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Abstract

In this paper, a sufficient condition is established for the global
asymptotic stability of the nonlinear delay differential equation

x'(t) + alt)x(t — ) = b(t) f(x(t — o)), t =0,

which generalizes and improves some existing results in the literature.
1. Introduction

It is well known [1, 2, 6] that every solution of the first order
nonlinear delay differential equation with instantaneous term

x'(t) + a(t)x(t) = b(t)f(x(t — o)), t>0 (1.1)
tends to zero as ¢t — o, if there exists a ¢ € [0, 1) such that
|6(0)f@)]| < cat)| ul, 1.2
and
J'OO als)ds = , (1.3)
0
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where o € [0, ®), a, b € C([0, ©), R), f € C(R, R). When incorporating delay
into the instantaneous term a(t)x(t), we have the following nonlinear
pure delay differential equation

x'(t) + at)x(t — 1) = b(t)f(x(t —5)), t >0, (1.4)

where 1 € [0, ). In paper [3], the authors extended the above result for

Eq. (1.1) to Eq. (1.4), i.e., they proved that if (1.2) and (1.3) hold and

0<1t sup alt)< l, (1.5)
te[0, ) e

then every solution of Eq. (1.4) tends to zero as ¢ — .

When ¢ = 0, Eq. (1.4) reduces to
x'(t) = —a(t)x(t — 1), t>0. (1.6)

In this case, [4, 7-9] proved that if (1.3) holds and that

lim supJ.t a(s)ds < é, 1.7

VRN 2
then every solution of Eq. (1.6) tends to zero as t—o. Obviously,
condition (1.7) is weaker than (1.5) when ¢ = 0. So, one would naturally
expect that (1.5) can be also weakened when ¢ > 0 is small. This
constitutes the purpose of this paper. In fact, we establish the following

theorem by using the basic ideas of [4, 5, 6] and some new techniques.

Theorem 1.1. Assume that (1.2) and (1.3) hold, and that

t (8-c)/2(1 +c), if 0<¢<1/3,
lim supI als)ds < { (1.8)
too  Ji-t V21 - ¢)/(1 + ¢), if 1/3<c<1.

Then every solution of Eq. (1.4) tends to zero as t — oo.

Compare (1.5) with (1.8), we see that condition (1.8) is better than
(1.5) when 0 < ¢ < (2¢2 —1)/(2¢% + 1) ~ 0.87324. And one easily sees that
(1.8) reproduces (1.7) when ¢ = 0.
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2. Proof of Theorem 1.1

Lemma 2.1. Assume that (1.2) holds, and that

2.1)

t—t

t (B8-rc)/2(1 +¢), if 0<c<1/3,
I a(s)ds <
N2 -¢)/A+¢), if1/3<c<1.
Then every solution of Eq. (1.4) is bounded.

Proof. If not, assume that lim sup;_,,.| x(t)| = », then there exists a
large T > 2(t+ o) such that |x(T)|>|x(t)| for ¢ e [min{-t, —c}, T).
Without loss of the generality, we may assume that x(T') = | x(T")|. Note
that x(T)> cx(T). We can prove that x(7T —rt)<cx(T). Otherwise,
x(T —1) > cx(T). By the continuous of x(t), there exists a T} <T such
that x(¢ —t) > cx(T) for T} <t < T. Hence, from (1.2) and (1.4), we have

x'(t) = —a(t)x(t —t)+b(t)f(x(t — o)) < alt)[-x(t —t)+cx(T)] <0, T} <t<T,

which implies that x(t) is not increasing on [7j, T]. This contradicts to
the definition of 7. Hence, there exists a & € [T — 1, T') such that x(&) =
cx(T). From (1.2) and (1.4), we have

x'(t) < —at)x(t — 1)+ cx(T)al) < 1 +c)x(T)alt), t<T. (2.2)

For £ <t < T, by (2.2), we have
x(T) - x(t — 1) < (1 + c)x(T)jE’ a)du, E<t<T.
t—1

Substituting this into the first inequality in (2.2), we have

x'(t) <1+ c)x(T)a(t)J.é a(s)ds, £<t<T. (2.3)
t—1
Let
{(3 -¢)/20+¢), if 0<c<1/3,
A= 2.4)
V21 -¢)/A+¢), if1/83<c<1.
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There are three possible cases to consider:
T
Case 1. ¢ < 1/3 and J‘é a(s)ds <1 < A. In this case, integrating (2.3)

from § to T and using (2.1), we have

T
(T) = x(&) + j RO

< ex(T)+(1+ c)x(T)J.(:T a(t)jtia(s)dsdt
< ex(T)+ (1 + c)x(T)J-gT a(t)[A - ; a(s)ds]dt
<ex(T)+ (1 + c)x(T)[A LT a(s)ds — %(LT a(s)ds]z}

<ex(T)+(1+ c)x(T)(A _ %)
= x(T).

T
Case 2. ¢<1/3 and .[g a(s)ds > 1. Then there exists an nel¢, T)

T
such that j a(s)ds = 1. Integrating (2.2) and (2.3) and using (2.1), we
n

have

(T = x(e) + j ;x’(t)dt ; J' nT ©(¢)dt
< ex(T)+ (1 + ¢)x(T) U; als)ds + j: alt) I ft a(s)dsdt}
— ex(T) + (1 + ¢)x(T) U: alt) j ;a(s)dsdt ; j nT alt) j ita(s)dsdt}

=cx(T)+ (1 + c)x(T)jT a(t)J-n a(s)dsdt
n

< ex(T)+(1+ c)x(T)[AI: a(s)ds - %U: a(s)dsjzl

= cx(T)+(1+ c)x(T)(A - %)

= x(T).
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T
Case 3. 1/3<c <1 and J.é a(s)ds < A < 1. In this case, integrating

(2.3) from & to T and using (2.1), we have

T
(T) = x(8) + I

< ex(T) + (1 + ¢)x(T) f éT a(t)jf_r als)dsdt

T t
< ex(T)+ (1+ c)x(T)J.(: a(t)(A - J' a a(s)ds]dt

A f Z als)ds - % [ I Z a(s)dsﬂ

< cx(T)+ %(1 +¢)x(T)A?

<ex(T)+ 1+ e)x(T)

= x(T).

Combining Case 1, Case 2 and Case 3, we have concluded a contradiction,
and so the proof is complete.

We are now in a position to show our main result.

Proof of Theorem 1.1. When ¢ = 0, Theorem 1.1 is known, so we
assume that ¢ € (0, 1) in the sequel. Set p = lim sup;_,,,| x(¢) |. It follows

from Lemma 2.1 that p € [0, ). We shall prove p = 0 in two cases.

Case 1. x'(¢) is nonoscillatory. Then x(¢) is increasing or decreasing
eventually. This implies that the limit lim, | x(¢)| = p exists. There are

two possible subcases.

Subcase 1. lim sup;_, ., x(t) = —p. Then from (1.2) and (1.4),

—u - x(t) = LOO [~a(s)x(s — 1) + b(s) (x(s — ))]ds
> j :° [a(s)x(s — ©) - | b(s)f(x(s - o)) [1ds

> LOO a(s)[-x(s —1) - x(s —o)|]ds, ¢t = T.
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Note that

;Lrg[—x(s —1)-dx(s-0)|]]=0-0c)p
It follows from (1.3) that p = 0.

Subcase 2. lim sup;_,,, x(t) = p. Then from (1.2) and (1.4),

W= x(t) = Lw [a(s)x(s — 1) + b(s) (x(s — o))]ds
< LOO [—a(s)x(s — ©) +| b(s) f(x(s — o)) |]ds

< Jmo a(s)[-x(s — 1)+  x(s —o)|]ds, t = T.
t

Note that
lim[-x(s — 1)+ d 2(s - o) |] = -1 = ¢)p.
§—>0
It follows from (1.3) that p = 0. Combining both Subcase 1 and Subcase
2, we have p = 0.
Case 2. x'(t) is oscillatory. Assume that p > 0 and let
(B8 -¢)/2(1 + ¢), if 0<ec<1/8,
l-c<Ac<
20-¢)/1+¢c), if1/83<ec<1,

and let ¢ € (0, (1 - ¢)u/2(1 +¢)) be any positive given number. Then it
follows from (1.8) and the definition of p that there exists a T > 3 such
that

It a(s)ds < A, t>T, (2.5)

t—1

and

|x(@)| <(u+e), t=T. (2.6)
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Choose an increasing sequence {t,} with ¢, >T +t1+o0,t, > ©, n —> ©
such that lim, | x(,)] = p | x@E,)] > c(p +¢), x'(¢,) =0 and |x(t,)]| is
left local maximum point for n =1, 2, .... Similar to the proof of Lemma
2.1, it is easy to prove that there exists &, €[t, —1,¢,) such that
x(&,) = c(n +¢). By (1.2), (1.4) and (2.6), we have

x'(t) < —a)x(t —1)+c(u+e)alt) <A +c)(u+e)alt), t>T. 2.7)

For ¢, <t <t,, by (2.7), we have

€n
clp+e)—x(t—1)< (1+¢)(u+ g)j alw)dy, &, <t <t
t—1
Substituting this into the first inequality in (2.7), we have
En
K1) < (L + )+ g)a(t)j als)ds, &, <t <ty 2.8)
t—1t
There are three possible subcases to consider:

t
Subcase 1. ¢ < 1/3 and J; a(s)ds <1 < A. In this case, integrating
n

(2.8) from &, to t,, and using (2.5), we have

)~ el +0) = | ; ()t

n

<Q+e)(un+ S)Ign a(t)‘[ir; a(s)dsdt

t

_ (1+C)(u+8)_[£:a(t)“t

-7

t 1( ¢t 2
A Ln a(s)ds — 3 U.é a(s)ds] }

n

a(s)ds — I; a(s)ds) dt

<Al+c)(u+e)

< (1+c)(A —%)(u+ €).
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t
Subcase 2. ¢ <1/3 and J.én a(s)ds > 1. Then there exists an n,, €
n

tn . .
(&,,, t,) such that I a(s)ds = 1. Integrating (2.7) and (2.8) and using
Mn
(2.5), we have

x(ty) - c(u + €)

- I;nx'(t)dt + j K x'(t)dt

n Nn

<A+c)(u+e) [I;na(s)ds + -[1:: alt) J.int a(s)dsdt}
=1+c)(u+ 8)|:j1:: al?) I;nna(s)dsdt + J‘]:: az(t)jinT a(s)dsdt}

- () [ "t [ ats)asa

~a o) [ a0 [ aterds [ atas o

<(P+c)(u+e) _A j;: a(s)ds - %U: a(s)dSJz}

— 1+ c)(A —%)(u Te).

t
Subcase 3. 1/3<c¢<1 and J.; a(s)ds < A <1. In this case, integrating

(2.8) from &, to t,, and using (2.5), we have

)~ elp + ) = | ; ()t

n

<@+e)ro ; att) | j’_”r a(s)dsdt
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<(1+c)(u+eg) j;: alt) (A - J.;a(s)dsjdt

IN

2
T+c)(u+e)lA J;n a(s)ds — %[I: a(s)dsJ

IA

%(1 + ) A%+ 6).

Subcases 1, 2 and 3 imply

l+c)(A-1/2)(n+¢g), if 0<c<1/8,

x(tn)—C(M+s)S{(1+C)A2 (u +€)/2, if 1/3<¢<1.

Let n - o and ¢ - 0. Then we obtain

(1+c)(A-1/2), if0<c<1/3,
l1-c<
1+c)A2/2, if1/3<c<1,

which yields

A >

{(3 —¢)/2(l+¢),  if0<ec<1/3

V20 -¢)/0+¢), if1/83<ec<1.

This is a contradiction, and so p = 0. The proof is complete.
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