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Abstract

The mild solution of a nonlinear nonautonomous evolutionary equation
du/dt + A(t)u = F(u, t) can be formulated as a skew product semiflow
in a product phase space. Under a spectral gap condition, it is shown
that there exists an inertial manifold for this skew product semiflow.
Instead of the Lyapunov-Perron method, the proof is fulfilled via the
approach of conic invariance and incrementally exponential dichotomy
and based on two conic differential inequalities. The construction of
inertial manifold is made through an exponentially tracking integral
manifold, in which the pullback is achieved also by the incremental
dichotomy and a homotopy lemma. An illustration of the applications is
shown by nonautonomous reaction-diffusion equations.

1. Introduction

It has been shown in recent two decades that for some nonlinear
dissipative evolutionary equations in infinite dimensional Hilbert spaces
there exist inertial manifolds, which by definition [7] is a finite-
dimensional, positively invariant, and Lipschitz continuous manifold

attracting all trajectories at a uniform exponential rate. This discovery [7]
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in 1988 had a strong impact on the studies of long-term and global
dynamics of the solution semiflow of the underlying autonomous PDEs,
most of them are semilinear parabolic equations and some of them are
semilinear hyperbolic equations or even dispersive equations with a weak
dissipation, cf. [6, 12, 17-19, 21-24] and more references therein.

The existence of inertial manifolds (IM) implies a global reduction
principle of the infinite dimensional nonlinear dynamics in the sense of
asymptotical completeness. That is, every solution of the nonlinear
evolutionary PDE is tracked at a fast exponential rate by a solution
trajectory on the IM. The majority of the existence results in this regard
have been proved by the Lyapunov-Perron method whose essence is to
seek for a fixed point of a nonlinear integral mapping based on spectral
gap conditions connecting the dissipative part of the diffusion operator
and the growth of the nonlinearity, as seen in the aforementioned
references. Few results such as in [10, 12, 16-19, 22-24] were established

under weaker conditions or without requiring the spectral gap conditions.

Although the original hope that IM will provide an approach to
reducing the asymptotical studies of dissipative nonlinear PDEs to the
finite-dimensional studies of ODEs in terms of inertial form has been
partially justified, the restrictive spectral gap conditions and the lack of
regularity information of the solutions on inertial manifolds pose

challenges to its applications in a broader scope.

In the past decade, generalization of this seemingly very attractive
concept IM and its searching methodology have been arousing the
interests of many researchers from different areas. New results keep
emerging, though not many in comparison with another popular topic of
global attractors for infinite dimensional dynamical systems, and new
pursuits are committed in several directions. Here we just mention some
of them.

A comprehensive survey of the related topics until 1996 can be found
in [17], in which the sharper estimates in a renovated proof of the
Lyapunov-Perron mapping and more information about the flow of
trajectories in the vicinity of an IM are acquired. The following

information provides us with more insights toward IM.
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First, an IM is characterized as a collection of all complete orbits
defined for all ¢ € R, whose growth rates when ¢ — —o do not exceed an

exponential rate . In this sense, one can roughly recognize an IM as a
union of exponentially unstable manifolds. Second, an IM generates a
continuous and invariant foliation of the entire phase space. Third, the
normal hyperbolicity of an IM addressed in [17] and further generalized
in [19, Chapter 7] turns out to imply the robustness of the IM with
respect to small perturbations in the nonlinear structure of the original
evolutionary PDE.

In [10], the differentiabilty of the solution semiflow of nonlinear

parabolic equations in LP spaces is used to show the existence of IM. In
that paper, the existence of IM was also proved for some parabolic
equations on a compact Riemannian manifold by using the favorable
properties of large spectral gaps for the Laplace-Beltrami operators.

In [16], a mixture of analytical argument and geometric construction
1s exploited to prove the closure theorems on the existence of IM under
the general conditions of approximations of nonlinearity. The
applications of the obtained results to the Bubnov-Galerkin
approximations of PDEs are interesting, provided the uniform Lipschitz
condition on the inertial manifolds of the approximating equations is
satisfied.

Besides, approximate inertial manifolds (AIM) are important and
useful substitutes for inertial manifolds in many cases, for which the
existence of IM is unknown. The results on AIM also provide new
algorithms to find numerically some global approximations of the
solution trajectories for dissipative PDEs.

Now let us come to the front of nonautonomous evolutionary PDEs.
While the existence theory of global attractors has been substantially
generalized from the autonomous dissipative equations to
nonautonomous dissipative equations at the point level and at the orbit
level in [2, 3, 13] and references therein, the investigation into the
existence of inertial manifolds for nonautonomous dissipative PDEs
seems remaining quite open to pursuits. In [4], the Lyapunov-Perron
method 1s extended to treating the nonautonomous dissipative PDEs, in
which a concept of nonautonomous inertial manifold is redefined to be a
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collection of surfaces in the Hilbert phase space H, in the form
M = {M, = Graph{®(,, t)} : t € R}.

This layer structure that if u(s)=uy € M, then ul(t, uy) € M; causes

the attraction less intuitive and more complicated. The attraction of such
defined inertial manifold reads as follows: for any given bounded set B,

supfdist ;, 4o, (. to, uo), My) 1 ug € B} < CpeM(t10),

D(A®
In [8, 9], local finite-dimensional integral manifolds with exponential
tracking property are constructed for nonautonomous evolutionary
equations in a Hilbert space,

% + Agu = Ry(u) + eR; (u, t),

where the nonautonomous part is a small perturbation of the
autonomous nonlinearity. The construction is again based on the
Lyapunov-Perron-type mapping. The existence is established in a local
vicinity of an equilibrium of the associated autonomous equation and
then a global uniform approximation of solutions is achieved by pasting
the locally exponential approximation segments together on the union of
finitely many local integral manifolds. However, the assumption is that
the solution semigroup of the associated autonomous equation has only
finite equilibrium points.

In [11] a new approach is presented to show the existence of inertial
manifolds for abstract nonautonomous dynamical systems, which
features a combination of the graph transformation mapping [12] and the
use of squeezing properties.

In this paper, we shall formulate the mild solutions of a nonlinear
nonautonomous evolutionary equation

du

— + Alt)u = F(u, t),

U A = Flu, 1
as a skew product semiflow in a product space and then prove the
existence of an inertial manifold for that skew product semiflow under a
spectral condition and by means of construction of an integral manifold

with exponentially tracking property.
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The method we use to prove the existence of inertial manifold of the
skew product semiflow consists of conic invariance and incrementally
exponential dichotomy, which is different from and more explicit than the
Lyapunov-Perron method. This methodology can be viewed as a
generalization of the results in [5], in which a geometrically explicit
integral manifold construction was introduced to proving the existence of
inertial manifolds for a large class of autonomous dissipative PDEs
without abstract fixed-point argument, where the key leverage was the

spectral blocking property of the semiflow.

Here let us first recall the concept of skew product semiflow, see [19].
Consider a product space E = W x M, where Wis a Banach space (called
state space) and M is a metric space (called base space). A semiflow
n=(d 0): ExR" - E is said to be a skew product semiflow on E if the
two component mappings ¢ and ¢ have the form

¢ = 0w, m, t) and o = o(m, t),

namely, ¢ does not depend on w € W.

Let H be a separable, real Hilbert space with inner-produce (-, -) and
norm | -||. Let V be a real Hilbert space, which is densely and compactly

imbedded in H. The inner-product and norm of the space V will be
indicated by the corresponding subscript. Consider an initial value

problem of a nonautonomous nonlinear evolutionary equation in H,

% + A(t)u = F(u7 t)7 u(tO) = Up, (1)

where (tg, ug) € R x H is arbitrarily given.

We now introduce the following assumptions on the linear and
nonlinear parts in (1):

(H1) The linear operator function A(t): R — L(V, H) is bounded and
uniformly continuous on [0, ©). For each t € R, A(t): D(A)(=V) > H

is self-adjoint and positively definite:

36(const) > 0, such that (A(t)u, u) > 0| u ||2, Vu eV and t € R.
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Moreover, A(t),t € R, generates a strongly continuous evolution operator

U(t, t), —0 <1 <t<o, on the space H.

(H2) The nonlinear mapping F : HxR — H 1s a continuous
mapping with the global and uniform Lipschitz property that there exists
a constant K > 0 such that

| Fuy, t)— Flug, t)|| < K||u; —us |, Vuq, ug € H and t € R.
Briefly, we write this as F' € Cr;,(H x R, H). Assume that F(0, t) = 0.

Remark 1. First, when A(f)=A does not depend on ¢, the
assumption (H1) reduces to that A : D(A)(= V) - H is a positive, self-

adjoint, linear operator with compact resolvent. We refer to [15] and [20]
for the generation of strongly continuous evolution operators. The
illustration is seen in Section 5. Second, concerning the assumption (H2),
it may not be satisfied by the original underlying PDE, since usually the
Lipschitz constant K depends on the bounded set where u; and ug sit in

and, moreover, usually the nonlinearity may cause that F does not map

H xR into H, but maps V% xR into H, where V% is an interpolation
space in between V and H and with higher regularity than H. However,
the assumption (H2) here can be validated due to the following reason. If
the underlying evolutionary PDE is dissipative, then there exists an
absorbing set. For many semilinear parabolic equations, oftentimes one
can use the bootstrap method to show that the absorbing property is valid
in a well-suited Sobolev space such as L”(Q). Thus one can modify the
original equation by an appropriate truncation so that the assumption
(H2) is satisfied by the modified equation which preserves the long-term
dynamics of all the solutions of the original PDE. Again this will be
illustrated in detail in Section 5 for some nonautonomous reaction
diffusion equations. Alternatively speaking, (H2) can be validated within
an absorbing set for dissipative equations.

Under the assumptions (H1) and (H2), it is easy to confirm that the
mild solution, cf. [15, 20], of the initial value problem (1) exists uniquely
and globally in H for t>1t;. We shall denote this solution by

ult) = ult; ug, to), t = t.



INERTIAL MANIFOLD FOR SKEW PRODUCT SEMIFLOW 147

For any solution u(t), t € I (some interval), of the equation (1), the
graph
{(u(t), t) : t € I} in the product space E = H x R
is called an integral curve. If an integral curve is defined for all ¢ € R, it

is called a globally defined integral curve. We take E = H x R to be the

phase space, where R stands for the time axis.

Lemma 1. The mapping « : E x [0, ©) — E defined by

((ug, 1), t) = (Wt + 7 ug, 1), t + 1), 2)

is a skew product semiflow on the space E. This skew product semiflow is
briefly referred to as the SPS r of the underlying evolution equation (1).
Proof. By definition, n = (®, ), where o(r, t) = 1 + ¢ is obviously a
semiflow on the space R, and ®(ug, 1, t) = u(t + 1; ug, 1) satisfies the
following properties. First,
@((ug, 1), 0) = w(v; ug, 1) = Y-

Second,

D(ug, 1, t +8) = ult +s +1; ug, 1) (by the uniqueness)

ult + s+t ult +r, ug, 1), t + 1)

O(ult + 7 ug, 1), t + 1, 8)
= O((D(ug, t), t), ofx, t), s), for any (ug,t)e E and
t,s>0.
Third, by [19, Theorem 46.4], the mapping ®(ug, T, t) = u(t + 1, ug, 1) is

continuous in (ug, 1, t) € E x [0, ©). Assembling together the two

components ® and o, one can confirm that the three axioms of semiflow

are all satisfied by this mapping n = (®, c). Here just check the cocycle
property:
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(ug, T, £ +8) = (O(ug, T, t +3), oft, ¢ +8))
(D(D(ug, 1, £), ofx, t), s), o(o(, t), s))
= 1((P(ug, 1, t), o(t, 1)), s)
= n(nl(uo, 7)s 1), 5),

for any (ug, 1) € E and any ¢,s > 0.

The official definition of inertial manifold is seen in [7] and [19,
Chapter 8]: An inertial manifold for the solution semiflow of an
evolutionary equation is a finite-dimensional, Lipschitz continuous,
positively invariant manifold which attracts every trajectory at a uniform
exponential rate. See also [4, 11, 12, 17] for this concept. Now let us
introduce another concept tracking integral manifold, which will be
briefly referred to as TIM.

Definition 1. A set M < E = H xR 1is called a tracking integral
manifold for the skew product semiflow © defined in (2) generated by the

underlying equation (1), if the following three conditions are satisfied:

(1) The set M entirely consists of some globally defined integral

curves of (1).
(11) 9M 1is a finite-dimensional, Lipschitz continuous manifold in E.
(i11)) There is a constant B >0 such that for every solution
u(t; ug, tg), t =tg, of (1) there is an integral curve (v(t), t), t € R, on
M with the tracking property
[ w®)—v@)| < C(| ug ||) exp(- B - y)), for ¢ = tg,
where uy = u(ty) and C(|ug ||) is a constant depending on the norm of u.

Lemma 2. Suppose that there exists a tracking integral manifold
(TIM) I for the skew product semiflow n defined by (2). Then this M

must be an inertial manifold (IM) for the skew product semiflow =.

Proof. We just check all the conditions for IM are satisfied by this
TIM 9. By (i1) in Definition 1, 9t is a finite-dimensional, Lipschitz
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continuous manifold in E. 91 is positively invariant because of (i) in
Definition 1. The fact that 9t attracts every trajectory of the skew
product semiflow r at a uniform rate is implied by (i11) in Definition 1. In

fact, the inequality in (ii1) yields

dist g (n((wg, ), t), M) = inf{|ut +1)-w|+|t+1-s]|: V(w, s) € E}

IA

[u@+t)—v@E+)|+|t+1-(t+1)]
< C(| uo ||) exp(- Bt — 1)), for t > .
Therefore this TIM 99t turns out to be an IM for the SPS & in the space E.
2. Conic Inequalities and Incremental Dichotomy

Now we make another assumption which can also be called the
spectral gap condition.

(H3) There is an orthogonal decomposition of the Hilbert space H,

H=PH)®QH), PH)LQH) dimP(H)=N < o,

where P is the orthogonal projection from H onto P(H), and @ = Iy — P

is the complementary orthogonal projection, such that there exist positive

constants Ay and A, with
(A@t)p, p) < Lo, for any p e P(H),

(A(t)g, q) 2 A, forany q € Q(H),

and
A -2 > 2K, 3)

where K is the uniform Lipschitz constant of the nonlinear mapping F in

the assumption (H2).
The main result of this paper is stated in the following theorem.

Theorem 1. Under the assumptions (H1), (H2) and (H3), there exists

an inertial manifold 9 < E for the skew product semiflow n generated
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by the nonautonomous evolutionary equation, such that
M = Graph(¥),

where ¥ : P(H)x R — Q(H) is a continuous mapping and is uniformly

Lipschitz continuous in the component p € P(H).
The main theorem will be proved in Sections 2, 3 and 4. We set
1 1
XZE(A'F}\’O)’ 6:E(A_7\‘())’ MZS_K' (4)
Note that u > 0 due to (3). In order to prove Theorem 1, we begin with
any two solutions of the equation (1),
wi(t) = pi(t)+q;(t), i=12,

where p;(t) = Pu;(¢t) and g¢;(t) = Qu;(¢). The increment between the two

solutions and their components are defined by
ult) = uy(t) — ug(t), pt) = p1(t) - p2(t), (t) = q1(t) — q2(). 6)

The incremental components p(t) and q(¢) satisfy the inequalities in the

following lemma.

Lemma 3. There exists a constant 0 < b < 1, such that for any two
mild solutions u,(t) and uy(t) of the equation (1), the associated y(t) and
z(t) defined by

y(@) = (| p@)|* - 8 at) [*)e**", 6)

2(t) = (1 9@ I* - o] ) [*)e™ O
satisfy the inequalities

y(t) = y()eH D, g > g ®

2(t) < 2(r)e 2D > g )

namely,

(| @) |2 = 8] g@®) |?) = (| ) |* - 8] g(x) [*)e> P ED 1> 2 (10)
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(1 a@) |2 -8 @) [?) < (| ) |* - 8] p(x) [F)e 2B > o (11)

where n+L=A-K >0 and n-x =—-(hy + K) < 0. We shall refer to

(10) and (11) as the incremental dichotomic inequalities.

Proof. Note that for any mild solutions wu; with initial data
u;(t) e V.= D(A(t)), i =1, 2, they are actually strong solutions of the
equation (1). Hence, p(-) and ¢(-) satisfy the following equations for
almost every ¢ > t,

dp

T A(t)p = P[F(uy, t) - F(ug, t)], (12)
99+ A0 = QIF (@, 1) - Flug, 1] (13)

For a constant b, 0 < b <1, taking the inner-products of the equation
(12) with p(¢) and the equation (13) with bq(¢), respectively, then

substracting the latter from the former, one can get

S2 () -8l a) )

= —(A(t)p, p) + b(Al(t)q, q)

+ <pa P[F(u17 t) - F(”Za t)]) - b(Q? Q[F(u17 t) - F(u27 t)])

\%

0. =) p | +60-+ ) q|* ~ K| p~bg [ s ~us |

\%

1
=) p I+ o0+ ) g -5 K p[* +b*[a | +]p+ql)

%

_—(x—8+K)||p||2+b[x+5—%1{[b+%ﬂ||q||2. (14)

Note that

.1 1
%L%(b*z) =1L

Since (3) in (H3) implies & > K, so that

2%-K _25-K)+K _
K K

1,
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we can choose 0 < b <1 and close to 1, such that

l(b+l)<28_K=1+2—”. (15)

2 b)- K K
Fix this constant b in (15). Then we find that

26 - K
K

x+8—%K(b+%)2k+8—K(

):k—8+K,

which is substituted into the last inequality in (14) to yield

1d

L4 (1@ - sl a0 ) 2 -5+ K) (| O - HlaO) ). (16)
According to (6), we see that y(t) satisfies the first conic differential
inequality

dy
_— >
;2 2uy. am

Similarly one can deduce that

1d

2L (la@) > - 81 ) )

IA

-+ 8)lq | +b(-3)|p |

1
+5 K@ a*+* + 12"

“n+5-K)|q? +b[k—8+%[((b+%ﬂ"p”2. (18)
With the same chosen b which satisfies (15), one has

k—8+%K(b+1jsx+6—K,

b
so that
%%(M a®) > -8 p@) ?) < -(v + 5 - K) (| ¢@) |* -8 p@&) [*).  (19)

According to (7), z(¢) satisfies the second conic differential inequality

== < 9uz. (20)
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It is easy to solve these two differential inequalities (17) and (20) to
obtain the incremental dichotomic inequalities (10) and (11). Finally,
since the space V is densely imbedded in H, by the continuous
dependence of mild solutions on initial data, we can conclude that the
inequalities (10) and (11) hold for the incremental components of any two

mild solutions of the equation (1).

Remark 2. Here is the comment on the implication of the two
incremental dichotomic inequalities (10) and (11). By the first inequality
(10), the conic sector

S ={p@qeH:|p|<b|ql|}

is negatively invariant. If w(t) = u;(t) — ug(t) = p(t) + q(t) is inside the
sector S_ for some ¢, then for t <¢, it holds that u(r) € S_. By the

second inequality (11), on the other hand, the conic sector
S,={p®qgeH:|q|<b|pl}

is positively invariant. If wu(t) = u;(t) — ug(tr) = p(tr) + ¢(r) is inside the

sector S, for some t, then for ¢ > 1, it holds that u(¢) € S,.

We can interplay the inequalities (10) and (11) to derive more useful

properties of the incremental components p(¢) and ¢(¢) of any pair of
solutions of (1).

Lemma 4. Let u(t) = p(t) + q(t) be given as in (5). If p(T)=0 for
some T € R, then for any t satisfying 1 <t < T, the following properties

are satisfied,

| @) < Vo] a(@)]. (21)

1
1-b2

| a(T) [T < | gr) | < | gz) e B =), (22)

and

1 - -1 1 - -1
[u)| < ==l a@ e < mpufe) e D @3)
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Proof. Since p(T)=0 and t <t < T, we get (21) directly from the
inequality (10). Then from the inequality (11), in which letting ¢ = 7' and

T = ¢, we obtain

| a(T) 22T < | g@) |2 - 8] p@)|* < | o) .

So the first inequality in (22) is shown. In order to show the second
inequality in (22), we see from (6) and (7) that

by(t) + 2(t) = (1 - b2)| q(t) |*e®*.

It follows that

la@)|? =

_1 - (by(0) + 2(t)e P < #z(t)e_%t

because (21) implies that y(¢t) <0 for 1 <t <7T. Now using (11), we

obtain

la@)]? < — b| plo) |?)e 2+ D)

1 b2 " Q(T) "2 —2(u+A) (¢ ‘t)

Thus the second inequality in (22) is valid. Finally, from (21) and (22) it
follows that

|u@]* =1 @) + 2@ < @+ )] a0) |

2 ,=2(u+1) (=)
< Lo la@) e

and (23) is shown.
Lemma 5. Let u(t) = p(t) + q(t) be given as in (5). If q(xr) =0 for

some t € R, then forany T >t > 1, the following properties are satisfied,

la(®) | < ¥b| p() ], (24)
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| ()[4 < | p(0) | € =] p(T) [ # M0, (25)
and
)] < = | P [P < 2 T eI, (26)

Proof. Since ¢(t) = 0 and ¢ > 1, we can get (24) directly from (11).

By (10), we can get

I 6O = | @) - b a@) |* > | ple)|[2eX0 0,

from which the first inequality of (25) follows. In order to show the second
inequality of (25), we find that

y(t) + ba(t) = (1 - b2)| p(t) [>e*

and then by (10) we have

| p@) | =

5 (@) + ba(t))e M (where 2(t) < z(x)e 2" < 0)

<1

< g0 = g (PO ~0la@) )

2= b (1)) 2P )

| p(T) ||2e—2(u M(T-t)

_52

This shows that the second inequality of (25) is valid. Finally, from (24)
and (25) it follows that

|u@[* =1 2O + @ < @+0)] p@) |

2 ,-2(u-1)(T-t)
L | () e ,

s0 (26) 1s proved.
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3. Construction of Inertial Manifold

In this section, we shall construct a tracking integral manifold in the
phase space E = H x R, which by Lemma 2 must be an inertial manifold

for the skew product semiflow .
Definition 2. Define a set in the space E to be
M = {globally defined integral curves (u(t), t) € E,

t € R|lim sup|| e*u(t) || < oo}. (27)

pa—
Note that F(0, t) = 0 in the assumption (H2) implies that the set 9 is
nonempty.
The first objective is to show that 9 = Graph(¥) for some Lipschitz
mapping ¥ : P(H)x R - Q(H).

Lemma 6. Let (u;(¢), t), i =1, 2, t € R, be any two integral curves on
the set MM defined by (27). Let p;(t) = Pu;(t) and q;(t) = Qu;(¢), i =1, 2.
Then

| a1 (&)= q2(t) | < V|| py(t) - p2(®) - (28)

Proof. Since we have

lim sup|| e™u(t) || < o,
t——o0

it follows that, by (7),
Iz@) ] < (| g1(¢) - g2() ||2 + 0| p1(t) - pa(t) ||2)€2M
<@ +b)] w(t) - up(®) [P

< 20+ 0) (| @) 7 + [ ug (@) [*)e
and consequently
lim sup| z(¢) || < .
t—>—o0

Since z(t) satisfies (9), in which we can let 1t — —oo, it is valid that
z(¢) < lim sup 2(1)6_2“0_1) =0.

T——0

Therefore (28) is proved.
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This lemma shows that the increment between any two integral
curves on the set 9 is in the cylindrical sector S, x R. Based on this

property, we show that the set 9 can be expressed as the graph of a
continuous mapping. Let the orthogonal projection from E onto its finite-
dimensional subspace P(H)x R be denoted by Proj.

Lemma 7. The projection Proj: 9 — P(H)xR is a one-to-one
mapping. There exists a continuous mapping ¥ : Dom(¥)(c P(H)x R)
— Q(H) such that

| ¥(p1. t) - ¥(pg. )| < Vb| by - P2 | (29)
and that the set MM defined in (27) is the graph of ¥,

MM = Graph(¥). (30)

Moreover,
¥(0,¢) =0 and | ¥(p, t)| < «/3” Pl

Proof. Note that any point we E can be written as
w=(p®q,t)=(p, q,t), where the two components p = Pw and
q = Qw. If there are two points w; = (p;, q;, t;), i =1, 2, on the set M
such that Proj(w;) = Proj(wy), then one has p; = py and #; = to.

By the construction of 91, there must be two integral curves
(@), t), i=1,2 on M such that wu;(()=p, ®q;, i=12, and
t =t =tg. Then (28) implies that ¢; = q9. Thus it is proved that
Proj : 9M — P(H)x R is one-to-one.

As a consequence, there exists a mapping

¥ = Q Proj ! : Dom(¥) > Q(H), where Dom(¥) = Proj(:),
such that (30) holds. Then (28) and (30) imply (29). Moreover, by the
continuity of the integral curves and (29), it follows that W¥(p, t) is a
continuous mapping with respect to (p, t) and it is uniformly continuous
in p-component. Since u(t) = 0 for all ¢ € R is an equilibrium solution,
we have WY(0,t1)=0 for te®R. As a consequence, (29) yields
| ¥(p, t)| < ¥b|| p|. The proof is completed.
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The next objective is to show that the mapping
Proj : M — P(H) xR is a surjective mapping. That is,

Dom(¥) = Proj(9) = P(H) x R,

and ¥ is a mapping defined on the entire subspace P(H)x R. This will be

the main result of this section.

Theorem 2. For any (p, 1) € P(H) xR, there exists a solution u(t),

t € R, of the equation (1), which satisfies the conditions

(i) Pu(z) = p, and

(i) lim sup;_, | e“u(t) | < o
Consequently it holds that
Proj(m) = P(H) x R.

The proof of Theorem 2 goes through the following several lemmas in
this section. First, let us denote the nonlinear evolution operator
associated with the mild solution of the equation (1) by S(t, 1),

-0 < 1 <t < oo Itis defined by
S(t, t)ug = ult; ug, 1)

Lemma 8. Suppose that a continuous mapping n : R" x [0, T] - R"

satisfies the condition
n(x, 0) = x, for any x € R".
Let B, be the open ball in R" of radius r and centered at the origin. If a
point p € B, satisfies
p ¢ n(B,, t) forany t € [0, T],

then one has p € n(B,, T).

Proof. This homotopy result can be shown as follows. Define

J=1{el0, T]: penB,,t)
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By the given conditions, one can show that </ is a nonempty, open, and
closed subset of the interval [0, T]. Thus J =[0,T] so that
p € n(B,, T). Related results can be found in [1].

The next lemma is a key result in the indispensable pullback
argument for proving the existence of inertial manifolds. A major
difference between the Lyapunov-Perron method and the approach taken
in this work lies in the pullback processing. The pullback in the
Lyapunov-Perron method is analytically reflected in the nonlinear

Lyapunov-Perron integral mapping over the time interval (-, 0], while
here the pullback can be seen more explicitly in the orbit geometry.

Lemma 9. For any given (pg, 1) € P(H)x R and any given T > 0,

there exists a unique p* € P(H) such that

P(S(t, t-T)p") = po, (31)

and

| 2l <1 polle™” (32)

Proof. Here X is defined in (4). Define a mapping n: P(H)x R
— P(H) by

np,t)=PStx-T+t,1-T) (peXT ))e_k(T_t), (33)

where pe'” e P(H) and t > 0. By the strong continuity of the evolution
operator S(-, -), it is seen that this mapping n is continuous in (p, ¢).

Below we can verify that the conditions in Lemma 8 are all satisfied.
First, for any p € P(H), we have

n(p, 0) = P(Sx-T, t - T)(pe*T))e T = (pe’T)e T = p.

Second, using the first inequality in (25), which is wvalid for the
incremental components and here we can take one solution to be the

trivial solution (the zero equilibrium), we get

In(p, )] = | pe*T || e T -Delt=2)t > | p |, for any ¢ < [0, T].



160 YUNCHENG YOU

Thus for any given py € P(H), there is a finite number r > 0 such that

| po || < r. The above inequality implies that

po € n(0B,, t) for any t € [0, T,
since otherwise we would have | py|2r>|pg|, which is a
contradiction.

Therefore, by Lemma 8, we can claim that py € n(B,, T'). It means
that there is a point p € B, < P(H) such that

n(p, T) = P(S(r, - T)(pe™)) = py.

Let p* = pe)‘T. The above equality means that (31) is proved. Moreover

we have

| "= || < re*”, forany r > | po ||

Let r — || po | in the above inequality. Then we obtain (32).

Finally we can show that such a point p* € P(H) in (31) is unique.
Indeed this follows directly from (21), because if there are p;, py € P(H)
satisfying

P(S(r, t=T)py) = po = P(S(r, 1= T)ps),
then
| o1 = po | < Vb0 = 0.

The proof is completed.

Definition 3. For any given (pg, 1) € P(H)x®R and T > 0, define
the pullback point of py from tto 1 — T to be
Ur_T = u‘E—T(pO) = p*’ (34)

where p* € P(H) is the unique point in (31). Moreover, for 0 < T} < Ty,

define

w
uz_T; =S(t—T1, 1= Ty)u, - (35)
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Lemma 10. For any (pg, t)e P(H)x®R and any Ty >T; >0, it
holds that

| Pt | < 551 o €, (36)
_ f
| Quizh < 725 po ™. (37)

Proof. Set
u(t) = SEt, =T )u._qy and uy(t) = S, v Tp)u._g,-

These are two solutions of the equation (1) for ¢ > t — 7;. By (35),

-1
ug = S(t, t- Tl)uz_T;.

According to Definition 3, one has
Puy(t) = Puy(t) = po and P(u(t) - up(t)) = 0
By Lemma 4 and (21), we have

| Pul Tt — Pu,_q | < vB| Quill - Quy g, | = V0| QuiTL ], (39)

T T2 ‘C*T2

since QuT_T1 = 0. Furthermore, by Lemma 5 and (24), we have
| Qug || < Vbl Pul} | = Vb| Pus(x - T1) . (39)

since Qu._7, — Q(0) = 0, where Q(0) stands for the g-component of the

trivial solution. Then from (38) and (39) we obtain

T T T
| Pl | = Prcgy | < | Pui"p) = Pue_gy || < 0 Pui—p) |

By (32), the above inequality implies that

_T 1 1 1 AT
[ PUE_T; I < m" Pu._g | = m” uegy || < m" po et

and

f

AT

| QuiTg! | < Vol Put | <

Ty ”p "e

Therefore, (36) and (37) are validated.
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Lemma 11. For any given (pg, t) € P(H)x®R and T > 0, define a
function u(t) by

S(t, , 2T,
u(t) :{ & *)po e (40)

limp_,, St 1= T)urp(pg), t<rt

Then the limit in (40) exists in H for every t < tv and this u(t) is well-
defined for all t € R.

Proof. Fix a t; € (—», 1). We shall prove that the function w(T")
defined by

LU(T) = S(tO’ T T)u‘c—T(pO)’ T e [T -1, OO)’ (41)

has the Cauchy property as 7' — o. For any Ty > T} > 1t —{, as in the

proof of Lemma 10, let us consider u;(t)= S t-7T;)u,_y;, and

us(t) = S(¢, v~ To)u,_g,. Note that
w(T1) = w(ty),  w(Ty) = us(to),
and
uy(t) = S(t, 1 - Tl)ufj;%, for t > t—1T).
Since P(u;(t) — ug(t)) = py — pg = 0, by Lemma 4 and (23), noting that
T>tg21-11 >1-Ty,
we have
lw(Ty) = w(Th) || = | us(to) - w1 (o) |

1 ) n
< —1Qu(s-T)- Qualr - T1) e (w+2) (t0 (=T} )

_ 11 - | Qua(c — Tp) e~ WM to=(=T1))

Jll_b ” Quz:% ||e—(u+7»)(to—r+T1)’ (42)
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since Quq(t —7T}) = 0. Now substituting (37) into (42), we get

)‘Tle_(”"';”) (to—‘H—TI)

Jaly) - i) | < P o e

_ ¥ I Do [l Et0)pnT]
V(- by
_ by el ato)pmmint, T} (43)

s

in which py € P(H), © € R, and #y(< 1) are relatively fixed. By (41) and
(43), we find that for any ¢ > 0, thereisa T = Ty(¢) > 0, such that

e M < g
Then we have

lw(Ty) - w(T1)|| = | Sto, © = T2)ur—1, (Po) = Slto, T = T1)ur_7; (Po) || < Ce,

whenever both 7} and Ty > Tj(¢), in which the constant C depends on
| po ||, *and ¢,

Co (w+2) (s~to).

73%%Tupne

The above inequality shows that w(T'), T e [t —ty, ©), has the Cauchy

property as T — o. This implies the limit when ¢ < 1 in (40) exists in H
and u(t) in (40) is well-defined for all ¢ € R.

Lemma 12. Let u(t), t € R, be the function defined by (40). Then

lim sup|| e*u(t) | < oo (44)

t——0

Proof. The inequalities (36) and (37) in Lemma 10 imply
| SG—t, © = Thuey | < (| P | + | Quizh P)7?

<«/1+b

1-b ||P0||‘3M, for T >t > 0.
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Therefore, the function u(t) in (40) satisfies

V1+b||
b

Jutc -0 = Jim S(c-t t-Tu,r | < ole, s

for all ¢ > 0. Replacing t — ¢ in (45) by ¢, we obtain

|k(rt :V1+

5 | po ||, for © >t > —,

[eu(@)] < * S50 pg [e

where V1 +b(1-b)! | po ||em is a constant depending only on p, and t.
Thus (44) is proved.

Lemma 13. For any given (pg, 1) € P(H) xR, there exists a solution

u(t), t € R, of the equation (1) with the properties
(i) Pu(z) = pg, and
(i) lim sup,_, | e"'u(t)| < .

Proof. We claim that wu(t), ¢t € R, defined by (40) is such a solution

of (1). By (40) and Lemma 12, it is obvious that the properties (i) and (ii)
are satisfied by this u(-). It suffices to prove that this « is a mild solution

of the equation (1). That wu(¢) is a solution for ¢ > t is clear. Consider
t < 1. Let tg > ¢ > 0. The strong continuity of the evolution operator of

the mild solutions implies that
S(t—t, t—tg)u(t—ty9) = S(t— 1, 1 — tz)Tlim S(t—ty, 1= T)u,_p
-0
= lim S(t—t;, T1—t9)S(t —tg, 1= T)u,_yp
T—w
= lim S(t-t;, t - Tu,_p =ult—-t). (46)
T—o0
In (46) we can replace t©—t; by any ¢t and replace t -ty by any ¢,, with
to <t < 1. It shows that this u(t) is a solution of (1) for ¢ < 1.

Proof of Theorem 2. By identifying the point p in Theorem 2 with

po in Lemma 13, the first statement in Theorem 2 has already been
proved by Lemma 13. Consequently, it holds that
P(H)x R < Proj(om).
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On the other hand, by the original definition, Proj("m) — P(H)x R. Thus

the statement
Proj(™m) = P(H)x R

of Theorem 2 is proved.
4. The Exponential Tracking Property

It has been shown in Lemma 7 and Theorem 2 that the set M
defined by (27) is characterized by (30),

9 = Graph(¥),

where the domain of ¥ is the entire subspace P(H)x R, and
¥ :PH)xR - QH) is a continuous mapping with the Lipschitz
continuity (29).

In view of Definitions 1 and 2, these results show that the first two

conditions of a tracking integral manifold (TIM) are satisfied by this
manifold 9 = Graph(¥). In this section we shall prove that the third

condition in Definition 1, namely, the exponential tracking property, is
also satisfied by this manifold 9. Therefore, 9t turns out to be a TIM
and, by Lemma 2, an inertial manifold as well for the skew product
semiflow & associated with the nonautonomous equation (1).

Lemma 14. Suppose that (w,t)e M, w =&+ ¢, where & = Pw,
¢ =Qw, and u=p+q e H, where p = Pu, q = Qu, such that

Ip-¢l? <blg-ol (47
Then it holds that
1+5b
1QUu—w)] < 250w, (48)

Proof. Since (w, 1) = (§ + ¢, 1) € M, by Lemma 7 and Theorem 2, we

have

lol =1¥E 0] < Vol &].
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The condition (47) together with the above inequality implies that
lel-lIpl<lp-¢l<vbla-o|=<olq|+bE].

Hence we get
a-o)el<lpl+olal
and
Vb
lol< =5 Upl+elal
It follows that

B (1p1+Blal)

1-

|Qu-w)|=la-el<lal+lel<lal+

Vb 1
Smllplln_bllqn

1+0b6 2 211/2 1+b6
<2 b gy <ol

Therefore, (48) is valid.

Lemma 15. For any mild solution u(t) = S(t, t)ug, t > 1, of the
equation (1), there exists an integral curve (v(¢), t), t e R, on the

manifold M, such that
lu(t) - v(t) || < C ug e M ED ¢ >, (49)

where ugy = u(t), C is a uniform constant, p and A are the constants

specified in (4).

Proof. For any given positive integer n =1, 2, ..., since Proj(9) =
P(H)x R, there is an integral curve T, : (u,(t),t), ¢ e R, on the
manifold 9t such that

Pu,(t + n) = Pu(t + n), (50)
because
(Pu(t+n), t+n)e P(H)xR.
By Lemma 4 and (23), the relation (50) implies that

) = un(®)] < ==

| Qu(t) — Quu () e M) for ¢ e [1, T+ n]. (51)
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On the other hand, (21) shows that

| Pu(t) - Pu, (t) |* < b Quit) - Qu, @) |?, ¢ <[, t+nl. (52)

Now we can exploit Lemma 14, where the condition (47) is satisfied due
to (52), to infer that

J1+b
| Qux) - Qu,, (1) | < 27250 [ u(@)]| (53)
Substituting (53) into (51), we obtain
e~ WD) for ¢ e [r, t+n]. (54

| ) - un@)]| < 2 ——= H
\ (1

Taking ¢ = © in (54), we find that {u,(t): n =1, 2, ...} is a bounded

sequence in H, because for all positive integers n,

[, (2) | < L+ Co) uo I, (55)

where the constant Cp = 2y(1+5)/(1-b)>. Since M is a finite-
dimensional manifold, the sequence {u, (1)} is a precompact set in H.
Thus there exists a convergent subsequence {u,, (t): k=1, 2, ..} such

that

lim u,, (t) = vy, where (vg, 1) € M. (56)
koo 'k

In fact, denoting Pu,(t) by p, () and Qu,(t) by g, (1), since {p,(t)} is a
bounded sequence in P(H), there exists a convergent subsequence

{Pp,, (v)} such that

lim p,,, (<) = po < P(H).
—oo R

Then the continuity of the mapping ¥ and (29) implies that

Jim Qu,, (1) = Tim q,,,(2) = Jim ¥(p,, (), 7) = ¥(p, ©) < Q).

Hence, the limit in (56) exists and (vg, 1) = (py + ¥(pg, 1), T) € M.
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Now consider the integral curve T : (v(t), t), ¢ € R, on the manifold
9, which passes through (vg, t). We have v(t) = S(¢, t)vg, for ¢ > ©. By
the fact that 9t consists of globally defined integral curves only and that

(vg, T) € M, such an integral curve I' exists on 9. The continuity of the

evolution operator of the solutions S(¢, t) implies that
u(t) = S(t, t)vg = S(¢, ©) lim u,, (1)
E—>ow 'k
= lim S(t, t)u,, (tr) = lim u,, (t), for any ¢ > 1. (57)
k—o k koo 'k

Finally, for an arbitrarily fixed ¢ > 1, there is a positive integer kg
depending on ¢, such that
ng >2t-r1, for k> k.
It follows from (54) that, for this ¢,
| (t) ~ 0y, (£)] < Cofl g e+ E, for & > ko, (58)

because t € [t, © + ny], where C is the same constant specified in (55).

Letting £ — «© in (58), and passing to the limit, we can use (57) to

confirm

[ w®)-v)| < Coll uo ||e—(u+x)(t-r)_

Note that here ¢ (> 1) is arbitrary. The exponential tracking inequality

(49) is proved.
Now we can finish the proof of the main result Theorem 1.

Proof of Theorem 1. We have already shown through Lemma 7 and
Theorem 2 that the set M defined by (27) can be expressed as the graph
of a mapping ¥ which possesses the properties claimed in Theorem 1.
Thus we have shown that this manifold 9 satisfies the first two

conditions described in Definition 2 for a tracking integral manifold.

Then Lemma 15 shows that the third condition for a tracking integral
manifold is also satisfied by this manifold 9. In fact (49) shows that the

tracking property in Definition 1,

| (t) - v(t) | < C(|l uo ||) exp(=B(t — to), for ¢ > to,
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is satisfied with

B:p+k=A—K>%(A+xO)>O.

Therefore, 9% is a tracking integral manifold for the skew product
semiflow 7 in the space E. According to Lemma 2, this 91 is also an

inertial manifold. The proof of Theorem 1 is completed.
We can generalize Theorem 1 by dropping the assumption
F(0,t)=0 in (H2). Instead we make an additional assumption as

follows.

(H4) There is at least one globally defined mild solution u*(t), ¢t € R,

of the equation (1), which satisfies

lim sup|| e"u*(t) || < oo,
t—>—

where A is the same as specified in (4).
Theorem 3. Under the assumptions (H1), (H2) but without
F(0, t) = 0, (H3), and (H4), the conclusion of Theorem 1 on the existence

and characterization of an inertial manifold for the skew product

semiflow © remains valid.

Proof. Define w(t) = u(t) — " (t). Then the original nonautonomous

equation (1) and the initial value condition are transformed to

dw
E + A(t)w = R(w, t),

w(ty) = wo, (59)
where
Rw, t) = Fw+u*(¢t), t) - F(u" (), t),

Wy = Uy — u*(to). (60)

It is obvious that the new nonlinear term R(w,t) satisfies the same

global and uniform Lipschitz continuous property that

| Ry, t) = R(wsg, t)|| < K| w; —wyq |,
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with the same Lipschitz constant K, for any w;, wg € H and for any
t € R. Since R(0, t) = 0, the original assumption (H2) is satisfied by (59)
with (60).

Then the assumption (H3) implies that the set 9, constructed in
(27) for the new equation (59) with respect to w(-) is nonempty, and all
the steps through Section 3 and Section 4 remain valid. Therefore,
Theorem 1 can be applied to the corresponding skew product semiflow
n,, associated with the modified nonautonomous equation (59). This set
M, turns out to be a TIM and an inertial manifold for =,,. Finally, the

following manifold
M = {wt)+u*(t), t), t e R| all (w(t), t) e M,}

is a TIM and an inertial manifold for the skew product semiflow = of the
original equation (1). The detail of verification is omitted.

Remark 3. We emphasize the following facts which feature this
work.

(R1) All the steps in Section 3 and Section 4 in confirming that the
constructed 901 is an integral tracking manifold follow directly from the
two conic inequalities (10) and (11) as well as the consequential
inequalities stated in Lemma 4 and Lemma 5.

(R2) The only two places in the entire proof of the main result
Theorem 1 where the spectral gap condition (3) is needed are in the proof
of Lemma 3. One place is the acquisition of a constant b € (0, 1) in the

conic inequalities. The other place is the assertion that the two
exponential constants

pu+A=A-K >0
and

n-A=-o+K)<0

in the incremental dichotomy. Unlike the Lyapunov-Perron method
where the spectral gap conditions are needed in several different stages
of the proof, this observation sharply focuses the role played by the

spectral gap condition in the existence proof of inertial manifolds.
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(R3) Another advantage of this approach is the pullback argument,
which becomes more geometrically motivated in this work than in the
fixed point search of the Lyapunov-Perron mapping of an integral form.

The two common pillars in any typical approach to proving the
existence of inertial manifolds are the incremental analysis of trajectories
because of the nature of this topic concerning the attraction among
trajectories and the pullback analysis due to that an inertial manifold
must contain all the unstable portion of the underlying flow or semiflow.
The approach we take in this work indicates that the conic invariance
reflected by the incremental analysis, which is related to the squeezing
property [5, 6, 11, 17] but seems more general, actually dominates the
pullback analysis. This insight is useful in dealing with further

investigation problems.
5. Applications to Reaction-Diffusion Equations

In this section, we shall illustrate the applications of the main result

of this work to nonautonomous reaction-diffusion equations. Let
Q < R" be a bounded domain such that the boundary 0Q is locally
Lipschitz continuous and Q lies locally on one side of 6Q. Consider the

following initial-boundary value problem of a nonautonomous reaction-
diffusion equation,

%—L:+A(t)u+f(u,t):0, t>1,x e,

u=0, tx>1,x¢€0Q,
u(x, 1) = ug(x) e H = L2(Q), (61)

where 1€ R and uy € H are arbitrarily given. In this section, the

inner-product and norm of H = L*(Q) will be denoted by (-, -) and ||- |,

respectively.
The linear partial differential operator A(t) is given by
n
ou
Alt)u = —Au + Zl“bi(t)%i +elx, Ou,  (x, 1) e QxR (62)
1=

where A is the n-dimensional Laplacian operator, the functions b;(t),
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i=1,2,.. n, are bounded and uniformly continuous functions on R,
and the function c(x,¢) is a nonnegative, bounded, and uniformly

continuous function on Q x R.

Assume that the nonlinear function f(s, t) satisfies the following
conditions. f: R xR — RN is a continuous function, f(0, ¢) =0, and

there is a constant p > 2 such that

ap] P = Cy < f(s, t)s < agl s|P + Cy, (63a)
| s, )] < CoL+]s [P, (63b)
‘2—’;(& )] < CaL+]s P77, (630)

where a1, ag, C;, Cg, and C3 are positive constants. It is proved in [3]

and several references therein that the initial-boundary value problem

(61) under the above assumptions admits a unique mild solution
u= u('7 t) € L%oc((r’ OO)’ H(l)(Q))
In view of this we make the following definition, cf. [19, Section 2.5].

Definition 4. Let Y and W be Banach spaces, where Y is
continuously imbedded into W. A mapping p(u, ) is said to be a singular
semiflow on W with respect to Y, if the following properties are satisfied
by p:

(i) There is a semiflow o(u, ) on Y, such that if u €Y, then

p(u, t) = o(u, t) for all ¢ > 0.
(il) For each (u, t) € W x (0, ©), one has p(u, t) € Y.

(iii) The mapping (u, t) = p(u, t) is a continuous mapping from

W x (0, ) into Y.

We call o(u, t) the reduced semiflow of p(u, t) on Y. The difference
between the singular semiflow p(u, t) and the reduced semiflow o(u, t)

lies in the points when ¢ = 0.



INERTIAL MANIFOLD FOR SKEW PRODUCT SEMIFLOW 173

Let S(¢, t)ug = ult; ug, t), where u(t; ug, t) is the mild solution of
the associated initial value problem:

du
E + A(t)u + F(u, t) = O,

u(t) = ug, (64)

where the linear operator A(¢): H2(Q)N Hy(Q) — H, t € R, is defined
by (62), and the nonlinear operator F(u, t) is the time-variant Nemytskii
mapping induced by f(u, t) which satisfies (63). Here the unknown in
(64) is u(t) = u( t) in (61). The evolution operator S : (ug, 1, t) >

S(t, t)ug is a continuous mapping from H x R x [0, ©) into H.

Define the phase space to be E = H x R. Then one can check that the

assumption (H1) on the linear operator is satisfied by this A(¢), in which
the space V = HZ(Q)N H}(Q) with the H2(Q) topology. Suppose that

the assumptions (H2) and (H3) can be verified for this problem (64), then
the mild solution u(¢; ug, t), t > 1, exists uniquely for any (ug, 1)

e H x R. Then, just as in (2), we can check that the mapping
((ug, 1), t) = (u(t + t; ug, 1), t + 1), (65)

turns out to be a singular skew product semiflow on E with respect to

Y = H}(Q)x R according to Definition 4.

The objective i1s to prove the following theorem, which enables us to
verify that the global and uniform Lipschitz property in the assumption
(H2) is satisfied by the nonlinear term F(u, t) in (64). If so, then the

assumption (H3), i.e., the spectral gap condition, can also be verified for
any one-dimensional and some two-dimensional bounded domain due to
the assumptions on A(¢) in (62) and

lim sup(hpy —Ap) =

k—o©

for the eigenvalues of the Laplace operator on 1D bounded domain and on
some 2D bounded domain with homogeneous Dirichlet or Neumann
boundary conditions, cf. [12] and [19, Section 8.6].
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Theorem 4. There exists an absorbing set in L”(Q),

for the solutions S(t, t)uy of the initial value problem (64), where the

constant Ry is uniform with respect to (ug, 1) € E.
Note that if the space dimension is n = 1, one can prove Theorem 4 by
showing that there is an absorbing set in H(% (Q) and using the Sobolev

imbedding that H}(Q) is imbedded into L*(Q). But for space
dimensions n > 2, we need to do more as shown in the following several

lemmas.

Lemma 16. Under the assumptions (62) and (63), the following

statements hold:
(i) The mild solution u(t) of the initial value problem (64) satisfies
u e L*([r, ), H) and
sup{]| u(®) | : ¢ > 1} < Ky (]| wo |), (67)

where K, (r) is a nondecreasing, nonnegative, scalar function.

(11) It holds that
u e Lj) ([r, ), LP(Q)). (68)

(ii1) There exists an absorbing set B; in H for the solution trajectories
of the equation (64), which is uniform with respect to © € R.

Proof. Taking the inner-product in H of the equation (64) with wu(t),

we get

|

ST u@) |2 + | Val) [P+ (Fe), 1), ult) = 0.

¥

¢

Using the Poincaré inequality and the first inequality in (63a), we see
that there exists a constant o > 0 such that

1d

5 lu@ 1 + o] u@ | +a j Jute Pdx < Gl (69)
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Consequently,
| u(@) Pe*™ < |lug [P + a7'Cy| Q[ (e - e**).
Thus we obtain
lu@®)|? < ug |Pe 2D + o'y Q| < | ug |> + o'y Q) £ =1 (70)
Let
K (r)=r? +a7lCy| Q.

Then (67) follows from (70). Besides (69) implies that
t+1 9
24, I j | u(x, s)|Pdxds < || u(t) |2 +2C,| Q]
t Q

< Kl(" Ug ||)+ 2Cl| Q |, for t > 1. (7].)

This inequality shows that (68) holds. Moreover, the first inequality in
(70) also implies that

B =weH:|w|<1+alq|Q|)

is an absorbing set for the family of mild solutions of the equation (64),
which is uniform in 1t € R.

Definition 5. For any given ¢ > 1, define a Banach space

W,(to) < L ([to, ), LI@) N ZL72([tg, ), LP*72(Q)),

loc
where Zﬁ’):q_Q([to, w), LPT972(Q)) is the space of functions u : [ty, ©) —

IP*272(Q) such that

t+1 9
supj. J- | u(x, s)|PT9"“dxds < oo.
t>tg 9t JQ

Then W (ty) with the following norm becomes a Banach space,

t+1 p+q—2 1/(p+Q*2)
e, t0) = 120, 0, 10 (00) * 8P [ ] Jute 5P 2dsds .
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By this definition, it has been shown in Lemma 16 that the solution

of the initial value problem (64) satisfies

u e Wa(t) and | u [y, o) < Kol|uo ),

where the constant K,(r) is given by

Ky(r) = (1 + ﬁj&(rﬂ Glo|

Lemma 17. If the solution u of the initial value problem (64) satisfies

u e Wy, (t) for some qy > 2, then for any given s, 0 < s < 1, it holds that
ue W, (t+s)and |u "W (zrs) < < Ks(s, | u "W (T)) (72)

where q; = p+qo —2 and Ks(s, r) is a constant continuously depending

on (s, r) and increasing in r > 0.

Proof. Multiplying the equation (61) by (¢ —1¢)|u |q1_2u and then
integrating the two sides in x € Q and in ¢ € [tg, 19 + 8], with 15 > 1

and 0 < s <1 relatively fixed, we can get

T0+S$s _9
j J. t-1)|u|" uu,dxdt
10 Q

T0+S _9
_ j I (t - o) w |2 2u(bu — f(u, t))dxdt = 0. (73)
10 Q
For each term in (73), we can make an estimate as follows. First we have

T0+S$ _9
J (t - TO)J‘ | | uu,dxdt
10 Q

g 2 (R |u|q1dxjdt——j O,

_ 5 e
= o v 9l = [ LI, (74)

111 (Q (
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Secondly, by using the Gauss Divergence Theorem and due to v = 0 on

0Q, we have

T0+S _9
- J. (t-10 )J. | w | uAudxdt
Q

10

T0+S . _9
= —I (t-o )I div(| w | “uVu)dxdt
70 Q

T0+S _9
+ I (t -9 )j‘ V(| u|""u) - Vudxdt
10 Q

T0+S _9 2 _9
:I (t—ro)j (|92 v 2+ uv (| u|272) - Vi) dxd
70 Q

rT0t+S

> (¢ - 2) (t - TO)J. | |13 u(V| u |- Vu)dadt
J o)

T0

f T +S
=(q - 2) 0 (¢t - TO)J‘ | u |q1_4(| u|Vul) (wVu)dxdt
L) Q

rT0tS

=(n -2) (t- ro)j |w |1 wvu [Pdxdt > 0. (75)
J Q

10

Thirdly, by (63a) we can get

T0+S _9 To+s +g1 -2
I (t - ’EO)I |w | " uf(u, t)dxdt > alj- (N )j | w|PT N dxdt
0 Q 10 Q

T0+S _9
—le (t—ro)J. | w |72 ddt.
Q

T0

Since for any given ¢ > 0, there is a constant C(g) such that

yq1_2 < gyPta2 4 C(g), for all y > 0,

there exists a constant Cy = Cy4(ay, Cp, | Q) such that

clj |u|q1*2dxdtgﬂj' |u P24y + €.
Q 2 Jao
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Therefore, we have

T0+S$ _9
j (t - rO)J |2 2uf(u, t)dadt
T Q

0

T0+S
> L[ - <) J' | u [P 2 dxdt - Cys?. (76)
10 Q

Substituting (74), (75) and (76) into (73), we obtain

S 1 p+q1-2
g + )8, s | +/2j|u| daxdt

‘C()+S/2
+lalj (t—rO)J. |u|p+ql_2dxdt
4 10 Q

T0+S
sc432+ij° W) [ d. (77)
ql 70

i (Q)

By the assumption of this lemma, u e Wy, (t) for some gy > 2. For any

fixed s € (0, 2], we make the following two assertions from the estimate

(77). The first assertion is

sup || u(t) |za Q) = fu>I3T|| u(tg +8) | za ©)
07

t21+s
a1
1 %"
<[ewsa + 2] a1y, o

1 @ 1/q
< (048(11 +5lu "qu (r)j : (78)

The second assertion is

t+1 o9
sup j‘ J. | u(x, &) [PTA"*dxdg
Q

t>t+s it
T0+S

< ([%} + 1) sup j | u(x, &) |PT 12 dude

10219 10 +8/29 Q

<2(2) e e}
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so that

+1 1/(p+q1-2)
sup Ut I | u(x, €)|PT02 dxd&]
t Jda

t2t+s

8 2 1 q 1/(p+q1 —2)

From (78) and (79) we can conclude that (72) holds with

1 a1
Ks(s, r) = (C4sq1 + ;rql)

R CE - R

The proof is completed.

Lemma 18. For the solution trajectories of (64), there exists an

absorbing set By in the space LP1(Q), where
1
D1 = 1 +§n(p —1)
Proof. Based on (70) and (71), for every solution trajectory u of the

equation (64), there is a time

T = ’El(uo) >1t+1
such that
lu@)] < Cs =1+ a7 Cy| Q], for t > 1y,

and

t+1
J I | u(x, ¢)|Pdxds < L(KI(C5) +2C| Q|), for t > 1;.
¢ Q 2a;

The above two inequalities allow us to apply Lemma 17 to the solutions

of (64), since u € Wy (r1) for go = 2. Therefore we can assert that for a

given s € (0, 2], for any initial data uy € H, the solution of (64) satisfies
ueWp(n +s)and [uly .o < Ks(s | @ ),

where Kj(s, r) is given in (80) with g; = p here. In particular, we can
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simply take s = 2 to obtain
ue Wp(‘tl +2) and | u ||Wp(f1+2) < Ks5(2, Cp),

where
1 1/17
Ce = C5 + {g [K1(C5) + 2C1| © |]}
1
By the bootstrap argument, there is an integer m > 0 such that

1+%n(p—1)£p+m(p—2),

where m =0 for dimension n=1 or 2, and m>1 for n > 3.
Accordingly we can apply Lemma 17 up to m times, if necessary, to reach

the following statement,

u € Wy (1 +2(1+m)) and [ u ||Wp1 (+2(1+m)) < K,, (81

where K, = K,(m, K3(2, Cg)) is a uniform constant because m only
depends on the parameter p and Cg is a uniform constant. As a

consequence of (81), we find that

u e L([t; +2(1 + m), o), LP1(Q)) (82)
and

By = {w e LP(Q): | w1 (q) < K4} (83)

is an absorbing set in the space L”1(Q) for the solutions of the equation
(64).
Lemma 19. For the solution trajectories of the equation (64), there

exists an absorbing set B, in the space L”(Q), as stated in Theorem 4.

Proof. Here we use the (L”, L”) regularity property of analytic
semigroups stated in [19, Theorem 38.10]. According to that, the analytic
semigroup T'(¢), ¢t > 0, generated by Ay = A : H2(Q) N H}(Q) - H has

the regularity: for any given 1 < p < 0, 1 < g < oo,

T(t): LP(Q) - LI(Q) forall ¢ > 0,
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and there is a constant C = C(p, ¢) such that for any ¢ >0 and

Ug € Lp(Q),

n(l 1
1 T@)uo 9o < Ct 2(p qj” o [l p () (84)

The linear evolution operator U(¢, t), ¢ > 1, 1€ R, generated by the
nonautonomous linear operator A(t) = —Ag + A;(¢), where the lower

order perturbation (with the assumptions on the coefficient functions

aforementioned in this section) is given by

n
A ()u = Zbi(t)% + olx, t)u,
i=1 v

and possesses the same regularity property, which can be shown in detail

by the approach provided in [19, Section 4.4]. Namely, for any ¢ > r,

Tt e R, and uy € LP(Q), one has

n(l 1
106 o s < € - 553 0 lupian, (#5)

where C = C(p, q) again is a constant. In (84) and (85), if ¢ = o, then

1/q = 0.

The mild solution of the initial value problem (64) for any given

ug € H satisfies the integral equation
t
u(t) = U, t)ug —j U, s)f(uls), s)ds, ¢ > .
T

Let t9 > 1y +2(1 + m), where 1; > t+1 and m > 0 have been specified

in the proof of Lemma 18. Note that t; depends on the initial data u.
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For any given ¢ e (0, 1], we have

lu(rg + Q) |2
T2+
< U + € w)ules)l e g + I [U(es + 6, ) f0).0) oy
2
=[Ulrg + &, t2)ulre) |2
¢
N j U + €.t o)l 70), 4 32) | (86)

By Lemma 18 and using (85), we get
|U(tg + ¢, T2)M(T2)||L°°(Q) < CCfn/@pl)" u(ta) [|zm @) < CK4C7n/(2p1) 87)
due to (82). Moreover, (63b) and (82) imply that
f(-), ) e L*([xy + 21 + m), »), L°(Q)),

where

__p __1 n_n
e_p—l_p—1+2>2' (88)
Therefore, by (85) and (88), we have the following estimate,

o
j Uy + Gt w)fult + 7).t + %) |l
S e \-n/(26)
< I =) flue ko) 1+ o) oyt
< K5(Cs, K4)I§C((; — )20 gy
0

1
- C3(Cy, Ka)[1- g5 ) £/, (59

where C, is specified in (63b) and

K5(Cy, Kq) = [ f@), ) g2 [y s 2140m), ), 1°(0):
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Note that 0 < n/(20) <1 so that the constant 1 - n/(20) > 0. In view of
(63b), (81) and (88), K5(Cy, K4) is a uniform constant.

Substituting (87) and (89) into (86), we end up with

[ (g +C) ||Loo(Q) < Kg(€), for 19 > 11 +2(1+m) and 0 < £ <1, (90)
where

-1
Kg(Q) = CK4€—n/(2p1) + CK5(Cy, K4)(1 _%) Cl—n/(ZG).
Finally, the result (90) shows that there exists an absorbing set in the
space L*(Q),
Boo = {LU € LOO(Q) : " w "LOO(Q) <1+ KG(l)},

for the solutions of the equation (64). In fact, for each initial status

uy € H, the solution u(t) = u(t; ug, ) will enter this absorbing set B,

and stay in B, forever when
t>19 +121(uy)+20+m)+1=1y(ug)+2m + 3.

The proof of this lemma is completed.

Thus the proof of Theorem 4 is also completed with the constant in
(66) determined by

RO =1+ KG(l)

Now let us continue to address the existence of an inertial manifold
for the skew product semiflow m associated with the equation (64) on
E = H x R. Let K be the constant

K = Cy(1 +(Ry)’™?), 91)

where R is the constant given in (66) and shown above. By (63c) it holds
that

Sup{‘%(u, t)‘|u|£R0,tefR}SK (92)
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We can modify the nonautonomous reaction-diffusion equation in (61) by

replacing the original nonlinear term f(u, t) by the truncated nonlinear

term
fu, ) if |u| < Ry,
g, 1) = f(%l‘,t) if [u| > R,.

Consider the modified nonautonomous equation and the associated

initial-boundary value problem:

%—L;—A(t)u+g(u, t)=0, t>1,x€eQ,

u=0, t=>1,x¢€0Q,

ux, 1) = ug(x) € H = L2(Q), x € Q. (93)

The initial value problem of the corresponding nonautonomous

evolutionary equation is

du
" A(t)u + G(u, t) = 0,

u(t) = ugp, (94)

where the linear operator A(t) is the same as in (64), while the nonlinear
mapping G(u, t) is the corresponding time-variant Nemytskii mapping
induced by g(u, t) and defined on the same phase space E. Based on

Theorem 4, we can invoke the proved absorbing property of the solution
semiflow of the original problem (64) and then apply Theorem 1 to this
modified problem (94), which shares exactly the same dynamics with the

original problem (64) in the absorbing set B,,, to establish the following

result.

Theorem 5. Under the assumptions made on A(t) and f(u, t) in this
section, for any one-dimensional bounded domain and some two-
dimensional bounded domain [19, Section 8.6], such as Q = (0, ¢;)
x (0, £9) with (fl/fz)Q being rational, the assumption (H3) and the
spectral gap condition (3) are satisfied with K given by (91). Thus there
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exists an inertial manifold 9 in the space E = L2(Q) x R for the skew
product semiflow © defined in (65) and generated by the solutions of the

nonautonomous reaction-diffusion equation (64).

Proof. For the truncated reaction-diffusion equation (93) and the
associated nonautonomous evolutionary equation (94), the global and
uniform Lipschitz condition in (H2) is satisfied:

| G(uy, t) = Glug, t) |

| g (). t) - glua() ) 12(q)

- JQ‘ g_i(@ t) ‘2| uy (%) = ug(x) |2de1/2

IA

of ‘
sup |=— (&, t Uy —us || £ K| uy —uo |,
as%o\au@)nl 2 < Klluy ~us |
teR

where & = xu;(x) + (1 - x)ug(x) for some « € [0, 1], which is valid for

any uy, us € L*(Q) c I?(Q) and for any ¢ € R due to (92). Under the

spectral gap condition as stated in this theorem for the specified 1D and
2D domains which can be confirmed by the assumptions on (62) and this
finite K given in (91), Theorem 1 is applicable to this problem (94) and we
can assert that an inertial manifold 9t < E exists for the skew product

semiflow mgy assoclated with (94) which is confined in the subset

B, xR c E.

We claim that this manifold 9% turns out to be an inertial manifold
also for the original skew product semiflow n defined in (65) associated
with the solutions of (64). In order to prove this claim, it suffices to show
that this 91 satisfies the required exponential attraction property:

distg ((u(t), ), M) < Clug)exp(- vt - 1), L=, (95)
where y >0 is a uniform attraction rate for all solutions u(t) =

u(t; ug, 1) of (64). Here the Hausdorff distances in the space E = H x R
and in the space H are denoted by disty, and disty, respectively.
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In fact, by the definition of this manifold 9, such a uniform
attraction rate is guaranteed after any solution trajectory u(t; ug, 1)
eventually and permanently enters the absorbing set B,, ¢ H, in which

the dynamics of the truncated evolutionary equation (94) and the original
equation (64) are the same. Let this uniform attraction rate valid in the
absorbing set B, be B(> 0). It holds that

distg ((u(t), ¢), M) < C*(| u(ty) ) exp(-Plt — t0)), ¢ > 1o, (96)
where C*(r) is a continuous positive function and 1., (> 1) is the time
when the solution u(¢; ug, t) permanently enters B,,.

At the end of the proof of Lemma 19, we have shown that the time

T, can be taken as

T = T (Uug) = 11(0g) + 2m + 8,
where 17(zy) is the time when u(f; ug, 1) permanently enters the
absorbing set B; —« H as specified at the beginning of the proof of

Lemma 18. Let
dM = diStH(Bl, P?'Ongn),

where Projg9t is the orthogonal projection of 9 on H. Since B; is a
closed, bounded ball in H, this d;; must be a finite constant. In view of

(70) and the specification of B;, we see that
distg (ult; ug, 1), By) < | ug | exp(-a(t — 1)), for ¢ e [, t1(ug)]. 97
When ¢ > 17(xg), u(t) will stay inside B; forever, so that
disty(ult), 1. M) < | ug |lexpl-olt - 7))+ dyy
< (o | + dag explofe (o) - T expl-olt - ), for ¢ <[5, v, (up)].  (99)

Assembling together the result (98) during the time interval
[t,75(ug)] and the result (96) for ¢ > 1,(uy), and noting that

lu(t,)| <1+ o Cy| Q|, we finally proved the exponential attraction

inequality (95) with the uniform constant attraction rate

vy = min{o, B}
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and the coefficient constant
Clug) = max] ug | + dys exp(ofe, (o) - 1), € (1 + o€y @) exp(Bls. (up) — 7).
Thus the proof is completed.

Furthermore we can extend the existence result on inertial manifolds
shown in Theorem 5 to more general nonautonomous reaction-diffusion

equations
ou
5—A(t)u+ flu, x,t) = h(x, t),t >1,x € Q
u=0,t>1 x € 0Q,
ulx, ©) = up(x) e H = I3(Q),

with the same assumptions on Q and A(t) and similar assumptions on
f(u, x,t) as in Theorem 5, where Ah(x,t) is any given bounded
measurable function or satisfying even more general conditions. The

proof will be similar to what we have shown above with some
modifications to take into account the additional inhomogeneous term

h(x, t).
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