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Abstract 

The mild solution of a nonlinear  nonautonomous evolutionary equation 
( ) ( )tuFutAdtdu ,=+  can be formulated as a skew product semiflow 

in a product phase space. Under a spectral gap condition, it is shown 
that there exists an inertial manifold for this skew product semiflow. 
Instead of the Lyapunov-Perron method, the proof is fulfilled via the 
approach of conic invariance and incrementally exponential dichotomy 
and based on two conic differential inequalities. The construction of 
inertial manifold is made through an exponentially tracking integral 
manifold, in which the pullback is achieved also by the incremental 
dichotomy and a homotopy lemma. An illustration of the applications is 
shown by nonautonomous reaction-diffusion equations. 

1. Introduction 

It has been shown in recent two decades that for some nonlinear 
dissipative evolutionary equations in infinite dimensional Hilbert spaces 
there exist inertial manifolds, which by definition [7] is a finite-
dimensional, positively invariant, and Lipschitz continuous manifold 
attracting all trajectories at a uniform exponential rate. This discovery [7] 
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in 1988 had a strong impact on the studies of long-term and global 
dynamics of the solution semiflow of the underlying autonomous PDEs, 
most of them are semilinear parabolic equations and some of them are 
semilinear hyperbolic equations or even dispersive equations with a weak 
dissipation, cf. [6, 12, 17-19, 21-24] and more references therein. 

The existence of inertial manifolds (IM) implies a global reduction 
principle of the infinite dimensional nonlinear dynamics in the sense of 
asymptotical completeness. That is, every solution of the nonlinear 
evolutionary PDE is tracked at a fast exponential rate by a solution 
trajectory on the IM. The majority of the existence results in this regard 
have been proved by the Lyapunov-Perron method whose essence is to 
seek for a fixed point of a nonlinear integral mapping based on spectral 
gap conditions connecting the dissipative part of the diffusion operator 
and the growth of the nonlinearity, as seen in the aforementioned 
references. Few results such as in [10, 12, 16-19, 22-24] were established 
under weaker conditions or without requiring the spectral gap conditions. 

Although the original hope that IM will provide an approach to 
reducing the asymptotical studies of dissipative nonlinear PDEs to the 
finite-dimensional studies of ODEs in terms of inertial form has been 
partially justified, the restrictive spectral gap conditions and the lack of 
regularity information of the solutions on inertial manifolds pose 
challenges to its applications in a broader scope. 

In the past decade, generalization of this seemingly very attractive 
concept IM and its searching methodology have been arousing the 
interests of many researchers from different areas. New results keep 
emerging, though not many in comparison with another popular topic of 
global attractors for infinite dimensional dynamical systems, and new 
pursuits are committed in several directions. Here we just mention some 
of them. 

A comprehensive survey of the related topics until 1996 can be found 
in [17], in which the sharper estimates in a renovated proof of the 
Lyapunov-Perron mapping and more information about the flow of 
trajectories in the vicinity of an IM are acquired. The following 
information provides us with more insights toward IM. 
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First, an IM is characterized as a collection of all complete orbits 
defined for all ,ℜ∈t  whose growth rates when −∞→t  do not exceed an 

exponential rate .teσ  In this sense, one can roughly recognize an IM as a 
union of exponentially unstable manifolds. Second, an IM generates a 
continuous and invariant foliation of the entire phase space. Third, the 
normal hyperbolicity of an IM addressed in [17] and further generalized 
in [19, Chapter 7] turns out to imply the robustness of the IM with 
respect to small perturbations in the nonlinear structure of the original 
evolutionary PDE. 

In [10], the differentiabilty of the solution semiflow of nonlinear 
parabolic equations in pL  spaces is used to show the existence of IM. In 
that paper, the existence of IM was also proved for some parabolic 
equations on a compact Riemannian manifold by using the favorable 
properties of large spectral gaps for the Laplace-Beltrami operators. 

In [16], a mixture of analytical argument and geometric construction 
is exploited to prove the closure theorems on the existence of IM under 
the general conditions of approximations of nonlinearity. The 
applications of the obtained results to the Bubnov-Galerkin 
approximations of PDEs are interesting, provided the uniform Lipschitz 
condition on the inertial manifolds of the approximating equations is 
satisfied. 

Besides, approximate inertial manifolds (AIM) are important and 
useful substitutes for inertial manifolds in many cases, for which the 
existence of IM is unknown. The results on AIM also provide new 
algorithms to find numerically some global approximations of the 
solution trajectories for dissipative PDEs. 

Now let us come to the front of nonautonomous evolutionary PDEs. 
While the existence theory of global attractors has been substantially 
generalized from the autonomous dissipative equations to 
nonautonomous dissipative equations at the point level and at the orbit 
level in [2, 3, 13] and references therein, the investigation into the 
existence of inertial manifolds for nonautonomous dissipative PDEs 
seems remaining quite open to pursuits. In [4], the Lyapunov-Perron 
method is extended to treating the nonautonomous dissipative PDEs, in 
which a concept of nonautonomous inertial manifold is redefined to be a 
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collection of surfaces in the Hilbert phase space H, in the form 

( ){ }{ }.:,Graph ℜ∈⋅Φ== tttMM  

This layer structure that if ( ) ,0 susu M∈=  then  ( ) tutu M∈0,  causes 
the attraction less intuitive and more complicated. The attraction of such 
defined inertial manifold reads as follows: for any given bounded set B, 

{ ( ) ( )( ) } ( ).:,,,distsup 0000
tt

BtAD eCBuuttu −µ−≤∈θ M  

In [8, 9], local finite-dimensional integral manifolds with exponential 
tracking property are constructed for nonautonomous evolutionary 
equations in a Hilbert space, 

( ) ( ),,100 tuRuRuAdt
du ε+=+  

where the nonautonomous part is a small perturbation of the 
autonomous nonlinearity. The construction is again based on the 
Lyapunov-Perron-type mapping. The existence is established in a local 
vicinity of an equilibrium of the associated autonomous equation and 
then a global uniform approximation of solutions is achieved by pasting 
the locally exponential approximation segments together on the union of 
finitely many local integral manifolds. However, the assumption is that 
the solution semigroup of the associated autonomous equation has only 
finite equilibrium points. 

In [11] a new approach is presented to show the existence of inertial 
manifolds for abstract nonautonomous dynamical systems, which 
features a combination of the graph transformation mapping [12] and the 
use of squeezing properties. 

In this paper, we shall formulate the mild solutions of a nonlinear 
nonautonomous evolutionary equation 

( ) ( ),, tuFutAdt
du =+  

as a skew product semiflow in a product space and then prove the 
existence of an inertial manifold for that skew product semiflow under a 
spectral condition and by means of construction of an integral manifold 
with exponentially tracking property. 
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The method we use to prove the existence of inertial manifold of the 
skew product semiflow consists of conic invariance and incrementally 
exponential dichotomy, which is different from and more explicit than the 
Lyapunov-Perron method. This methodology can be viewed as a 
generalization of the results in [5], in which a geometrically explicit 
integral manifold construction was introduced to proving the existence of 
inertial manifolds for a large class of autonomous dissipative PDEs 
without abstract fixed-point argument, where the key leverage was the 
spectral blocking property of the semiflow. 

Here let us first recall the concept of skew product semiflow, see [19]. 
Consider a product space ,MWE ×=  where W is a Banach space (called 
state space) and M is a metric space (called base space). A semiflow 

( ) EE →ℜ×σφ=π +:,  is said to be a skew product semiflow on E if the 

two component mappings φ and σ have the form 

( )tmw ,,φ=φ   and  ( ),, tmσ=σ  

namely, σ does not depend on .Ww ∈  

Let H be a separable, real Hilbert space with inner-produce ⋅⋅,  and 

norm .⋅  Let V be a real Hilbert space, which is densely and compactly 

imbedded in H. The inner-product and norm of the space V will be 
indicated by the corresponding subscript. Consider an initial value 
problem of a nonautonomous nonlinear evolutionary equation in H, 

( ) ( ) ( ) ,,, 00 ututuFutAdt
du ==+  (1) 

where ( ) Hut ×ℜ∈00 ,  is arbitrarily given. 

We now introduce the following assumptions on the linear and 
nonlinear parts in (1): 

(H1) The linear operator function ( ) ( )HVtA ,: L→ℜ  is bounded and 

uniformly continuous on [ ).,0 ∞  For each ,ℜ∈t  ( ) ( ) ( ) HVADtA →=:  

is self-adjoint and positively definite: 

( ) ,0const >θ∃  such that ( ) VuuuutA ∈∀θ≥ ,, 2  and .ℜ∈t  
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Moreover, ( ) ,, ℜ∈ttA  generates a strongly continuous evolution operator 
( ),, τtU  ,∞<≤τ<−∞ t  on the space H. 

(H2) The nonlinear mapping HHF →ℜ×:  is a continuous 
mapping with the global and uniform Lipschitz property that there exists 
a constant 0>K  such that 

( ) ( ) HuuuuKtuFtuF ∈∀−≤− 212121 ,,,,  and .ℜ∈t  

Briefly, we write this as ( ).,Lip HHCF ℜ×∈  Assume that ( ) .0,0 =tF  

Remark 1. First, when ( ) AtA ≡  does not depend on t, the 
assumption (H1) reduces to that ( ) ( ) HVADA →=:  is a positive, self-
adjoint, linear operator with compact resolvent. We refer to [15] and [20] 
for the generation of strongly continuous evolution operators. The 
illustration is seen in Section 5. Second, concerning the assumption (H2), 
it may not be satisfied by the original underlying PDE, since usually the 
Lipschitz constant K depends on the bounded set where 1u  and 2u  sit in 
and, moreover, usually the nonlinearity may cause that F does not map 

ℜ×H  into H, but maps ℜ×αV  into H, where αV  is an interpolation 
space in between V and H and with higher regularity than H. However, 
the assumption (H2) here can be validated due to the following reason. If 
the underlying evolutionary PDE is dissipative, then there exists an 
absorbing set. For many semilinear parabolic equations, oftentimes one 
can use the bootstrap method to show that the absorbing property is valid 
in a well-suited Sobolev space such as ( ).Ω∞L  Thus one can modify the 
original equation by an appropriate truncation so that the assumption 
(H2) is satisfied by the modified equation which preserves the long-term 
dynamics of all the solutions of the original PDE. Again this will be 
illustrated in detail in Section 5 for some nonautonomous reaction 
diffusion equations. Alternatively speaking, (H2) can be validated within 
an absorbing set for dissipative equations. 

Under the assumptions (H1) and (H2), it is easy to confirm that the 
mild solution, cf. [15, 20], of the initial value problem (1) exists uniquely 
and globally in H for .0tt ≥  We shall denote this solution by 
( ) ( ),,; 00 tututu =  .0tt ≥  
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For any solution ( ),tu  It ∈  (some interval), of the equation (1), the 

graph 

( )( ){ }Itttu ∈:,  in the product space ℜ×= HE  

is called an integral curve. If an integral curve is defined for all ,ℜ∈t  it 

is called a globally defined integral curve. We take ℜ×= HE  to be the 
phase space, where ℜ stands for the time axis. 

Lemma 1. The mapping [ ) EE →∞×π ,0:  defined by 

( )( ) ( )( ),,,;,, 00 τ+ττ+=τπ tututu  (2) 

is a skew product semiflow on the space E. This skew product semiflow is 
briefly referred to as the SPS π of the underlying evolution equation (1). 

Proof. By definition, ( ),, σΦ=π  where ( ) tt +τ=τσ ,  is obviously a 

semiflow on the space ℜ, and ( ) ( )ττ+=τΦ ,;,, 00 ututu  satisfies the 

following properties. First, 

( )( ) ( ) .,;0,, 000 uuuu =ττ=τΦ  

Second, 

( ) ( )ττ++=+τΦ ,;,, 00 ustustu   (by the uniqueness)  

( )( )τ+ττ+τ++= tutustu ,,,; 0  

( )( )stutu ,,,; 0 τ+ττ+Φ=  

( )( ) ( )( ),,,,,,0 sttu τστΦΦ=  for any ( ) Eu ∈τ,0  and 

 .0, ≥st  

Third, by [19, Theorem 46.4], the mapping ( ) ( )ττ+=τΦ ,,,, 00 ututu  is 

continuous in ( ) [ ).,0,,0 ∞×∈τ Etu  Assembling together the two 

components Φ and σ, one can confirm that the three axioms of semiflow 
are all satisfied by this mapping ( )., σΦ=π  Here just check the cocycle 

property: 
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( ) ( ) ( )( )ststustu +τσ+τΦ=+τπ ,,,,,, 00  

( ) ( )( ) ( )( )( )ststtu ,,,,,,,,0 τσστστΦΦ=  

( ) ( )( )( )sttu ,,,,,0 τστΦπ=  

( )( )( ),,,,0 stu τππ=  

for any ( ) Eu ∈τ,0  and any t, .0≥s  

The official definition of inertial manifold is seen in [7] and [19, 
Chapter 8]: An inertial manifold for the solution semiflow of an 
evolutionary equation is a finite-dimensional, Lipschitz continuous, 
positively invariant manifold which attracts every trajectory at a uniform 
exponential rate. See also [4, 11, 12, 17] for this concept. Now let us 
introduce another concept tracking integral manifold, which will be 
briefly referred to as TIM. 

Definition 1. A set ℜ×=⊂ HEM  is called a tracking integral 
manifold for the skew product semiflow π defined in (2) generated by the 
underlying equation (1), if the following three conditions are satisfied: 

(i) The set M  entirely consists of some globally defined integral 
curves of (1). 

(ii) M  is a finite-dimensional, Lipschitz continuous manifold in E. 

(iii) There is a constant 0>β  such that for every solution 

( ),,; 00 tutu  ,0tt ≥  of (1) there is an integral curve ( )( ),, ttv  ,ℜ∈t  on 

M  with the tracking property 

( ) ( ) ( ) ( )( ),exp 00 ttuCtvtu −β−≤−  for ,0tt ≥  

where ( )00 tuu =  and ( )0uC  is a constant depending on the norm of .0u  

Lemma 2. Suppose that there exists a tracking integral manifold 
(TIM) M  for the skew product semiflow π defined by (2). Then this M  
must be an inertial manifold (IM) for the skew product semiflow π. 

Proof. We just check all the conditions for IM are satisfied by this 
TIM .M  By (ii) in Definition 1, M  is a finite-dimensional, Lipschitz 
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continuous manifold in E. M  is positively invariant because of (i) in 
Definition 1. The fact that M  attracts every trajectory of the skew 
product semiflow π at a uniform rate is implied by (iii) in Definition 1. In 
fact, the inequality in (iii) yields 

( )( )( ) ( ) ( ){ }EswstwtutuE ∈∀−τ++−τ+=τπ ,:inf,,,dist 0 M  

( ) ( ) ( )τ+−τ++τ+−τ+≤ tttvtu  

( ) ( )( ),exp0 τ−β−≤ tuC  for .τ≥t  

Therefore this TIM M turns out to be an IM for the SPS π in the space E. 

2. Conic Inequalities and Incremental Dichotomy 

Now we make another assumption which can also be called the 
spectral gap condition. 

(H3) There is an orthogonal decomposition of the Hilbert space H, 

( ) ( ) ( ) ( ) ( ) ,dim,, ∞<=⊥⊕= NHPHQHPHQHPH  

where P is the orthogonal projection from H onto ( ),HP  and PIQ H −=  

is the complementary orthogonal projection, such that there exist positive 
constants 0λ  and Λ, with 

( ) ,, 0λ≤pptA  for any ( ),HPp ∈  

( ) ,, Λ≥qqtA   for any ( ),HQq ∈  

and 
,20 K>λ−Λ  (3) 

where K is the uniform Lipschitz constant of the nonlinear mapping F in 
the assumption (H2). 

 The main result of this paper is stated in the following theorem. 

Theorem 1. Under the assumptions (H1), (H2) and (H3), there exists 
an inertial manifold E⊂M  for the skew product semiflow π generated 
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by the nonautonomous evolutionary equation, such that 

( ),Graph Ψ=M  

where ( ) ( )HQHP →ℜ×Ψ :  is a continuous mapping and is uniformly 

Lipschitz continuous in the component ( ).HPp ∈  

The main theorem will be proved in Sections 2, 3 and 4. We set 

( ) ( ) .,2
1,2

1
00 K−δ=µλ−Λ=δλ+Λ=λ  (4) 

Note that 0>µ  due to (3). In order to prove Theorem 1, we begin with 
any two solutions of the equation (1), 

( ) ( ) ( ) ,2,1, =+= itqtptu iii  

where ( ) ( )tPutp ii =  and ( ) ( ).tQutq ii =  The increment between the two 
solutions and their components are defined by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).,, 212121 tqtqtqtptptptututu −=−=−=  (5) 

The incremental components ( )tp  and ( )tq  satisfy the inequalities in the 
following lemma. 

Lemma 3. There exists a constant ,10 << b  such that for any two 
mild solutions ( )tu1  and ( )tu2  of the equation (1), the associated ( )ty  and 
( )tz  defined by 

( ) ( ( ) ( ) ) ,222 tetqbtpty λ−=  (6) 

( ) ( ( ) ( ) ) tetpbtqtz λ−= 222  (7) 

satisfy the inequalities 

( ) ( ) ( ) ,,2 τ≥τ≥ τ−µ teyty t  (8) 

( ) ( ) ( ) ,,2 τ≥τ≤ τ−µ− teztz t  (9) 
namely, 

( ( ) ( ) ) ( ( ) ( ) ) ( ) ( ) ,,22222 τ≥τ−τ≥− τ−λ−µ teqbptqbtp t  (10) 
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( ( ) ( ) ) ( ( ) ( ) ) ( ) ( ) ,,22222 τ≥τ−τ≤− τ−λ+µ− tepbqtpbtq t  (11) 

where 0>−Λ=λ+µ K  and ( ) .00 <+λ−=λ−µ K  We shall refer to 

(10) and (11) as the incremental dichotomic inequalities. 

Proof. Note that for any mild solutions iu  with initial data 
( ) ( )( ),tADVui =∈τ  ,2,1=i  they are actually strong solutions of the 

equation (1). Hence, ( )⋅p  and ( )⋅q  satisfy the following equations for 
almost every ,τ>t  

( ) ( ) ( )[ ],,, 21 tuFtuFPptAdt
dp −=+  (12) 

( ) ( ) ( )[ ].,, 21 tuFtuFQqtAdt
dq −=+  (13) 

For a constant b, ,10 << b  taking the inner-products of the equation 
(12) with ( )tp  and the equation (13) with ( ),tbq  respectively, then 
substracting the latter from the former, one can get 

( ( ) ( ) )22
2
1 tqbtpdt

d −  

( ) ( ) qqtAbpptA ,, +−=  

( ) ( )[ ] ( ) ( )[ ]tuFtuFQqbtuFtuFPp ,,,,,, 2121 −−−+  

( ) ( ) 21
22 uubqpKqbp −−−δ+λ+δ−λ−≥  

( ) ( ) ( )222222
2
1 qpqbpKqbp +++−δ+λ+δ−λ−≥  

( ) .1
2
1 22 qbbKbpK 



 





 +−δ+λ++δ−λ−≥  (14) 

Note that 

.11
2
1lim

1
=





 +

→ bb
b

 

Since (3) in (H3) implies ,K>δ  so that 

( ) ,122 >+−δ=−δ
K

KK
K

K  
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we can choose 10 << b  and close to 1, such that 

.2121
2
1

KK
K

bb µ+=−δ≤




 +  (15) 

Fix this constant b in (15). Then we find that 

,21
2
1 KK

KKbbK +δ−λ=




 −δ−δ+λ≥





 +−δ+λ  

which is substituted into the last inequality in (14) to yield 

( ( ) ( ) ) ( ) ( ( ) ( ) ).2
1 2222 tqbtpKtqbtpdt

d −+δ−λ−≥−  (16) 

According to (6), we see that ( )ty  satisfies the first conic differential 
inequality 

.2 ydt
dy µ≥  (17) 

Similarly one can deduce that 

( ( ) ( ) )22
2
1 tpbtqdt

d −  

( ) ( ) 22 pbq δ−λ+δ+λ−≤  

( ( ) )222 122
1 pbqK +++  

( ) .1
2
1 22 pbbKbqK 



 





 ++δ−λ+−δ+λ−=  (18) 

With the same chosen b which satisfies (15), one has 

,1
2
1 KbbK −δ+λ≤





 ++δ−λ  

so that 

( ( ) ( ) ) ( ) ( ( ) ( ) ).2
1 2222 tpbtqKtpbtqdt

d −−δ+λ−≤−  (19) 

According to (7), ( )tz  satisfies the second conic differential inequality 

.2 zdt
dz µ−≤  (20) 
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It is easy to solve these two differential inequalities (17) and (20) to 
obtain the incremental dichotomic inequalities (10) and (11). Finally, 
since the space V is densely imbedded in H, by the continuous 
dependence of mild solutions on initial data, we can conclude that the 
inequalities (10) and (11) hold for the incremental components of any two 
mild solutions of the equation (1). 

Remark 2. Here is the comment on the implication of the two 
incremental dichotomic inequalities (10) and (11). By the first inequality 
(10), the conic sector 

{ }qbpHqpS ≤∈⊕=− :  

is negatively invariant. If ( ) ( ) ( ) ( ) ( )tqtptututu +=−= 21  is inside the 

sector −S  for some t, then for ,t≤τ  it holds that ( ) .−∈τ Su  By the 

second inequality (11), on the other hand, the conic sector 

{ }pbqHqpS ≤∈⊕=+ :  

is positively invariant. If ( ) ( ) ( ) ( ) ( )τ+τ=τ−τ=τ qpuuu 21  is inside the 

sector +S  for some τ , then for ,τ≥t  it holds that ( ) .+∈ Stu  

We can interplay the inequalities (10) and (11) to derive more useful 
properties of the incremental components ( )tp  and ( )tq  of any pair of 

solutions of (1). 

Lemma 4. Let ( ) ( ) ( )tqtptu +=  be given as in (5). If ( ) 0=Tp  for 

some ,ℜ∈T  then for any t satisfying ,Tt ≤≤τ  the following properties 
are satisfied, 

( ) ( ) ,tqbtp ≤  (21) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),
1

1
2

τ−λ+µ−−λ+µ τ
−

≤≤ ttT eq
b

tqeTq  (22) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ).1
1

1
1 τ−λ+µ−τ−λ+µ− τ

−
≤τ

−
≤ tt eubeq

b
tu  (23) 
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Proof. Since ( ) 0=Tp  and ,Tt ≤≤τ  we get (21) directly from the 
inequality (10). Then from the inequality (11), in which letting Tt =  and 

,t=τ  we obtain 

( ) ( ) ( ) ( ) ( ) ( ) .22222 tqtpbtqeTq tT ≤−≤−λ+µ  

So the first inequality in (22) is shown. In order to show the second 
inequality in (22), we see from (6) and (7) that 

( ) ( ) ( ) ( ) .1 222 tetqbtztby λ−=+  

It follows that 

( ) ( ) ( )( ) ( ) tt etz
b

etztby
b

tq λ−λ−

−
≤+

−
= 2

2
2

2
2

1
1

1
1  

( ( ) ( ) ),
1

1 22
2 tpbtq

b
−

−
=  

because (21) implies that ( ) 0≤ty  for .Tt ≤≤τ  Now using (11), we 
obtain 

( ) ( ( ) ( ) ) ( ) ( )τ−λ+µ−τ−τ
−

≤ tepbq
b

tq 222
2

2

1
1  

( ) ( ) ( ).
1

1 22
2

τ−λ+µ−τ
−

≤ teq
b

 

Thus the second inequality in (22) is valid. Finally, from (21) and (22) it 
follows that 

( ) ( ) ( ) ( ) ( ) 2222 1 tqbtqtptu +≤+=  

( ) ( ) ( ),1
1 22 τ−λ+µ−τ
−

≤ teqb  

and (23) is shown.  

Lemma 5. Let ( ) ( ) ( )tqtptu +=  be given as in (5). If ( ) 0=τq  for 

some ,ℜ∈τ  then for any ,τ≥≥ tT  the following properties are satisfied, 

( ) ( ) ,tpbtq ≤  (24) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ),
1

1
2

tTt eTp
b

tpep −λ−µ−τ−λ−µ

−
≤≤τ  (25) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ).
1
1

1
1 tTtT eTu

b
eTp

b
tu −λ−µ−−λ−µ−

−
≤

−
≤  (26) 

Proof. Since ( ) 0=τq  and ,τ≥t  we can get (24) directly from (11). 

By (10), we can get 

( ) ( ) ( ) ( ) ( ) ( ),22222 τ−λ−µτ≥−≥ teptqbtptp  

from which the first inequality of (25) follows. In order to show the second 
inequality of (25), we find that 

( ) ( ) ( ) ( ) tetpbtbzty λ−=+ 2221  

and then by (10) we have 

( ) ( ) ( )( ) tetbzty
b

tp λ−+
−

= 2
2

2

1
1  (where ( ) ( ) ( ) )02 ≤τ≤ τ−µ− teztz  

( ) ( ( ) ( ) )22
2

2
2 1

1
1

1 tqbtp
b

ety
b

t −
−

=
−

≤ λ−  

( ( ) ( ) ) ( ) ( )tTeTqbTp
b

−λ−µ−−
−

≤ 222
21

1  

( ) ( ) ( ).
1

1 22
2

tTeTp
b

−λ−µ−

−
≤  

This shows that the second inequality of (25) is valid. Finally, from (24) 
and (25) it follows that 

( ) ( ) ( ) ( ) ( ) 2222 1 tpbtqtptu +≤+=  

( ) ( ) ( ),1
1 22 tTeTpb

−λ−µ−
−

≤  

so (26) is proved. 
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3. Construction of Inertial Manifold 

In this section, we shall construct a tracking integral manifold in the 
phase space ,ℜ×= HE  which by Lemma 2 must be an inertial manifold 
for the skew product semiflow π. 

Definition 2. Define a set in the space E to be 

{ ( )( ) ,,curvesintegraldefinedglobally Ettu ∈=M  

( ) }.suplim ∞<|ℜ∈ λ

−∞→
tuet t

t
 (27) 

Note that ( ) 0,0 =tF  in the assumption (H2) implies that the set M  is 
nonempty. 

The first objective is to show that ( )Ψ= GraphM  for some Lipschitz 
mapping ( ) ( ).: HQHP →ℜ×Ψ  

Lemma 6. Let ( )( ),, ttui  ,,2,1 ℜ∈= ti  be any two integral curves on 
the set M  defined by (27). Let ( ) ( )tPutp ii =  and ( ) ( ),tQutq ii =  .2,1=i  
Then 

( ) ( ) ( ) ( ) .2121 tptpbtqtq −≤−  (28) 

Proof. Since we have 
( ) ,suplim ∞<λ

−∞→
tue t

t
 

it follows that, by (7), 

( ) ( ( ) ( ) ( ) ( ) ) tetptpbtqtqtz λ−+−≤ 22
21

2
21  

( ) ( ) ( ) tetutub λ−+≤ 22
211  

( ) ( ( ) ( ) ) tetutub λ++≤ 22
2

2
112  

and consequently 
( ) .suplim ∞<

−∞→
tz

t
 

Since ( )tz  satisfies (9), in which we can let ,−∞→τ  it is valid that 

( ) ( ) ( ) .0suplim 2 =τ≤ τ−µ−

−∞→τ

teztz  

Therefore (28) is proved. 
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This lemma shows that the increment between any two integral 
curves on the set M  is in the cylindrical sector .ℜ×+S  Based on this 
property, we show that the set M  can be expressed as the graph of a 
continuous mapping. Let the orthogonal projection from E onto its finite-
dimensional subspace ( ) ℜ×HP  be denoted by Proj. 

Lemma 7. The projection ( ) ℜ×→ HPProj M:  is a one-to-one 

mapping. There exists a continuous mapping ( ) ( )( )ℜ×⊂ΨΨ HPDom:  
( )HQ→  such that 

( ) ( ) ,,, 2121 ppbtptp −≤Ψ−Ψ  (29) 

and that the set M  defined in (27) is the graph of Ψ, 

( ).Graph Ψ=M  (30) 
Moreover, 

( ) 0,0 =Ψ t  and ( ) ., pbtp ≤Ψ  

Proof. Note that any point Ew ∈  can be written as 
( ) ( ),,,, tqptqpw =⊕=  where the two components Pwp =  and 

.Qwq =  If there are two points ( ),,, tiii tqpw =  ,2,1=i  on the set M  
such that ( ) ( ),21 wProjwProj =  then one has 21 pp =  and .21 tt =  

By the construction of M , there must be two integral curves 
( )( ),, ttui  2,1=i  on M  such that ( ) ,iii qptu ⊕=  ,2,1=i  and 

.21 ttt ==  Then (28) implies that .21 qq =  Thus it is proved that 
( ) ℜ×→ HPProj M:  is one-to-one. 

As a consequence, there exists a mapping 

( ) ( ),Dom:1 HQProjQ →Ψ=Ψ −  where ( ) ( ),Dom MProj=Ψ  

such that (30) holds. Then (28) and (30) imply (29). Moreover, by the 
continuity of the integral curves and (29), it follows that ( )tp,Ψ  is a 
continuous mapping with respect to ( )tp,  and it is uniformly continuous 
in p-component. Since ( ) 0=tu  for all ℜ∈t  is an equilibrium solution, 

we have ( ) 0,0 =Ψ t  for .ℜ∈t  As a consequence, (29) yields 

( ) ., pbtp ≤Ψ  The proof is completed. 
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The next objective is to show that the mapping 
( ) ℜ×→ HPProj M:  is a surjective mapping. That is, 

( ) ( ) ( ) ,Dom ℜ×==Ψ HPProj M  

and Ψ is a mapping defined on the entire subspace ( ) .ℜ×HP  This will be 

the main result of this section. 

Theorem 2. For any ( ) ( ) ,, ℜ×∈τ HPp  there exists a solution ( ),tu  

,ℜ∈t  of the equation (1), which satisfies the conditions 

(i) ( ) ,pPu =τ  and 

 (ii) ( ) .suplim ∞<λ
−∞→ tue t

t  

Consequently it holds that 

( ) ( ) .ℜ×= HPProj M  

The proof of Theorem 2 goes through the following several lemmas in 
this section. First, let us denote the nonlinear evolution operator 
associated with the mild solution of the equation (1) by ( ),, τtS  

.∞<≤τ<−∞ t  It is defined by 

( ) ( ).,;, 00 τ=τ utuutS  

Lemma 8. Suppose that a continuous mapping [ ] nn T ℜ→×ℜη ,0:  

satisfies the condition  

( ) ,0, xx =η  for any .nx ℜ∈  

Let rB  be the open ball in nℜ  of radius r and centered at the origin. If a 

point rBp ∈  satisfies 

( )tBp r ,∂η∉  for any [ ],,0 Tt ∈  

then one has ( )., TBp rη∈  

Proof. This homotopy result can be shown as follows. Define 

[ ] ( ){ }.,:,0 tBpTtJ rη∈∈=  
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By the given conditions, one can show that J is a nonempty, open, and 
closed subset of the interval [ ].,0 T  Thus [ ]TJ ,0=  so that 

( )., TBp rη∈  Related results can be found in [1]. 

The next lemma is a key result in the indispensable pullback 
argument for proving the existence of inertial manifolds. A major 
difference between the Lyapunov-Perron method and the approach taken 
in this work lies in the pullback processing. The pullback in the 
Lyapunov-Perron method is analytically reflected in the nonlinear 
Lyapunov-Perron integral mapping over the time interval ( ],0,−∞  while 
here the pullback can be seen more explicitly in the orbit geometry. 

Lemma 9. For any given ( ) ( ) ℜ×∈τ HPp ,0  and any given ,0>T  

there exists a unique ( )HPp ∈∗  such that 

( ( ) ) ,, 0ppTSP =−ττ ∗  (31) 

and 

.0
Tepp λ∗ ≤  (32) 

Proof. Here λ is defined in (4). Define a mapping ( ) ℜ×η HP:  

( )HP→  by 

( ) ( ( ) ( )) ( ),,, tTT epeTtTSPtp −λ−λ−τ+−τ=η  (33) 

where ( )HPpe T ∈λ  and .0≥t  By the strong continuity of the evolution 

operator ( ),, ⋅⋅S  it is seen that this mapping η is continuous in ( )., tp  
Below we can verify that the conditions in Lemma 8 are all satisfied. 
First, for any ( ),HPp ∈  we have 

( ) ( ( ) ( )) ( ) .,0, pepeepeTTSPp TTTT ==−τ−τ=η λ−λλ−λ  

Second, using the first inequality in (25), which is valid for the 
incremental components and here we can take one solution to be the 
trivial solution (the zero equilibrium), we get 

( ) ( ) ( ) ,, peepetp ttTT ≥≥η λ−µ−λ−λ  for any [ ].,0 Tt ∈  
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Thus for any given ( ),0 HPp ∈  there is a finite number 0>r  such that 
.0 rp <  The above inequality implies that 

( )tBp r ,0 ∂η∉  for any [ ],,0 Tt ∈  

since otherwise we would have ,00 prp >≥  which is a 
contradiction. 

Therefore, by Lemma 8, we can claim that ( ).,0 TBp rη∈  It means 
that there is a point ( )HPBp r ⊂∈  such that 

( ) ( ( ) ( )) .,, 0ppeTSPTp T =−ττ=η λ  

Let .Tpep λ∗ =  The above equality means that (31) is proved. Moreover 
we have 

,TT reep λλ∗ <=  for any .0pr >  

Let 0pr →  in the above inequality. Then we obtain (32). 

Finally we can show that such a point ( )HPp ∈∗  in (31) is unique. 
Indeed this follows directly from (21), because if there are ,1p ( )HPp ∈2   
satisfying 

( )( ) ( )( ),,, 201 pTSPppTSP −ττ==−ττ  
then 

.0021 =≤− bpp  

The proof is completed. 

Definition 3. For any given ( ) ( ) ℜ×∈τ HPp ,0  and ,0>T  define 

the pullback point of 0p  from τ to T−τ  to be 

( ) ,0
∗

−τ−τ == ppuu TT  (34) 

where ( )HPp ∈∗  is the unique point in (31). Moreover, for ,0 21 TT <<   
define 

( ) ., 2
1
2 21 T

T
T uTTSu −τ
−τ
−τ −τ−τ=  (35) 
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Lemma 10. For any ( ) ( ) ℜ×∈τ HPp ,0  and any ,012 ≥≥ TT  it 

holds that 

,1
1 11

2 0
TT

T epbPu λ−τ
−τ −

≤  (36) 

.1
11

2 0
TT

T epb
bQu λ−τ

−τ −
≤  (37) 

Proof. Set 

( ) ( ) 111 , TuTtStu −τ−τ=  and  ( ) ( ) ., 222 TuTtStu −τ−τ=   

These are two solutions of the equation (1) for .1Tt −τ≥  By (35), 

( ) ., 1
212

T
TuTtSu −τ

−τ−τ=  

According to Definition 3, one has 

( ) ( ) 021 pPuPu =τ=τ  and ( ) ( )( ) .021 =τ−τ uuP   

By Lemma 4 and (21), we have 

,1
21

1
21

1
2

T
TT

T
TT

T
T QubQuQubPuPu −τ

−τ−τ
−τ
−τ−τ

−τ
−τ =−≤−  (38) 

since .01 =−τ TQu  Furthermore, by Lemma 5 and (24), we have 

( ) ,121
2

1
2

TPubPubQu T
T

T
T −τ=≤ −τ

−τ
−τ
−τ  (39) 

since ( ) ,002 =−−τ QQu T  where ( )0Q  stands for the q-component of the 

trivial solution. Then from (38) and (39) we obtain 

.1
21

1
21

1
2

T
TT

T
TT

T
T PubPuPuPuPu −τ

−τ−τ
−τ
−τ−τ

−τ
−τ ≤−≤−  

By (32), the above inequality implies that 

1
11

1
2 01

1
1

1
1

1 T
TT

T
T epbubPubPu λ

−τ−τ
−τ
−τ −

≤
−

=
−

≤   

and 

.1
11

2
1
2 0

TT
T

T
T epb

bPubQu λ−τ
−τ

−τ
−τ −

≤≤  

Therefore, (36) and (37) are validated. 
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Lemma 11. For any given ( ) ( ) ℜ×∈τ HPp ,0  and ,0>T  define a 

function ( )tu  by 

( )
( )

( ) ( )





τ<−τ

τ≥τ
=

−τ∞→ .,,lim

,,,

0

0

tpuTtS

tptS
tu

TT
 (40) 

Then the limit in (40) exists in H for every τ<t  and this ( )tu  is well-

defined for all .ℜ∈t  

Proof. Fix a ( ).,0 τ−∞∈t  We shall prove that the function ( )Tw   

defined by 

( ) ( ) ( ) [ ),,,, 000 ∞−τ∈−τ= −τ tTpuTtSTw T  (41) 

has the Cauchy property as .∞→T  For any ,012 tTT −τ≥>  as in the 

proof of Lemma 10, let us consider ( ) ( ) 111 , TuTtStu −τ−τ=  and 

( ) ( ) ., 222 TuTtStu −τ−τ=  Note that 

( ) ( ) ( ) ( ),, 022011 tuTwtuTw ==  

and 

( ) ( ) ,, 1
212

T
TuTtStu −τ

−τ−τ=  for .1Tt −τ≥   

Since ( ) ( )( ) ,00021 =−=τ−τ ppuuP  by Lemma 4 and (23), noting that 

,210 TTt −τ>−τ≥>τ  

we have 

( ) ( ) ( ) ( )010212 tutuTwTw −=−  

( ) ( ) ( ) ( )( )1012111
1 TteTQuTQu

b
−τ−λ+µ−−τ−−τ

−
≤  

( ) ( ) ( )( )10121
1 TteTQu

b
−τ−λ+µ−−τ

−
=  

( ) ( ),
1
1 101

2
TtT

T eQu
b

+τ−λ+µ−−τ
−τ−

=  (42) 
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since ( ) .011 =−τ TQu  Now substituting (37) into (42), we get 

( ) ( ) ( ) ( )101012 11
1 TtT eepb

b
b

TwTw +τ−λ+µ−λ
−−

≤−  

( )
( ) ( ) 10031

Tt eep
b

b µ−−τλ+µ

−
=  

( )
( ) ( ) { },

1
210 ,min

03
TTt eep

b

b µ−−τλ+µ

−
=  (43) 

in which ( ),0 HPp ∈  ,ℜ∈τ  and ( )τ<0t  are relatively fixed. By (41) and 
(43), we find that for any ,0>ε  there is a ( ) ,000 >ε= TT  such that 

.0 ε<µ− Te  

Then we have 

( ) ( ) ( ) ( ) ( ) ( ) ,,, 01002012 12 ε<−τ−−τ=− −τ−τ CpuTtSpuTtSTwTw TT  

whenever both 1T  and ( ),02 ε≥ TT  in which the constant C depends on 
,0p  τ and ,0t   

( )
( ) ( ).

1
003

tep
b

bC −τλ+µ

−
=  

The above inequality shows that ( ),Tw  [ ),,0 ∞−τ∈ tT  has the Cauchy 
property as .∞→T   This implies the limit when τ<t  in (40) exists in H 
and ( )tu  in (40) is well-defined for all .ℜ∈t   

Lemma 12. Let ( ),tu  ,ℜ∈t  be the function defined by (40). Then 

( ) .suplim ∞<λ

−∞→
tue t

t
 (44) 

Proof. The inequalities (36) and (37) in Lemma 10 imply 

( ) ( ) 2122, t
T

t
TT QuPuuTtS −τ

−τ
−τ
−τ−τ +≤−τ−τ  

,1
1

0
tepb

b λ
−
+≤  for .0≥≥ tT   
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Therefore, the function ( )tu  in (40) satisfies 

( ) ( ) ,1
1,lim 0

t
TT

epb
buTtStu λ

−τ
−∞→ −

+≤−τ−τ=−τ  (45) 

for all .0>t  Replacing t−τ  in (45) by t, we obtain 

( ) ( ) ,1
1

1
1

00
λτ−τλλλ

−
+=

−
+≤ epb

bepb
betue ttt  for ,−∞>>τ t  

where ( ) λτ−−+ epbb 0
111  is a constant depending only on 0p  and τ. 

Thus (44) is proved. 

Lemma 13. For any given ( ) ( ) ,,0 ℜ×∈τ HPp  there exists a solution 

( ),tu  ,ℜ∈t  of the equation (1) with the properties 

(i)  ( ) ,0pPu =τ  and 

(ii) ( ) .suplim ∞<λ
−∞→ tue t

t   

Proof. We claim that ( ),tu  ,ℜ∈t  defined by (40) is such a solution 
of (1). By (40) and Lemma 12, it is obvious that the properties (i) and (ii) 
are satisfied by this ( ).⋅u  It suffices to prove that this u is a mild solution 

of the equation (1). That ( )tu  is a solution for τ≥t  is clear. Consider 
.τ≤t  Let .012 ≥≥ tt  The strong continuity of the evolution operator of 

the mild solutions implies that 

( ) ( ) ( ) ( ) TT
uTtSttStuttS −τ∞→

−τ−τ−τ−τ=−τ−τ−τ ,lim,, 221221  

( ) ( ) TT
uTtSttS −τ∞→

−τ−τ−τ−τ= ,,lim 221  

( ) ( ).,lim 11 tuuTtS TT
−τ=−τ−τ= −τ∞→

 (46) 

In (46) we can replace 1t−τ  by any t and replace 2t−τ  by any  ,0t  with 

.0 τ≤≤ tt  It shows that this ( )tu  is a solution of (1) for .τ≤t  

Proof of Theorem 2. By identifying the point p in Theorem 2 with 
0p  in Lemma 13, the first statement in Theorem 2 has already been 

proved by Lemma 13. Consequently, it holds that 

( ) ( ).MProjHP ⊂ℜ×  
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On the other hand, by the original definition, ( ) ( ) .ℜ×⊂ HPProj M  Thus 

the statement 

( ) ( ) ℜ×= HPProj M  

of Theorem 2 is proved. 

4. The Exponential Tracking Property 

It has been shown in Lemma 7 and Theorem 2 that the set M  
defined by (27) is characterized by (30), 

( ),Graph Ψ=M  

where the domain of Ψ is the entire subspace ( ) ,ℜ×HP  and 

( ) ( )HQHP →ℜ×Ψ :  is a continuous mapping with the Lipschitz 

continuity (29). 

In view of Definitions 1 and 2, these results show that the first two 
conditions of a tracking integral manifold (TIM) are satisfied by this 
manifold ( ).Graph Ψ=M  In this section we shall prove that the third 

condition in Definition 1, namely, the exponential tracking property, is 
also satisfied by this manifold .M  Therefore, M  turns out to be a TIM 
and, by Lemma 2, an inertial manifold as well for the skew product 
semiflow π associated with the nonautonomous equation (1). 

Lemma 14. Suppose that ( ) ,,, ϕ+ξ=∈τ ww M  where ,Pw=ξ  

,Qw=ϕ  and ,Hqpu ∈+=  where ,Pup =  ,Quq =  such that 

.22 ϕ−≤ξ− qbp  (47) 

Then it holds that 

( ) .1
12 ub

bwuQ
−
+≤−  (48) 

Proof. Since ( ) ( ) ,,, M∈τϕ+ξ=τw  by Lemma 7 and Theorem 2, we 

have 

( ) ., ξ≤τξΨ=ϕ b  
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The condition (47) together with the above inequality implies that 

.ξ+≤ϕ−≤ξ−≤−ξ bqbqbpp  

Hence we get 
( ) qbpb +≤ξ−1  

and 

( ).1 qbpb
b +
−

≤ϕ  

It follows that 

( ) ( )qbpb
bqqqwuQ +
−

+≤ϕ+≤ϕ−=− 1  

qbpb
b

−
+

−
≤ 1

1
1  

( ) .1
121

12 2122 ub
bqpb

b
−
+=+

−
+≤  

Therefore, (48) is valid. 

Lemma 15. For any mild solution ( ) ( ) ,, 0utStu τ=  ,τ≥t  of the 

equation (1), there exists an integral curve ( )( ),, ttv  ,ℜ∈t  on the 

manifold ,M  such that 

( ) ( ) ( ) ( ) ,,0 τ≥≤− τ−λ+µ− teuCtvtu t  (49) 

where ( ),0 τ= uu  C is a uniform constant, µ and λ are the constants 

specified in (4). 

Proof. For any given positive integer ...,,2,1=n  since ( ) =MProj  
( ) ,ℜ×HP  there is an integral curve ( )( ),,: ttunnΓ  ,ℜ∈t  on the 

manifold M  such that 
( ) ( ),nPunPun +τ=+τ  (50) 

because 
( )( ) ( ) ., ℜ×∈+τ+τ HPnnPu  

By Lemma 4 and (23), the relation (50) implies that 

( ) ( ) ( ) ( ) ( ) ( ) [ ].,for,
1
1 nteQuQu

b
tutu t

nn +ττ∈τ−τ
−

≤− τ−λ+µ−  (51) 
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On the other hand, (21) shows that 

( ) ( ) ( ) ( ) [ ].,,22 nttQutQubtPutPu nn +ττ∈−≤−  (52) 

Now we can exploit Lemma 14, where the condition (47) is satisfied due 
to (52), to infer that 

  ( ) ( ) ( ) .1
12 τ
−
+≤τ−τ ub

bQuQu n  (53) 

Substituting (53) into (51), we obtain 

( ) ( )
( )

( ) ( ),
1
12 03

τ−λ+µ−

−

+≤− t
n eu

b

btutu  for [ ]., nt +ττ∈  (54) 

Taking τ=t  in (54), we find that ( ){ }…,2,1: =τ nun  is a bounded 

sequence in H, because for all positive integers n, 

( ) ( ) ,1 00 uCun +≤τ  (55) 

where the constant ( ) ( ) .112 3
0 bbC −+=  Since M  is a finite-

dimensional manifold, the sequence ( ){ }τnu  is a precompact set in H. 

Thus there exists a convergent subsequence { ( ) }...,2,1: =τ ku kn  such 

that 

( ) ,lim 0vu knk
=τ

∞→
 where ( ) .,0 M∈τv  (56) 

In fact, denoting ( )τnPu  by ( )τnp  and ( )τnQu  by ( ),τnq  since ( ){ }τnp  is a 

bounded sequence in ( ),HP  there exists a convergent subsequence 

{ ( )}τknp  such that 

( ) ( ).lim 0 HPpp knk
∈=τ

∞→
 

Then the continuity of the mapping Ψ and (29) implies that 

( ) ( ) ( ( ) ) ( ) ( ).,,limlimlim 0 HQppqQu kkk nknknk
∈τΨ=ττΨ=τ=τ

∞→∞→∞→
 

Hence, the limit in (56) exists and ( ) ( )( ) .,,, 000 M∈ττΨ+=τ ppv  
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Now consider the integral curve ( )( ),,: ttvΓ  ,ℜ∈t  on the manifold  
,M  which passes through ( ).,0 τv  We have ( ) ( ) ,, 0vtStv τ=  for .τ≥t  By 

the fact that M  consists of globally defined integral curves only and that 
( ) ,,0 M∈τv  such an integral curve Γ exists on .M  The continuity of the 

evolution operator of the solutions ( )τ,tS  implies that 

( ) ( ) ( ) ( )ττ=τ=
∞→ knk

utSvtStv lim,, 0  

( ) ( ) ( ),lim,lim tuutS kk nknk ∞→∞→
=ττ=  for any .τ≥t  (57) 

Finally, for an arbitrarily fixed ,τ≥t  there is a positive integer 0k  
depending on t, such that 

  ,τ−≥ tnk   for .0kk ≥  

It follows from (54) that, for this t, 

( ) ( ) ( ) ( ),00
τ−λ+µ−≤− t

n euCtutu k  for ,0kk ≥  (58) 

because [ ],, knt +ττ∈  where 0C  is the same constant specified in (55). 
Letting ∞→k  in (58), and passing to the limit, we can use (57) to 
confirm 

( ) ( ) ( ) ( ).00
τ−λ+µ−≤− teuCtvtu  

Note that here ( )τ≥t  is arbitrary. The exponential tracking inequality 
(49) is proved. 

Now we can finish the proof of the main result Theorem 1. 

Proof of Theorem 1. We have already shown through Lemma 7 and 
Theorem 2 that the set M  defined by (27) can be expressed as the graph 
of a mapping Ψ which possesses the properties claimed in Theorem 1. 
Thus we have shown that this manifold M  satisfies the first two 
conditions described in Definition 2 for a tracking integral manifold. 

Then Lemma 15 shows that the third condition for a tracking integral 
manifold is also satisfied by this manifold .M  In fact (49) shows that the 
tracking property in Definition 1, 

( ) ( ) ( ) ( )( ),exp 00 ttuCtvtu −β−≤−  for ,0tt ≥  
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is satisfied with 

( ) .02
1

0 >λ+Λ>−Λ=λ+µ=β K  

Therefore, M  is a tracking integral manifold for the skew product 
semiflow π in the space E. According to Lemma 2, this M  is also an 
inertial manifold. The proof of Theorem 1 is completed. 

We can generalize Theorem 1 by dropping the assumption 
( ) 0,0 =tF  in (H2). Instead we make an additional assumption as 

follows. 

(H4) There is at least one globally defined mild solution ( ),tu∗  ,R∈t  
of the equation (1), which satisfies 

( ) ,suplim ∞<∗λ

−∞→
tue t

t
 

where λ is the same as specified in (4). 

Theorem 3. Under the assumptions (H1), (H2) but without 
( ) ,0,0 =tF  (H3), and (H4), the conclusion of Theorem 1 on the existence 

and characterization of an inertial manifold for the skew product 
semiflow π remains valid. 

Proof. Define ( ) ( ) ( ).tututw ∗−=  Then the original nonautonomous 
equation (1) and the initial value condition are transformed to 

( ) ( ),, twRwtAdt
dw =+  

( ) ,00 wtw =  (59) 
where 

( ) ( ( ) ) ( ( ) ),,,, ttuFttuwFtwR ∗∗ −+=  

( ).000 tuuw ∗−=  (60) 

It is obvious that the new nonlinear term ( )twR ,  satisfies the same 
global and uniform Lipschitz continuous property that 

( ) ( ) ,,, 2121 wwKtwRtwR −≤−  
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with the same Lipschitz constant K, for any ,1w Hw ∈2  and for any 
.ℜ∈t  Since ( ) ,0,0 =tR  the original assumption (H2) is satisfied by (59) 

with (60). 

Then the assumption (H3) implies that the set wM  constructed in 
(27) for the new equation (59) with respect to ( )⋅w  is nonempty, and all 
the steps through Section 3 and Section 4 remain valid. Therefore, 
Theorem 1 can be applied to the corresponding skew product semiflow 

wπ  associated with the modified nonautonomous equation (59). This set 

wM  turns out to be a TIM and an inertial manifold for .wπ  Finally, the 
following manifold 

{( ( ) ( ) ) ( )( ) }wttwtttutw MM ∈|ℜ∈+= ∗ ,all,,  

is a TIM and an inertial manifold for the skew product semiflow π of the 
original equation (1). The detail of verification is omitted. 

Remark 3. We emphasize the following facts which feature this 
work. 

(R1) All the steps in Section 3 and Section 4 in confirming that the 
constructed M  is an integral tracking manifold follow directly from the 
two conic inequalities (10) and (11) as well as the consequential 
inequalities stated in Lemma 4 and Lemma 5. 

(R2) The only two places in the entire proof of the main result 
Theorem 1 where the spectral gap condition (3) is needed are in the proof 
of Lemma 3. One place is the acquisition of a constant ( )1,0∈b  in the 
conic inequalities. The other place is the assertion that the two 
exponential constants 

0>−Λ=λ+µ K  
and 

( ) 00 <+λ−=λ−µ K  

in the incremental dichotomy. Unlike the Lyapunov-Perron method 
where the spectral gap conditions are needed in several different stages 
of the proof, this observation sharply focuses the role played by the 
spectral gap condition in the existence proof of inertial manifolds. 
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(R3) Another advantage of this approach is the pullback argument, 
which becomes more geometrically motivated in this work than in the 
fixed point search of the Lyapunov-Perron mapping of an integral form. 

The two common pillars in any typical approach to proving the 
existence of inertial manifolds are the incremental analysis of trajectories 
because of the nature of this topic concerning the attraction among 
trajectories and the pullback analysis due to that an inertial manifold 
must contain all the unstable portion of the underlying flow or semiflow. 
The approach we take in this work indicates that the conic invariance 
reflected by the incremental analysis, which is related to the squeezing 
property [5, 6, 11, 17] but seems more general, actually dominates the 
pullback analysis. This insight is useful in dealing with further 
investigation problems. 

5. Applications to Reaction-Diffusion Equations 

In this section, we shall illustrate the applications of the main result 
of this work to nonautonomous reaction-diffusion equations. Let  

nℜ⊂Ω  be a bounded domain such that the boundary Ω∂  is locally 

Lipschitz continuous and Ω lies locally on one side of .Ω∂  Consider the 
following initial-boundary value problem of a nonautonomous reaction-
diffusion equation, 

( ) ( ) ,,,0, Ω∈τ≥=++
∂
∂ xttufutAt
u  

,,,0 Ω∂∈τ≥= xtu  

( ) ( ) ( ),, 2
0 Ω=∈=τ LHxuxu  (61) 

where ℜ∈τ  and Hu ∈0  are arbitrarily given. In this section, the 
inner-product and norm of ( )Ω= 2LH  will be denoted by ⋅⋅,  and ,⋅  
respectively. 

The linear partial differential operator ( )tA  is given by 

( ) ( ) ( ) ( )∑
=

ℜ×Ω∈+
∂
∂+∆−=

n

i i
i txutxcx

utbuutA
1

,,,,  (62) 

where ∆ is the n-dimensional Laplacian operator, the functions ( ),tbi  
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,...,,2,1 ni =  are bounded and uniformly continuous functions on ,ℜ  
and the function ( )txc ,  is a nonnegative, bounded, and uniformly 
continuous function on .ℜ×Ω  

Assume that the nonlinear function ( )tsf ,  satisfies the following 

conditions. ℜ→ℜ×ℜ:f  is a continuous function, ( ) ,0,0 =tf  and 

there is a constant 2>p  such that 

( ) ,, 1211 CsastsfCsa pp +≤≤−  (63a) 

( ) ( ),1, 1
2

−+≤ psCtsf  (63b) 

( ) ( ),1, 2
3

−+≤
∂
∂ psCtss
f  (63c) 

where ,1a  ,2a  ,1C  ,2C  and 3C  are positive constants. It is proved in [3] 

and several references therein that the initial-boundary value problem 
(61) under the above assumptions admits a unique mild solution 

( ) (( ) ( )).,,, 1
0

2
loc Ω∞τ∈⋅= HLtuu  

In view of this we make the following definition, cf. [19, Section 2.5]. 

Definition 4. Let Y and W be Banach spaces, where Y is 
continuously imbedded into W. A mapping ( )tu,ρ  is said to be a singular 

semiflow on W with respect to Y, if the following properties are satisfied 
by ρ: 

 (i) There is a semiflow ( )tu,σ  on Y, such that if ,Yu ∈  then 

( ) ( )tutu ,, σ=ρ  for all .0>t  

 (ii)  For each ( ) ( ),,0, ∞×∈ Wtu  one has ( ) ., Ytu ∈ρ  

(iii) The mapping ( ) ( )tutu ,, ρ→  is a continuous mapping from 

( )∞× ,0W  into Y. 

We call ( )tu,σ  the reduced semiflow of ( )tu,ρ  on Y. The difference 

between the singular semiflow ( )tu,ρ  and the reduced semiflow ( )tu,σ  

lies in the points when .0=t  
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Let ( ) ( ),,;, 00 τ=τ utuutS  where ( )τ,; 0utu  is the mild solution of 
the associated initial value problem: 

( ) ( ) ,0, =++ tuFutAdt
du  

( ) ,0uu =τ  (64) 

where the linear operator ( ) ( ) ( ) ,: 1
0

2 HHHtA →ΩΩ ∩  ,ℜ∈t  is defined 
by (62), and the nonlinear operator ( )tuF ,  is the time-variant Nemytskii 
mapping induced by ( )tuf ,  which satisfies (63). Here the unknown in 
(64) is ( ) ( )tutu ,⋅=  in (61). The evolution operator ( ) →τ tuS ,,: 0  
( ) 0, utS τ  is a continuous mapping from [ )∞×ℜ× ,0H  into H. 

Define the phase space to be .ℜ×= HE  Then one can check that the 
assumption (H1) on the linear operator is satisfied by this ( ),tA  in which 

the space ( ) ( )ΩΩ= 1
0

2 HHV ∩  with the ( )Ω2H  topology. Suppose that 
the assumptions (H2) and (H3) can be verified for this problem (64), then 
the mild solution ( ),,; 0 τutu  ,τ≥t  exists uniquely for any ( )τ,0u  

.ℜ×∈ H  Then, just as in (2), we can check that the mapping 

( )( ) ( )( ),,,;,, 00 τ+ττ+=τπ tututu  (65) 

turns out to be a singular skew product semiflow on E with respect to 

( ) ℜ×Ω= 1
0HY  according to Definition 4. 

The objective is to prove the following theorem, which enables us to 
verify that the global and uniform Lipschitz property in the assumption 
(H2) is satisfied by the nonlinear term ( )tuF ,  in (64). If so, then the 
assumption (H3), i.e., the spectral gap condition, can also be verified for 
any one-dimensional and some two-dimensional bounded domain due to 
the assumptions on ( )tA  in (62) and 

( ) ∞=λ−λ +
∞→

kk
k

1suplim  

for the eigenvalues of the Laplace operator on 1D bounded domain and on 
some 2D bounded domain with homogeneous Dirichlet or Neumann 
boundary conditions, cf. [12] and [19, Section 8.6]. 
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Theorem 4. There exists an absorbing set in ( ),Ω∞L  

{ ( ) }0: RwHwB L ≤∈= Ω∞ ∞  (66) 

for the solutions ( ) 0, utS τ  of the initial value problem (64), where the 

constant 0R  is uniform with respect to ( ) .,0 Eu ∈τ  

Note that if the space dimension is n = 1, one can prove Theorem 4 by 

showing that there is an absorbing set in ( )Ω1
0H  and using the Sobolev 

imbedding that ( )Ω1
0H  is imbedded into ( ).Ω∞L  But for space 

dimensions ,2≥n  we need to do more as shown in the following several 
lemmas. 

Lemma 16. Under the assumptions (62) and (63), the following 
statements hold: 

(i) The mild solution ( )tu  of the initial value problem (64) satisfies 

[ )( )HLu ,, ∞τ∈ ∞  and 

( ){ } ( ),:sup 01 uKttu ≤τ≥  (67) 

where ( )rK1  is a nondecreasing, nonnegative, scalar function. 

(ii) It holds that 

([ ) ( )).,, Ω∞τ∈ pp
loc LLu  (68) 

(iii) There exists an absorbing set 1B  in H for the solution trajectories 

of the equation (64), which is uniform with respect to .ℜ∈τ  

Proof. Taking the inner-product in H of the equation (64) with ( ),tu  
we get 

( ) ( ) ( )( ) ( ) .0,,2
1 22 =+∇+ tuttuFtutudt

d  

Using the Poincaré inequality and the first inequality in (63a), we see 
that there exists a constant 0>α  such that 

( ) ( ) ( )∫Ω Ω≤+α+ .,2
1

11
22 Cdxtxuatutudt

d p  (69) 
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Consequently, 

( ) ( ).22
1

122
0

22 ατα−ατα −Ωα+≤ eeCeuetu tt  

Thus we obtain 

( ) ( ) .,1
12

01
122

0
2 τ≥Ωα+≤Ωα+≤ −−τ−α− tCuCeutu t  (70) 

Let 

( ) .1
12

1 Ωα+= − CrrK  

Then (67) follows from (70). Besides (69) implies that 

( ) ( )∫ ∫
+

Ω
Ω+≤

1
1

2
1 2,2

t

t
p Ctudxdssxua  

( ) ,2 101 Ω+≤ CuK  for .τ≥t  (71) 

This inequality shows that (68) holds. Moreover, the first inequality in 
(70) also implies that 

{ }Ωα+≤∈= −
1

1
1 1: CwHwB  

is an absorbing set for the family of mild solutions of the equation (64), 
which is uniform in .ℜ∈τ  

Definition 5. For any given ,1≥q  define a Banach space 

( ) ([ ) ( )) ([ ) ( )),,,,, 2
0

2
loc0

def
0 Ω∞Ω∞= −+−+∞ qpqpq

q LtZLtLtW ∩  

where ([ ) ( ))Ω∞ −+−+ 2
0

2
loc ,, qpqp LtZ  is the space of functions [ ) →∞,: 0tu  

( )Ω−+ 2qpL  such that 

( )∫ ∫
+

Ω

−+

≥
∞<

1 2 .,sup
0

t

t
qp

tt
dxdssxu  

Then ( )0tWq  with the following norm becomes a Banach space, 

( ) ([ ) ( )) ( )
( )

.,sup
211 2

,,
0

00

−++

Ω

−+

≥
Ω∞ 








+= ∫ ∫∞

qpt

t
qp

ttLtLtW dxdssxuuu q
q
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By this definition, it has been shown in Lemma 16 that the solution 
of the initial value problem (64) satisfies 

( )τ∈ 2Wu  and ( ) ( ),022
uKu W ≤τ  

where the constant ( )rK2  is given by 

( ) ( ) .2
11

1
1

1
1

2 a
CrKarK Ω

+





 +=  

Lemma 17. If the solution u of the initial value problem (64) satisfies 
( )τ∈ 0qWu  for some ,20 ≥q  then for any given ,10, ≤< ss  it holds that 

( )sWu q +τ∈ 1  and ( ) ( ( ) ),,
01

3 τ+τ ≤
qq WsW usKu  (72) 

where 201 −+= qpq  and ( )rsK ,3  is a constant continuously depending 

on ( )rs,  and increasing in .0≥r  

Proof. Multiplying the equation (61) by ( ) uut q 2
0 1−τ−  and then 

integrating the two sides in Ω∈x  and in [ ],, 00 st +ττ∈  with τ≥τ0  

and 10 ≤< s  relatively fixed, we can get 

( )∫ ∫
+τ

τ Ω

−τ−
s

t
q dxdtuuut

0

0

1 2  

( ) ( )( )∫ ∫
+τ

τ Ω

− =−∆τ−−
s q dxdttufuuut

0

0

1 .0,2
0  (73) 

For each term in (73), we can make an estimate as follows. First we have 

( )∫ ∫
+τ

τ Ω

−τ−
s

t
q dxdtuuut

0

0

1 2
0  

( ) ( )
( )∫ ∫∫

+τ

τ

+τ

τ ΩΩ
−







 τ−=
s s q

L
q dttuqdtdxutdt

d
q q

0

0

0

0

1
1

1
1

0
1

11  

( )
( )

( )
( )∫

+τ

τ ΩΩ
−+τ=

s q
L

q
L

dttuqsuq
s

qq
0

0

1
1

1
1

.1
1

0
1

 (74) 
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Secondly, by using the Gauss Divergence Theorem and due to 0=u  on  
,Ω∂  we have 

( )∫ ∫
+τ

τ Ω

− ∆τ−−
s q udxdtuut

0

0

1 2
0  

( ) ( )∫ ∫
+τ

τ Ω

− ∇τ−−=
s q dxdtuuut

0

0

1 2
0 div  

( ) ( )∫ ∫
+τ

τ Ω

− ∇⋅∇τ−+
s q udxdtuut

0

0

1 2
0  

( ) ( ( ) )∫ ∫
+τ

τ Ω

−− ∇⋅∇+∇τ−=
s qq dxdtuuuuut

0

0

11 222
0  

( ) ( ) ( )∫ ∫
+τ

τ Ω

− ∇⋅∇τ−−≥
s q dxdtuuuutq

0

0

1 3
01 2  

( ) ( ) ( ) ( )∫ ∫
+τ

τ Ω

− ∇⋅∇τ−−=
s q dxdtuuuuutq

0

0

1 4
01 2  

( ) ( )∫ ∫
+τ

τ Ω

− ≥∇τ−−=
s q dxdtuuutq

0

0

1 .02 24
01  (75) 

Thirdly, by (63a) we can get 

( ) ( ) ( )∫ ∫ ∫ ∫
+τ

τ Ω

+τ

τ Ω

−+− τ−≥τ−
s s qpq dxdtutadxdttuufut

0

0

0

0

11 2
01

2
0 ,  

( )∫ ∫
+τ

τ Ω

−τ−−
s q dxdtutC

0

0

1 .2
01  

Since for any given ,0>ε  there is a constant ( )εC  such that 

( ),221 ε+ε≤ −+− Cyy qpq  for all ,0≥y  

there exists a constant ( )Ω= ,, 1144 CaCC  such that 

∫ ∫Ω Ω

−+− +≤ .2 4
212

1 11 CdxuadxdtuC qpq  
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Therefore, we have 

( ) ( )∫ ∫
+τ

τ Ω

−τ−
s q dxdttuufut

0

0

1 ,2
0  

( )∫ ∫
+τ

τ Ω

−+ −τ−≥
s qp sCdxdtuta 0

0

1 .2
2

4
2

0
1  (76) 

Substituting (74), (75) and (76) into (73), we obtain 

( )
( ) ∫ ∫

+τ

+τ Ω

−+
Ω

++τ
s

s
qpq

L
dxdtusasuq

s
q

0

0

11
1 2

2
10

1 8
1  

( )∫ ∫
+τ

τ Ω

−+τ−+
2 2

01
0

0

1
4
1 s qp dxdtuta  

( )
( )∫

+τ

τ Ω
+≤

s q
L

dttuqsC q
0

0

1
1

.1
1

2
4  (77) 

By the assumption of this lemma, ( )τ∈ 0qWu  for some .20 ≥q  For any 

fixed ( ],2,0∈s  we make the following two assertions from the estimate 
(77). The first assertion is 

( ) ( ) ( ) ( )Ω
τ≥τ

Ω
+τ≥

+τ= 1
0

1 0supsup qq LLst
sutu  

( )
( )

10

0

1
1

1

14
1 qs q

L
dttussqC q 







+≤ ∫

+τ

τ Ω
 

( ) .1 1
1

0

1
14

qq
Wq

ussqC 




 +≤ τ  (78) 

The second assertion is 

( )∫ ∫
+

Ω

−+

+τ≥
ξξ

1 21,sup
t

t
qp

st
dxdxu  

( )∫ ∫
+τ

+τ Ω

−+

τ≥τ
ξξ





 +



≤

s

s
qp dxdxus

0

0

1

0 2
2,sup12  

( ) ,1128 1
01

4
1 



 +





 +



≤ τ

q
Wq

usqsCsa  
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so that 

( )
( )211 2

1
1,sup

−++

Ω

−+

+τ≥








ξξ∫ ∫

qpt

t
qp

st
dxdxu  

( )

( )
.1128 21

1
4

1

1
1

0

−+

τ 











 +






 +



≤

qp
q
Wq

usqsCsa  (79) 

From (78) and (79) we can conclude that (72) holds with 

( )
1

1
1

143
1,

q
qrssqCrsK 




 +=   

( )
.1128 21

1
4

1

1
1

−+













 +





 +



+

qp
qrsqsCsa  (80) 

The proof is completed. 

Lemma 18. For the solution trajectories of (64), there exists an 

absorbing set 2B  in the space ( ),1 ΩpL  where 

( ).12
111 −+= pnp  

Proof. Based on (70) and (71), for every solution trajectory u of the 
equation (64), there is a time 

( ) 1011 +τ≥τ=τ u  
such that 

( ) ,1 1
1

5 Ωα+=≤ − CCtu  for ,1τ≥t  
and 

( ) ( )( )∫ ∫
+

Ω
Ω+≤

1
151

1
,22

1,
t

t
p CCKadxdstxu  for .1τ≥t  

The above two inequalities allow us to apply Lemma 17 to the solutions 
of (64), since ( )10 τ∈ qWu  for .20 =q  Therefore we can assert that for a 

given ( ],2,0∈s  for any initial data ,0 Hu ∈  the solution of (64) satisfies 

( )sWu p +τ∈ 1  and ( ) ( ( ) ),,
121 3 τ+τ ≤ WsW usKu

p
 

where ( )rsK ,3  is given in (80) with pq =1  here. In particular, we can 
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simply take 2=s  to obtain 

( )21 +τ∈ pWu  and ( ) ( ),,2 6321
CKu

pW ≤+τ  

where 

( )[ ] .22
1 1

151
1

56
p

CCKaCC






 Ω++=  

By the bootstrap argument, there is an integer 0≥m  such that 

( ) ( ),212
11 −+≤−+ pmppn  

where 0=m  for dimension 1=n  or 2, and 1≥m  for .3≥n  
Accordingly we can apply Lemma 17 up to m times, if necessary, to reach 
the following statement, 

( )( )mWu p ++τ∈ 1211  and ( )( ) ,41211
Ku mWp

<++τ  (81)  

where ( )( )6344 ,2, CKmKK =  is a uniform constant because m only 

depends on the parameter p and 6C  is a uniform constant. As a 
consequence of (81), we find that 

( ( )[ ) ( ))Ω∞++τ∈ ∞ 1,,121
pLmLu  (82) 

and 

{ ( ) ( ) }42 11 : KwLwB pL
p ≤Ω∈= Ω  (83) 

is an absorbing set in the space ( )Ω1pL  for the solutions of the equation 
(64). 

Lemma 19. For the solution trajectories of the equation (64), there 

exists an absorbing set ∞B  in the space ( ),Ω∞L  as stated in Theorem 4. 

Proof. Here we use the ( )∞LLp ,  regularity property of analytic 
semigroups stated in [19, Theorem 38.10]. According to that, the analytic 

semigroup ( ),tT  ,0≥t  generated by ( ) ( ) HHHA →ΩΩ∆= 1
0

2
0 : ∩  has 

the regularity: for any given ,1 ∞<≤ p  ,1 ∞≤< q  

( ) ( ) ( )Ω→Ω qp LLtT :  for all ,0>t  
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and there is a constant ( )qpCC ,=  such that for any 0>t  and 

( ),0 Ω∈ pLu  

( ) ( ) ( ).0

11
2

0 Ω






 −−

Ω ≤ pq L
qp

n

L uCtutT  (84) 

The linear evolution operator ( ),, τtU  ,τ≥t  ,ℜ∈τ  generated by the 

nonautonomous linear operator ( ) ( ),10 tAAtA +−=  where the lower 

order perturbation (with the assumptions on the coefficient functions 
aforementioned in this section) is given by 

( ) ( ) ( )∑
=

+
∂
∂=

n

i i
i utxcx

utbutA
1

1 ,,  

and possesses the same regularity property, which can be shown in detail 
by the approach provided in [19, Section 4.4]. Namely, for any ,τ≥t  

,ℜ∈τ  and ( ),0 Ω∈ pLu  one has 

( ) ( ) ( ) ( ),, 0
11

20 Ω






 −−

Ω τ−≤τ pq Lqp
n

L utCutU  (85) 

where ( )qpCC ,=  again is a constant. In (84) and (85), if ,∞=q  then 

.01 =q  

The mild solution of the initial value problem (64) for any given 
Hu ∈0  satisfies the integral equation 

( ) ( ) ( ) ( )( )∫τ τ≥−τ=
t

tdsssufstUutUtu .,,,, 0  

Let ( ),1212 m++τ≥τ  where 11 +τ≥τ  and 0≥m  have been specified 

in the proof of Lemma 18. Note that 1τ  depends on the initial data .0u  
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For any given ( ],1,0∈ζ  we have 

( ) ( )Ω∞ζ+τ Lu 2  

( ) ( ) ( ) ( ) ( )( ) ( )∫
ζ+τ

τ ΩΩ ∞∞ ζ+τ+ττζ+τ≤
2

2
,,, 2222 dtttuftUuU LL  

( ) ( ) ( )Ω∞ττζ+τ= LuU 222 ,  

( ) ( )( ) ( )∫
ζ

Ω∞τ+τ+τ+ζ+τ+
0

2222 .,, dtttuftU L  (86) 

By Lemma 18 and using (85), we get 

( ) ( ) ( )
( ) ( ) ( )

( )111 2
42

2
222 , pn

L
pn

L CKuCuU p −
Ω

−
Ω ζ≤τζ≤ττζ+τ ∞  (87) 

due to (82). Moreover, (63b) and (82) imply that 

( )( ) ( ( )[ ) ( )),,,12, 1 Ω∞++τ∈⋅⋅ θ∞ LmLuf  

where 

.221
1

1
1 nn

pp
p

>+
−

=
−

=θ  (88) 

Therefore, by (85) and (88), we have the following estimate, 

( ) ( )( ) ( )∫
ζ

Ω∞τ+τ+τ+ζ+τ
0

2222 ,, dtttuftU L  

( ) ( ) ( )( ) ( )∫
ζ

Ω
θ−

θτ+τ+−ζ≤
0

22
2 , dtttuftC L

n  

( ) ( ) ( )∫
ζ θ−−ζ≤
0

2
425 , dttCKCK n  

( ) ( ),21, 21
1

425
θ−

−
ζ







θ
−= nnKCCK  (89) 

where 2C  is specified in (63b) and 

( ) ( )( ) ( ( )[ ) ( )).,, ,,12425 1 Ω∞++τ θ∞⋅⋅= LmLufKCK  
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Note that ( ) 120 <θ< n  so that the constant ( ) .021 >θ− n  In view of 

(63b), (81) and (88), ( )425 , KCK  is a uniform constant. 

Substituting (87) and (89) into (86), we end up with 

( ) ( ) ( ),62 ζ≤ζ+τ Ω∞ Ku L   for ( )m++τ≥τ 1212  and ,10 ≤ζ<  (90) 

where 

( ) ( ) ( ) ( ).21, 21
1

425
2

46 1 θ−
−

− ζ






θ
−+ζ=ζ npn nKCCKCKK  

Finally, the result (90) shows that there exists an absorbing set in the 

space ( ),Ω∞L  

{ ( ) ( ) ( )},11: 6KwLwB L +≤Ω∈= Ω
∞

∞ ∞  

for the solutions of the equation (64). In fact, for each initial status 
,0 Hu ∈  the solution ( ) ( )τ= ,; 0ututu  will enter this absorbing set ∞B  

and stay in ∞B  forever when 

( ) ( ) ( ) .321121 01012 ++τ=+++τ≥+τ≥ mumut  

The proof of this lemma is completed. 

Thus the proof of Theorem 4 is also completed with the constant in 
(66) determined by 

( ).11 60 KR +=  

Now let us continue to address the existence of an inertial manifold 
for the skew product semiflow π associated with the equation (64) on 

.ℜ×= HE  Let K be the constant 

( ( ) ),1 2
03

−+= pRCK  (91) 

where 0R  is the constant given in (66) and shown above. By (63c) it holds 

that 

( ) .,:,sup 0 KtRutuu
f ≤







 ℜ∈≤

∂
∂  (92) 
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We can modify the nonautonomous reaction-diffusion equation in (61) by 
replacing the original nonlinear term ( )tuf ,  by the truncated nonlinear 
term 

( )
( )







>







≤
= .if,

,if,
,

0
0

0

Rutu
uRf

Rutuf
tug  

Consider the modified nonautonomous equation and the associated 
initial-boundary value problem: 

( ) ( ) ,,,0, Ω∈τ≥=+−
∂
∂ xttugutAt
u  

,,,0 Ω∂∈τ≥= xtu  

( ) ( ) ( ) .,, 2
0 Ω∈Ω=∈=τ xLHxuxu  (93) 

The initial value problem of the corresponding nonautonomous 
evolutionary equation is 

( ) ( ) ,0, =++ tuGutAdt
du  

( ) ,0uu =τ  (94) 

where the linear operator ( )tA  is the same as in (64), while the nonlinear 

mapping ( )tuG ,  is the corresponding time-variant Nemytskii mapping 

induced by ( )tug ,  and defined on the same phase space E. Based on 
Theorem 4, we can invoke the proved absorbing property of the solution 
semiflow of the original problem (64) and then apply Theorem 1 to this 
modified problem (94), which shares exactly the same dynamics with the 
original problem (64) in the absorbing set ,∞B  to establish the following 
result. 

Theorem 5. Under the assumptions made on ( )tA  and ( )tuf ,  in this 

section, for any one-dimensional bounded domain and some two-
dimensional bounded domain [19, Section 8.6], such as ( )1,0=Ω  

( )2,0×  with ( )221  being rational, the assumption (H3) and the 

spectral gap condition (3) are satisfied with K given by (91). Thus there 
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exists an inertial manifold M  in the space ( ) ℜ×Ω= 2LE  for the skew 

product semiflow π defined in (65) and generated by the solutions of the 
nonautonomous reaction-diffusion equation (64). 

Proof. For the truncated reaction-diffusion equation (93) and the 
associated nonautonomous evolutionary equation (94), the global and 
uniform Lipschitz condition in (H2) is satisfied: 

( ) ( ) ( )( ) ( )( ) ( )Ω⋅−⋅=− 2,,,, 2121 LtugtugtuGtuG  

( ) ( ) ( )
21

2
21

2
, 








−ξ

∂
∂= ∫Ω dxxuxutu
g  

( ) ,,sup 2121
0

uuKuutu
f

t
R

−≤−















ξ

∂
∂≤

ℜ∈
≤ξ

 

where ( ) ( ) ( )xuxu 21 1 κ−+κ=ξ  for some [ ],1,0∈κ  which is valid for 

any ,1u ( ) ( )Ω⊂Ω∈ ∞ 2
2 LLu  and for any ℜ∈t  due to (92). Under the 

spectral gap condition as stated in this theorem for the specified 1D and 
2D domains which can be confirmed by the assumptions on (62) and this 
finite K given in (91), Theorem 1 is applicable to this problem (94) and we 
can assert that an inertial manifold E⊂M  exists for the skew product 
semiflow gπ  associated with (94) which is confined in the subset 

.EB ⊂ℜ×∞  

We claim that this manifold M  turns out to be an inertial manifold 
also for the original skew product semiflow π defined in (65) associated 
with the solutions of (64). In order to prove this claim, it suffices to show 
that this M  satisfies the required exponential attraction property: 

( )( )( ) ( ) ( )( ) ,,exp,, 0 τ≥τ−γ−≤ ttuCttudistE M  (95) 

where 0>γ  is a uniform attraction rate for all solutions ( ) =tu  
( )τ,; 0utu  of (64). Here the Hausdorff distances in the space ℜ×= HE  

and in the space H are denoted by ,Edist  and ,Hdist  respectively. 
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In fact, by the definition of this manifold ,M  such a uniform 
attraction rate is guaranteed after any solution trajectory ( )τ,; 0utu  

eventually and permanently enters the absorbing set ,HB ⊂∞  in which 
the dynamics of the truncated evolutionary equation (94) and the original 
equation (64) are the same. Let this uniform attraction rate valid in the 
absorbing set ∞B  be ( ).0>β  It holds that 

( )( )( ) ( )( ) ( )( ) ,,exp,, ∞∞∞
∗ τ≥τ−β−τ≤ ttuCttudistE M  (96) 

where ( )rC∗  is a continuous positive function and ( )τ≥τ∞  is the time 

when the solution ( )τ,; 0utu  permanently enters .∞B  

At the end of the proof of Lemma 19, we have shown that the time 
∞τ  can be taken as 

( ) ( ) ,32010 ++τ=τ=τ ∞∞ muu  

where ( )01 uτ  is the time when ( )τ,; 0utu  permanently enters the 

absorbing set HB ⊂1  as specified at the beginning of the proof of 
Lemma 18. Let 

( ),,1 MHHM ProjBdistd =  

where MHProj  is the orthogonal projection of M  on H. Since 1B  is a 

closed, bounded ball in H, this Md  must be a finite constant. In view of 

(70) and the specification of ,1B  we see that 

( )( ) ( )( ),exp,,; 010 τ−α−≤τ tuButudistH  for ( )[ ]., 01 ut ττ∈  (97) 

When ( ),01 ut τ≥  ( )tu  will stay inside 1B  forever, so that 

( )( )( )M,, ttudistE ( )( ) Mdtu +τ−α−≤ exp0  

( )[ ]( ){ } ( )( ),expexp 00 τ−α−τ−τα+≤ ∞ tudu M  for ( )[ ]., 0ut ∞ττ∈  (98) 

Assembling together the result (98) during the time interval 
( )[ ]0, u∞ττ  and the result (96) for ( ),0ut ∞τ≥  and noting that 

( ) +≤τ∞ 1u ,1
1 Ωα− C  we finally proved the exponential attraction 

inequality (95) with the uniform constant attraction rate 

 { }βα=γ ,min  
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and the coefficient constant 

( ) { ( )[ ]( ) ( ) ( )[ ]( )}.exp1,expmax 01
1

000 τ−τβΩα+τ−τα+= ∞
−∗

∞ uCCuduuC M  

Thus the proof is completed. 

Furthermore we can extend the existence result on inertial manifolds 
shown in Theorem 5 to more general nonautonomous reaction-diffusion 
equations 

( ) ( ) ( ) Ω∈τ≥=+−
∂
∂ xttxhtxufutAt
u ,,,,,  

,,,0 Ω∂∈τ≥= xtu  

( ) ( ) ( ),, 2
0 Ω=∈=τ LHxuxu  

with the same assumptions on Ω and ( )tA  and similar assumptions on 

( )txuf ,,  as in Theorem 5, where ( )txh ,  is any given bounded 
measurable function or satisfying even more general conditions. The 
proof will be similar to what we have shown above with some 
modifications to take into account the additional inhomogeneous term 
( )., txh  
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