boundary layer.
Vajravelu and Sastri [9] have studied the problem of free convective heat
transfer in a viscous incompressible fluid confined between a long
vertical wavy wall and a parallel flat wall. The free convection of a
viscous incompressible fluid in porous medium between two long vertical
wavy walls has been investigated by Patidar and Purohit [7]. Ahmed et
al. [1] have extended the problem to MHD case. Choudhury and Das [3]

have studied this problem for visco-elastic fluid.

In this paper, the steady free convective MHD flow of a
non-Newtonian fluid characterized by Walters liquid (Model B’) confined

between two long vertical wavy walls in porous medium has been
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investigated, when the amplitude of the waviness of both the walls are
different. The boundary conditions at the surfaces are obtained by
applying Taylor’s series expansions for the variable quantities. The
shearing stress at the wavy walls has also been presented graphically for

various non-Newtonian parameters.
The constitutive equation for Walters liquid (Model B’) is

ik

G =-Dgip +Oi
ol = 2noe® — 2kge'™*, (1.1)
where o' is the stress tensor, p is isotropic pressure, g;; is the metric

tensor of a fixed co-ordinate system xi, v; 1s the velocity vector, the

contravariant form of e’ is given by

ik
. ael , . ,
etk = TR vmef,lf1 - vfemelm — 0l ™k, (1.2)

It is the convected derivative of the deformation rate tensor e'*

defined by

2% = Uikt Uk, (1.3)

Here mg is the limiting viscosity at the small rate of shear which is

given by

no = j: N(t)dr and kg = J: N(1)dr, (1.4)

N(t) being the relaxation spectrum as introduced by Walters [11, 12].
This idealized model is a valid approximation of Walters liquid (Model B’)

taking very short memories into account so that terms involving
o0
J' " N(t)dr, n > 2, (1.5)
0

have been neglected.
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2. Formulation of the Problem

Consider the free convective hydromagnetic flow of a Walters liquid
(Model B’) between two long vertical wavy non-electrically conducting
walls in porous medium. We consider a set of Cartesian coordinates so
that the x -axis is taken parallel to the walls, if there were no waviness
in the walls. y -axis is taken perpendicular to it. Let the equations of the
two wavy walls are given by y = ecosix and y = d(1 + A& cos AX),
where € and dhe are the amplitudes of respective walls. Both the walls
are maintained at constant but different temperatures 77 and 7. The
magnetic Reynolds number is assumed to be small so that the induced

magnetic field can be neglected.

The boundary conditions relevant to the problem are taken as:

gcosAx;u =0,0=0,T =T

y

d(l+hecosAx); @ =0,0 =0, T =Ty, (2.1)

y
where d is the distance between the two walls, if there were no waviness

in the walls and A is the amplitude parameter for the second wavy wall.

We introduce the following non-dimensional parameters:

_* ,_Y ,_ud  _bd __ P
x—d,y—d,u— V’U_V’p_ Vz’
()
T-T gB2d?
0=—_""535 M= 2.2
T o 2.2)

where u, v are the velocity components, p the pressure, gB(T - Ty) the
buoyancy force, k the permeability parameter, By the uniform magnetic
induction, T is the fluid temperature in static conditions and the other
symbols have their usual meanings.

Introducing the non-dimensional parameters (2.2) in the governing

equations for velocity and temperature, we obtain the equation of
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continuity:

ou ov

the momentum equations:

u a_u + v a_u = — a_p + az_u + 82_u
ox oy ox | ax2  oy?
%u %u %u
—k|u — tu T HU—;
ox ox0y ox“oy

, % goudtu ou du
ay® 0x px2 Oy OxOy

_g0v u oud’u  oudh
ox 0x0y 0Ox 8y2 0y ox2

} +G,0 - o’u—- Mu, (2.4)

ov ov op (820 820]
+v ==+ |—+—

R A PR
o%v 0% o%v
-k U—s +u T HU—;
ox ox0y ox“oy

a3 v o%v  ov 0%
+V— -3 ——— - — —
ay® 9y gy?  Ox Oxdy

ou 0% v o2 v d%u 9
—o % pov_ X - 2.5
Jy Ox0y " oy gx2 Ox 5y2} “v @5
and the energy equation:
o0 o0 1 (a% o%
D y)E 22y 2.6
wo+ v o =D [ax2 8y2) (2.6)

subject to the boundary conditions:

y=¢cosAx; u=0,0v=0,0=1,

y=1+aqecosix;u=0,v=0,0=m, 2.7
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where

d

o = —, the dimensionless porosity parameter

A

3 —_—
G, = w, the Grashoff number

v

P = %, the Prandtl number

¢ = —, dimensionless amplitude

Q| ml

A = Ad, modified frequency

_ (TZ _Ts)

m = ———22  the wall temperature ratio
(Tl - Ts)

o = hd, the amplitude parameter

k .
Rk = —02, the non-Newtonian parameter.
pd

3. Solution of the Problem

To solve the equations (2.3) to (2.6), subject to the boundary
conditions (2.7), let us assume that the solutions consist of two parts, a
mean part and a perturbed part (which is contributed from the waviness

of two walls) as given below:
u(x? y) = uO(y)+ Sul(xa y)> U(x’ y) = 81)1(36, y)’
p(x’ y) = pO(y)+ 8pl(x’ y)’ e(x’ y) = eO(y)+ 891(.76, y)’ (31)

where ugy, pg, 0g and uq, vy, p;, 87 are the mean and perturbed parts of

the velocity, pressure and temperature, respectively. On substituting
(3.1) in the equations (2.3) to (2.6) and equating the coefficients of like

powers of &, we obtain the following set of differential equations:
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The zeroth-order equations:

LL6 - ((12 + M)LLO = —Greo,

where primes denote the differentiation with respect to y.
The corresponding boundary conditions are
y=0uy=0,0p =1,
y=1uy =009 =m.
Zeroth-order solutions are:

90 :1+(m—1)y,

- G
up = Cre ™ 4+ Coe™? + — L+ (m-1)y],
M
where Cj, Cy and A; are constants and are given by

_eM
:—Gr(m ¢ ),CZZ—CI—Gr and }\.%_Z(X,Q-FM.

o —r
222 sin hay 22

First-order equations:

ou;  0Ouvy
—+—=0
Ox oy ’
62u1 62u1 aul 2
— 2 T2 Mg MU
ox oy
op1
=uvuy +—-G,0
vitho + rY1
83u1 63u1 2u1 oy 62v1
+ k| ug + U + Uy — Uy =——= + U - ug
ox3 oxdy? Ox0y 2 2
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(3.2)
(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)
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0 U1 6201 . avl _azvl
o oy? Ox
2
Py ouy +u oy _ouy S0y 0 (3.10)
ay 1| “0 83‘:3 0 axayQ 0 axay 0 ox |’ .
2 2
90 00 p (e P, (3.11)
2 2 r ox
ox oy

Corresponding boundary conditions are:
y =0; uy = —ugcosix, v; =0, 8 = —0; cos Ax,
y =1, uy = —oqug cosix, v; =0, 6; = —a;6( cos Ax. (3.12)

In order to solve the equations (3.8) to (3.11), we introduce stream
function yi(x, y) as:

u1= ay 4 1 ax *

This stream function identically satisfies continuity equation.

Eliminating the pressure term from the equations (3.9) and (3.10),
we obtain

Y1, xxxx — YOWT, xxx — OLZWLxx + 21, xayy + W1, yyyy — YOV, xyy
- 7%%, yy T UYL, x
= G0y, y + ki [UgWn, poxer + 2U0V1, xxxyy + U0V, yyyy — u(i)UWI,xl (3.14)
To solve (3.11) and (3.14), we take
Vi(x, y) = e™y(y) and 0;(x, y) = " (). (8.15)
Applying this in (3.11) and (3.14), we obtain
wl = (202 + g + 02) + winul + ixPug + At + a?a?)
= G + ik ugy™ — 2uphPy” — w(hul — ugd®)], (3.16)

0" — o002 + iPAug) = iPAOH. (3.17)
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Thus, the corresponding boundary conditions are:

y = 0; \V':kl(CQ—C1)+%(m—1),\u:0,¢:1—m,
1

y=Ly'= al{xl(cze“ ~Cre ™)+ G—;(m —1)}, y=0,¢=04(1-m).(3.18)
M

If we consider only small values of X, let

w0, 3) = Y My; and o0k, 3) = D We, (3.19)

and substituting it in (3.16) and (3.17) and equating the like powers of A,

we obtain

ve 23w = G0, (3.20)
o =0, (3.21)
w1’ = 23wi + iudyo —iuguh = Gudi + ik [ugwl) — woud'], (3.22)
01 = iP(uodo + Bpwo)- (3.23)

The corresponding boundary conditions are:

, G
y=0; vy =7¥1(C2—C1)+x—2r(m—1), Vo =0, 09 =1-m,
1

Yy :17 Wb = al{}\'l(cbe)\l _Cle_k1)+G_2r(m_1)}9 Yo = 09 ¢O = (X,]_(l—m),
A

1

y;=y; =¢; =0,i 21 and y =0 and y =1. (3.24)

Equations (3.20) to (3.23) are ordinary differential equations and can
be solved with the help of the boundary conditions (3.24).

The solutions of equations (3.20) to (3.23) are as follows:
do = 1 -m)[1 + (o - 1)y, (3.25)

Vo = A3 + A4y + C3€)\’1y + C4€_7\‘1y + ﬂéyQ, (326)
212
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2 3 4
01 =Dy + Dyy +iP.(1 —m)Bly?+ iP,(1-m)32%+ iP,(1 —m)BS{—z

LiP(1— m){B—;—%BG}ekly LiP(1— m){B—25+%B7}ek1y
MM MM
+iP.(1 - m)% ye'Y 4P (1 - m)% ye MY, (3.27)
1 1

Y = E1 + Ezy + L1y2 + L2y3 + L3y4 + E3€kly + E4e_7”1y
+ Lyye™Y + Lgye ™Y 4+ Loy2eMY
+ Lgy?e ™Y + Lgy3e™Y + LgyPe ™17, (3.28)
where the constants are obtained but not presented here, for the sake of
brevity.
4. Results and Discussion
The dimensionless shearing stress o, acting on the wall in vertical
upward direction is given by

Opx = oy + MGy + NGOy,

where I, m and n are the directions cosines of the normal to the wall
y = gcos Ax given by

A

l=n-i,m=n-j,n=n-k,

~

where i, j, & are the unit vectors in x, y and z directions respectively,

and n is the outward drawn unit normal vector at the surface
y = €COS AX.

du " ey ik 2 i
Oy = {d—yo —e(yh + 2yp)e™ — ed®(yg + hyy)e™

— ky[-2e) sin daul — ieugh(yh + Ay )e™™
. ; . 2 ' '
— iugh’e™ (o + My ) — 2062 (o + hyy) (v + hy))

. 21 m " T J ’ !
—ighe®™ (o + 1) (vh + 2y) - 6isuphe™ (v + 2yi)] - po-
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Similarly, the dimensionless shearing stress o}, acting on the wall
y =1+ aqecos Ax in vertical upward direction is given by

, du " N 2 7)
Onx = {d_; —e(yh + Ay])e"™ —ed(yo + Ay )e™

— Iy [-2eh sin Axoqu — icugh(ylh + Ay) e

— iugh®e™ (yo + M) — 2iEx%® M (yo + Ay (wh + Ay))

" "

— ighe” (yo + 1) (vh + Mf) - Bisupre™ (v + hyi)] - po.
The heat transfer co-efficient N, defined as:

_db inx Ao inx b
N, = &y +8Re(€ dy + Ae dy )
Hence the Nusselt number at the walls, y =ccosix and

y =1+ ajecosAx are given by
Ny, =N, +eR,[e™4(0) + 1e™¢5 (0)],

and

N, = Ngl + eR, [ (1) + he™ ¢ (1)],

where

0 ' 0 ’
Nu0 =0p(0)=m -1 and Nu1 =0p(1)=m-1.

The purpose of this study is to bring out the effects of non-Newtonian
parameter on the MHD flow and heat transfer characteristics as the
effects of other parameters have been discussed by Ahmed et al. [1]. The
non-Newtonian effect is exhibited through the non-dimensional

parameter k;. The corresponding results for Newtonian fluid is obtained
by setting k; = 0 and it is worth mentioning that these results coincide

with Ahmed et al. [1]. The velocity components u and v are not
significantly affected by non-Newtonian fluid for both the walls

y =¢gcosix and y =1+ aqgcos Ax.
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The dimensionless shearing stress components o,, at the wall
y =¢coshx and o), at the wall y=1+o0jecosix against the

Hartmann number M have been presented in Figures 1 to 4 for various
combinations of parameters involved in the solution. It is observed that

the shearing stress components ¢,, and o), decrease with the increase

of the value of the Hartmann number M in both Newtonian and non-

Newtonian cases, for a =1, 0; =2, m =1 G, =5 and P, = 0.7 for both
x =25 and x = 75. Also, the components o,, and o}, increase with
the increasing value of the non-Newtonian parameter k;(=0, 0.2, 0.4),

for x = 25 and reverse behaviour of co-efficient of skin-friction is seen at
both the walls for x = 75.

It has also been observed from the expression of 6 that the
temperature field is not significantly affected by the non-Newtonian
parameter k.
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Figure 1. The shearing stress o,, acting on the wall y = gcosix

against the Hartmann number M for a =1, a7y =2, m =1, G, =5 and

P. =0.7 and x = 25.
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Figure 2. The shearing stress o}, acting on the wall y =1 + ay&cos Ax

against the Hartmann number M for a =1, a7y =2, m =1, G, =5 and

P. =0.7 and x = 25.
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Figure 3. The shearing stress o,, acting on the wall y = gcosix
against the Hartmann number M for o =1, 0; =2, m =1, G, =5 and

P. =0.7 and x = 75.

24

2.2

E{

18

1.6

08 13 18 23
M —>
Figure 4. The shearing stress o), acting on the wall y =1 + ay&cos Ax
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against the Hartmann number M for a =1, 0; =2, m =1, G, =5 and

P. =0.7 and x = 75.



