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Abstract 

The two dimensional problem of free convective MHD flow of a           
non-Newtonian electrically conducting fluid in porous medium confined 
between two long vertical wavy walls has been investigated under the 
assumption that the wavelengths of the wavy walls are large. The 
amplitude of the wavy walls considered are different. A uniform 
magnetic field is assumed to be applied perpendicular to the walls in the 
absence of waviness. Regular perturbation technique is used to solve the 
problem, where perturbation parameter is inversely proportional to the 
wavelength. Expressions for dimensionless velocity, temperature and 
shearing stress at both the walls have been obtained and numerically 
worked out for different values of the parameters involved in the 
solution. The shearing stress has been presented graphically for various 
non-Newtonian parameters. 
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1. Introduction 

Analysis of non-Newtonian fluid through porous media over a wavy 
wall has received special attention as a result of increasing practical 
interest in different areas of modern technology and in industrial 
applications. The interest in MHD flow stems from the fact that the 
liquid metals that occur in nature and industry are mathematically 
interesting and physically useful but the dynamical study of such flow 
problems is quite complicated. However, these problems are usually 
investigated under various simplifying assumptions. 

Benjamin [2] was probably the first to consider the problem of the 
flow over a wavy wall. His analysis is based on the assumption of parallel 
flow in absence of waviness. The steady streaming generated by an 
oscillatory viscous flow over a wavy wall under the assumption that the 
amplitude of the wave is smaller than the Stoke’s boundary layer 
thickness has been investigated by Lyne [6]. Lekoudis et al. [4] have 
presented a linear analysis of compressible boundary layer flow over a 
wavy wall. Shankar and Sinha [8] have made the detailed study of the 
Rayleigh problem for a wavy wall. It was found that at the low Reynolds 
number, the waviness of the wall quickly ceases to be of importance as 
the liquid is dragged along the wall, while at large Reynolds number, the 
effect of viscosity are confined to a thin layer close to the wall. Lessen and 
Gangwani [5] made a very interesting analysis of the effect of small 
amplitude wall waviness upon the stability of laminar boundary layer. 
Vajravelu and Sastri [9] have studied the problem of free convective heat 
transfer in a viscous incompressible fluid confined between a long 
vertical wavy wall and a parallel flat wall. The free convection of a 
viscous incompressible fluid in porous medium between two long vertical 
wavy walls has been investigated by Patidar and Purohit [7]. Ahmed et 
al. [1] have extended the problem to MHD case. Choudhury and Das [3] 
have studied this problem for visco-elastic fluid. 

In this paper, the steady free convective MHD flow of a                   
non-Newtonian fluid characterized by Walters liquid (Model B’) confined 
between two long vertical wavy walls in porous medium has been 
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investigated, when the amplitude of the waviness of both the walls are 
different. The boundary conditions at the surfaces are obtained by 
applying Taylor’s series expansions for the variable quantities. The 
shearing stress at the wavy walls has also been presented graphically for 
various non-Newtonian parameters. 

The constitutive equation for Walters liquid (Model B’) is 

ikik
ik pg σ′+−=σ  

,22 00
ikik

ik eke ′−η=σ′  (1.1) 

where ikσ  is the stress tensor, p is isotropic pressure, ikg  is the metric 

tensor of a fixed co-ordinate system i
i vx ,  is the velocity vector, the 

contravariant form of ike′  is given by 
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 It is the convected derivative of the deformation rate tensor ike  
defined by 

.2 ,, ikki
ik vve +=  (1.3) 

 Here 0η  is the limiting viscosity at the small rate of shear which is 

given by 

( )∫
∞

ττ=η
0

0 dN   and  ( ) ,
0

0 ∫
∞

τττ= dNk  (1.4) 

( )τN  being the relaxation spectrum as introduced by Walters [11, 12]. 

This idealized model is a valid approximation of Walters liquid (Model B’) 
taking very short memories into account so that terms involving 

( ) ,2,
0∫
∞

≥ττ ndNtn  (1.5) 

have been neglected. 
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2. Formulation of the Problem 

Consider the free convective hydromagnetic flow of a Walters liquid 
(Model B’) between two long vertical wavy non-electrically conducting 
walls in porous medium. We consider a set of Cartesian coordinates so 
that the x -axis is taken parallel to the walls, if there were no waviness 
in the walls. y -axis is taken perpendicular to it. Let the equations of the 

two wavy walls are given by xy λε= cos  and ( ),cos1 xhdy λε+=  

where ε  and εdh  are the amplitudes of respective walls. Both the walls 
are maintained at constant but different temperatures 1T  and .2T  The 

magnetic Reynolds number is assumed to be small so that the induced 
magnetic field can be neglected. 

The boundary conditions relevant to the problem are taken as: 

1,0,0;cos TTvuxy ===λε=  

( ) ,,0,0;cos1 2TTvuxhdy ===λε+=  (2.1) 

where d is the distance between the two walls, if there were no waviness 
in the walls and h is the amplitude parameter for the second wavy wall. 

We introduce the following non-dimensional parameters: 
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where vu ,  are the velocity components, p  the pressure, ( )sTTg −β  the 

buoyancy force, k the permeability parameter, 0B  the uniform magnetic 

induction, sT  is the fluid temperature in static conditions and the other 

symbols have their usual meanings. 

 Introducing the non-dimensional parameters (2.2) in the governing 
equations for velocity and temperature, we obtain the equation of 
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continuity: 

0=
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u  (2.3) 

the momentum equations: 
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and the energy equation: 
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subject to the boundary conditions: 

,1,0,0;cos =θ==λε= vuxy  

,,0,0;cos1 1 mvuxy =θ==λεα+=  (2.7) 



RITA CHOUDHURY and DEBASISH DEY 204 

where 

,
k

d=α  the dimensionless porosity parameter 

( ) ,2
1

3

ν

−β
= s

r
TTdgG  the Grashoff number 

,aPr
ν=  the Prandtl number 

,d
ε=ε  dimensionless amplitude 

,dλ=λ  modified frequency 

( )
( ) ,

1
2

s
s

TT
TTm

−
−

=  the wall temperature ratio 

,1 hd=α  the amplitude parameter 

,2
0

1
d
kk
ρ

=  the non-Newtonian parameter. 

3. Solution of the Problem 

To solve the equations (2.3) to (2.6), subject to the boundary 
conditions (2.7), let us assume that the solutions consist of two parts, a 
mean part and a perturbed part (which is contributed from the waviness 
of two walls) as given below: 

( ) ( ) ( ) ( ) ( ),,,,,, 110 yxvyxvyxuyuyxu ε=ε+=  

( ) ( ) ( ) ( ) ( ) ( ),,,,,, 1010 yxyyxyxpypyxp εθ+θ=θε+=            (3.1) 

where 1111000 ,,,and,, θθ pvupu  are the mean and perturbed parts of 

the velocity, pressure and temperature, respectively. On substituting 
(3.1) in the equations (2.3) to (2.6) and equating the coefficients of like 
powers of ε , we obtain the following set of differential equations: 
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 The zeroth-order equations: 

( ) ,00
2

0 θ−=+α−′′ rGuMu  (3.2) 

,00 =′p  (3.3) 

,00 =θ ′′  (3.4) 

where primes denote the differentiation with respect to y. 

 The corresponding boundary conditions are 

,1,0;0 00 =θ== uy  

.,0;1 00 muy =θ==  (3.5) 

 Zeroth-order solutions are: 

( ) ,110 ym −+=θ  (3.6) 

( )[ ],112
1

210 11 ymGeCeCu ryy −+
λ

++= λλ−  (3.7) 

where 21, CC  and 1λ  are constants and are given by 
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 First-order equations: 
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 Corresponding boundary conditions are: 

,cos,0,cos;0 01101 xvxuuy λθ′−=θ=λ′−==  

.cos,0,cos;1 0111011 xvxuuy λθ′α−=θ=λ′α−==  (3.12) 

 In order to solve the equations (3.8) to (3.11), we introduce stream 
function ( )yx,1ψ  as: 
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 This stream function identically satisfies continuity equation. 

Eliminating the pressure term from the equations (3.9) and (3.10),         
we obtain 

xyyyyyyxxyyxxxxxxxxx uu ,10,1,1,1
2

,10,1 2 ψ−ψ+ψ+ψα−ψ−ψ  

xyy u ,10,1
2
1 ψ′′+ψλ−  

[ ].2 ,10,10,10,101,1 x
iv

xyyyyxxxyyxxxxxyr uuuukG ψ−ψ+ψ+ψ+θ=  (3.14) 

 To solve (3.11) and (3.14), we take 

( ) ( )yeyx xi ψ=ψ λ,1  and ( ) ( ).,1 yeyx xi φ=θ λ  (3.15) 

 Applying this in (3.11) and (3.14), we obtain 
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( ) .00
2 ψθ′λ=λ+λφ−φ ′′ rr iPuiP  (3.17) 
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 Thus, the corresponding boundary conditions are: 

( ) ( ) ,1,0,1;0 2
1

121 mmGCCy r −=φ=ψ−
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( ) ( ) ( ).1,0,1;1 12
1

1211 11 mmGeCeCy r −α=φ=ψ












−
λ

+−λα=ψ′= λ−λ  (3.18) 

 If we consider only small values of λ, let 
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i
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i
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and substituting it in (3.16) and (3.17) and equating the like powers of λ, 
we obtain 
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 The corresponding boundary conditions are: 
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1,0 ≥=φ=ψ=ψ′ iiii  and 0=y  and .1=y  (3.24) 

 Equations (3.20) to (3.23) are ordinary differential equations and can 
be solved with the help of the boundary conditions (3.24). 

 The solutions of equations (3.20) to (3.23) are as follows: 

( ) ( )[ ] ,111 10 ym −α+−=φ  (3.25) 
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where the constants are obtained but not presented here, for the sake of 
brevity. 

4. Results and Discussion 

The dimensionless shearing stress nxσ  acting on the wall in vertical 
upward direction is given by 

,zxyxxxnx nml σ+σ+σ=σ  

where l, m and n are the directions cosines of the normal to the wall 
xy λε= cos  given by 

  ,ˆˆ,ˆˆ,ˆˆ knnjnminl ⋅=⋅=⋅=  

where kji ˆ,ˆ,ˆ  are the unit vectors in x, y and z directions respectively, 

and n̂  is the outward drawn unit normal vector at the surface 
.cos xy λε=  

( ) ( ) 
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 Similarly, the dimensionless shearing stress nxσ′  acting on the wall 

xy λεα+= cos1 1  in vertical upward direction is given by 

( ) ( ) 
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 The heat transfer co-efficient uN  defined as: 
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 Hence the Nusselt number at the walls, xy λε= cos  and 
xy λεα+= cos1 1  are given by 

[ ( ) ( )],00 10
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φ′λ+φ′ε+= λλ xixi

euu eeRNN w  

and 

[ ( ) ( )],11 10
0
1

φ′λ+φ′ε+= λλ xixi
euu eeRNN w  

where 

( ) 100
0

0
−=θ′= mNu  and ( ) .110

0
1

−=θ′= mNu  

 The purpose of this study is to bring out the effects of non-Newtonian 
parameter on the MHD flow and heat transfer characteristics as the 
effects of other parameters have been discussed by Ahmed et al. [1]. The 
non-Newtonian effect is exhibited through the non-dimensional 
parameter .1k  The corresponding results for Newtonian fluid is obtained 

by setting 01 =k  and it is worth mentioning that these results coincide 

with Ahmed et al. [1]. The velocity components u and v are not 
significantly affected by non-Newtonian fluid for both the walls 

xy λε= cos  and .cos1 1 xy λεα+=  
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The dimensionless shearing stress components nxσ  at the wall 

xy λε= cos  and nxσ′  at the wall xy λεα+= cos1 1  against the 

Hartmann number M have been presented in Figures 1 to 4 for various 
combinations of parameters involved in the solution. It is observed that 
the shearing stress components nxσ  and nxσ′  decrease with the increase 

of the value of the Hartmann number M in both Newtonian and non-
Newtonian cases, for 1,2,1 1 ==α=α m  5=rG  and 7.0=rP  for both 

25=x  and .75=x  Also, the components nxσ  and nxσ′  increase with 

the increasing value of the non-Newtonian parameter ( ),4.0,2.0,01 =k  
for 25=x  and reverse behaviour of co-efficient of skin-friction is seen at 
both the walls for .75=x  

It has also been observed from the expression of θ that the 
temperature field is not significantly affected by the non-Newtonian 
parameter .1k  
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Figure 1. The shearing stress nxσ  acting on the wall xy λε= cos  
against the Hartmann number M for 5,1,2,1 1 ===α=α rGm  and 

7.0=rP  and .25=x  

 
Figure 2. The shearing stress nxσ′  acting on the wall xy λεα+= cos1 1  
against the Hartmann number M for 5,1,2,1 1 ===α=α rGm  and 

7.0=rP  and .25=x  
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Figure 3. The shearing stress nxσ  acting on the wall xy λε= cos  
against the Hartmann number M for 5,1,2,1 1 ===α=α rGm  and 

7.0=rP  and .75=x  

 
Figure 4. The shearing stress nxσ′  acting on the wall xy λεα+= cos1 1  
against the Hartmann number M for 5,1,2,1 1 ===α=α rGm  and 

7.0=rP  and .75=x  
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