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Abstract

In this paper, a sufficient condition is established for the global
asymptotic stability of the nonlinear delay differential equation

( ) ( ) ( ) ( ) ( )( ) ,0, ≥σ−=τ−+′ ttxftbtxtatx

which generalizes and improves some existing results in the literature.

1. Introduction

It is well known [1, 2, 6] that every solution of the first order
nonlinear delay differential equation with instantaneous term

( ) ( ) ( ) ( ) ( )( ) 0, ≥σ−=+′ ttxftbtxtatx (1.1)

tends to zero as ,∞→t  if there exists a [ )1,0∈c  such that

( ) ( ) ( ) ,utcauftb ≤ (1.2)

and

( )∫
∞

∞=
0

,dssa (1.3)
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where [ ) [ )( ) ( ).,,,,0,,,0 RRR CfCba ∈∞∈∞∈σ  When incorporating delay

into the instantaneous term ( ) ( ),txta  we have the following nonlinear

pure delay differential equation

( ) ( ) ( ) ( ) ( )( ) ,0, ≥σ−=τ−+′ ttxftbtxtatx (1.4)

where [ ).,0 ∞∈τ  In paper [3], the authors extended the above result for

Eq. (1.1) to Eq. (1.4), i.e., they proved that if (1.2) and (1.3) hold and

[ )
( ) ,1sup0

,0 e
ta

t
<τ≤

∞∈
(1.5)

then every solution of Eq. (1.4) tends to zero as .∞→t

When ,0=c  Eq. (1.4) reduces to

( ) ( ) ( ) .0, ≥τ−−=′ ttxtatx (1.6)

In this case, [4, 7-9] proved that if (1.3) holds and that

( )∫ τ−∞→
<

t

tt
dssa ,

2
3suplim (1.7)

then every solution of Eq. (1.6) tends to zero as .∞→t  Obviously,

condition (1.7) is weaker than (1.5) when .0=c  So, one would naturally

expect that (1.5) can be also weakened when 0>c  is small. This

constitutes the purpose of this paper. In fact, we establish the following

theorem by using the basic ideas of [4, 5, 6] and some new techniques.

Theorem 1.1. Assume that (1.2) and (1.3) hold, and that

( )
( ) ( )

( ) ( )∫ τ−∞→ 





<≤+−

<≤+−
<

t

tt cifcc

cifcc
dssa

.131,112

,310,123
suplim (1.8)

Then every solution of Eq. (1.4) tends to zero as .∞→t

Compare (1.5) with (1.8), we see that condition (1.8) is better than

(1.5) when ( ) ( ) .87324.012120 22 ≈+−≤≤ eec  And one easily sees that

(1.8) reproduces (1.7) when .0=c
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2. Proof of Theorem 1.1

Lemma 2.1. Assume that (1.2) holds, and that

( )
( ) ( )

( ) ( )∫ τ− 





<≤+−

<≤+−
<

t

t cifcc

cifcc
dssa

.131,112

,310,123
(2.1)

Then every solution of Eq. (1.4) is bounded.

Proof. If not, assume that ( ) ,suplim ∞=∞→ txt  then there exists a

large ( )σ+τ> 2T  such that ( ) ( )txTx >  for { }[ ).,,min Tt σ−τ−∈

Without loss of the generality, we may assume that ( ) ( ) .TxTx =  Note

that ( ) ( ).TcxTx >  We can prove that ( ) ( ).TcxTx ≤τ−  Otherwise,

( )τ−Tx  ( ).Tcx>  By the continuous of ( ),tx  there exists a TT <1  such

that ( )τ−tx  ( )Tcx>  for .1 TtT ≤≤  Hence, from (1.2) and (1.4), we have

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ] ,,0 1 TtTTcxtxtatxftbtxtatx ≤≤≤+τ−−≤σ−+τ−−=′

which implies that ( )tx  is not increasing on [ ].,1 TT  This contradicts to

the definition of T. Hence, there exists a [ )TT ,τ−∈ξ  such that ( ) =ξx

( ).Tcx  From (1.2) and (1.4), we have

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .,1 TttaTxctaTcxtxtatx ≤+≤+τ−−≤′ (2.2)

For ,Tt ≤≤ξ  by (2.2), we have

( ) ( ) ( ) ( ) ( )∫
ξ

τ−
≤≤ξµµ+≤τ−−

t
TtdaTxctxTcx .,1

Substituting this into the first inequality in (2.2), we have

( ) ( ) ( ) ( ) ( )∫
ξ

τ−
≤≤ξ+≤′

t
TtdssataTxctx .,1 (2.3)

Let

( ) ( )

( ) ( )





<≤+−

<≤+−
=

.131if,112

,310if,123

ccc

ccc
A (2.4)
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There are three possible cases to consider:

Case 1. 31<c  and ( )∫ξ ≤<
T

Adssa .1  In this case, integrating (2.3)

from ξ to T and using (2.1), we have

( ) ( ) ( )∫ξ ′+ξ=
T

dttxxTx

( ) ( ) ( ) ( ) ( )∫ ∫ξ

ξ

τ−
++≤

T

t
dsdtsataTxcTcx 1

( ) ( ) ( ) ( ) ( )∫ ∫ξ ξ








−++≤

T t
dtdssaAtaTxcTcx 1

( ) ( ) ( ) ( ) ( )



















−++≤ ∫ ∫ξ ξ

2

2
11

T T
dssadssaATxcTcx

( ) ( ) ( ) 




 −++<

2
11 ATxcTcx

( ).Tx=

Case 2. 31<c  and ( )∫ξ ≥
T

dssa .1  Then there exists an [ )T,ξ∈η

such that ( )∫η =
T

dssa .1  Integrating (2.2) and (2.3) and using (2.1), we

have

( ) ( ) ( ) ( )∫ ∫
η

ξ η
′+′+ξ=

T
dttxdttxxTx

( ) ( ) ( ) ( ) ( ) ( ) 







+++≤ ∫ ∫ ∫

η

ξ η

ξ

τ−

T

t
dsdtsatadssaTxcTcx 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) 







+++= ∫ ∫ ∫ ∫η

η

ξ η

ξ

τ−

T T

t
dsdtsatadsdtsataTxcTcx 1

( ) ( ) ( ) ( ) ( )∫ ∫η

η

τ−
++=

T

t
dsdtsataTxcTcx 1

( ) ( ) ( ) ( ) ( )



















−++< ∫ ∫η η

T T
dssadssaATxcTcx

2

2
11

( ) ( ) ( ) 




 −++=

2
11 ATxcTcx

( ).Tx=
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Case 3. 131 <≤ c  and ( )∫ξ ≤<
T

Adssa .1  In this case, integrating

(2.3) from ξ to T and using (2.1), we have

( ) ( ) ( )∫ξ ′+ξ=
T

dttxxTx

( ) ( ) ( ) ( ) ( )∫ ∫ξ

ξ

τ−
++≤

T

t
dsdtsataTxcTcx 1

( ) ( ) ( ) ( ) ( )∫ ∫ξ ξ








−++≤

T t
dtdssaAtaTxcTcx 1

( ) ( ) ( ) ( ) ( )



















−++≤ ∫ ∫ξ ξ

T T
dssadssaATxcTcx

2

2
11

( ) ( ) ( ) 21
2
1 ATxcTcx ++<

( ).Tx=

Combining Case 1, Case 2 and Case 3, we have concluded a contradiction,
and so the proof is complete.

We are now in a position to show our main result.

Proof of Theorem 1.1. When ,0=c  Theorem 1.1 is known, so we

assume that ( )1,0∈c  in the sequel. Set ( ) .suplim txt ∞→=µ  It follows

from Lemma 2.1 that [ ).,0 ∞∈µ  We shall prove 0=µ  in two cases.

Case 1. ( )tx ′  is nonoscillatory. Then ( )tx  is increasing or decreasing

eventually. This implies that the limit ( ) µ=∞→ txtlim  exists. There are

two possible subcases.

Subcase 1. ( ) .suplim µ−=∞→ txt  Then from (1.2) and (1.4),

( ) ( ) ( ) ( ) ( )( )[ ]∫
∞

σ−+τ−−=−µ−
t

dssxsbsxsatx

( ) ( ) ( ) ( )( )[ ]∫
∞

σ−−τ−−≥
t

dssxfsbsxsa

( ) ( ) ( )[ ]∫
∞

≥σ−−τ−−≥
t

Ttdssxcsxsa .,
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Note that

( ) ( )[ ] ( ) .1lim µ−=σ−−τ−−
∞→

csxcsx
s

It follows from (1.3) that .0=µ

Subcase 2. ( ) .suplim µ=∞→ txt  Then from (1.2) and (1.4),

( ) ( ) ( ) ( ) ( )( )[ ]∫
∞

σ−+τ−−=−µ
t

dssxsbsxsatx

( ) ( ) ( ) ( )( )[ ]∫
∞

σ−+τ−−≤
t

dssxfsbsxsa

( ) ( ) ( )[ ]∫
∞

≥σ−+τ−−≤
t

Ttdssxcsxsa .,

Note that

( ) ( )[ ] ( ) .1lim µ−−=σ−+τ−−
∞→

csxcsx
s

It follows from (1.3) that .0=µ  Combining both Subcase 1 and Subcase

2, we have .0=µ

Case 2. ( )tx ′  is oscillatory. Assume that 0>µ  and let

( ) ( )

( ) ( )





<≤+−

<≤+−
<<−

,131if,112

,310if,123
1

ccc

ccc
Ac

and let ( ) ( )( )cc +µ−∈ε 121,0  be any positive given number. Then it

follows from (1.8) and the definition of µ that there exists a 0tT >  such
that

( )∫ τ−
≥≤

t

t
TtAdssa ,, (2.5)

and

( ) ( ) ., Tttx ≥ε+µ< (2.6)
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Choose an increasing sequence { }nt  with ∞→∞→σ+τ+≥ ntTt nn ,,

such that ( ) ( ) ( ) ( ) 0,,lim =′ε+µ>µ=∞→ nnnn txctxtx  and ( )ntx  is

left local maximum point for ....,2,1=n  Similar to the proof of Lemma

2.1, it is easy to prove that there exists [ )nnn tt ,τ−∈ξ  such that

( ) =ξnx  ( ).ε+µc  By (1.2), (1.4) and (2.6), we have

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .,1 Tttactactxtatx ≥ε+µ+≤ε+µ+τ−−≤′ (2.7)

For ,nn tt ≤≤ξ  by (2.7), we have

( ) ( ) ( ) ( ) ( )∫
ξ

τ−
≤≤ξµµε+µ+≤τ−−ε+µ

n

t
nn ttdactxc .,1

Substituting this into the first inequality in (2.7), we have

( ) ( ) ( ) ( ) ( )∫
ξ

τ−
≤≤ξε+µ+≤′

n

t
nn ttdssatactx .,1 (2.8)

There are three possible subcases to consider:

Subcase 1. 31<c  and ( )∫ξ ≤<n

n

t
Adssa .1  In this case, integrating

(2.8) from nξ  to nt  and using (2.5), we have

( ) ( ) ( )∫ξ ′=ε+µ−
n

n

t

n dttxctx

( ) ( ) ( ) ( )∫ ∫ξ

ξ

τ−
ε+µ+≤

n

n

nt

t
dsdtsatac1

( ) ( ) ( ) ( ) ( ) dtdssadssatac
n

n n

t tt

t∫ ∫∫ξ ξτ−








−ε+µ+= 1

( ) ( ) ( ) ( )



















−ε+µ+≤ ∫ ∫ξ ξ

2

2
11

n

n

n

n

t t
dssadssaAc

( ) ( ).
2
11 ε+µ




 −+≤ Ac
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Subcase 2. 31<c  and ( )∫ξ ≥n

n

t
dssa .1  Then there exists an ∈ηn

( )nn t,ξ  such that ( )∫η =n

n

t
dssa .1  Integrating (2.7) and (2.8) and using

(2.5), we have

( ) ( )ε+µ− ctx n

( ) ( )∫ ∫
η

ξ η
′+′=

n

n

n

n

t
dttxdttx

( ) ( ) ( ) ( ) ( ) 







+ε+µ+≤ ∫ ∫ ∫

η

ξ η

ξ

τ−

n

n

n

n

nt

t
dsdtsatadssac1

( ) ( ) ( ) ( ) ( ) ( ) 







+ε+µ+= ∫ ∫ ∫ ∫η

η

ξ η

ξ

τ−

n

n

n

n

n

n

nt t

t
dsdtsatadsdtsatac1

( ) ( ) ( ) ( )∫ ∫η

η

τ−
ε+µ+=

n

n

nt

t
dsdtsatac1

( ) ( ) ( ) ( ) ( ) 















−ε+µ+= ∫ ∫ ∫η τ− η

n

n n

t t

t

t
dtdssadssatac1

( ) ( ) ( ) ( )



















−ε+µ+≤ ∫ ∫η η

n

n

n

n

t t
dssadssaAc

2

2
11

( ) ( ).
2
11 ε+µ




 −+= Ac

Subcase 3. 131 <≤ c  and ( )∫ξ ≤<n

n

t
Adssa .1  In this case, integrating

(2.8) from nξ  to nt  and using (2.5), we have

( ) ( ) ( )∫ξ ′=ε+µ−
n

n

t

n dttxctx

( ) ( ) ( ) ( )∫ ∫ξ

ξ

τ−
ε+µ+≤

n

n

nt

t
dsdtsatac1
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( ) ( ) ( ) ( )∫ ∫ξ ξ








−ε+µ+≤

n

n n

t t
dtdssaAtac1

( ) ( ) ( ) ( )



















−ε+µ+≤ ∫ ∫ξ ξ

2

2
11

n

n

n

n

t t
dssadssaAc

( ) ( ).1
2
1 2 ε+µ+≤ Ac

Subcases 1, 2 and 3 imply

( ) ( )
( ) ( ) ( )

( ) ( )





<≤ε+µ+

<≤ε+µ−+
≤ε+µ−

.131if,21

,310if,211

2 cAc

cAc
ctx n

Let ∞→n and .0→ε  Then we obtain

( ) ( )

( )





<≤+

<≤−+
≤−

,131if,21

,310if,211
1

2 cAc

cAc
c

which yields

( ) ( )

( ) ( )





<≤+−

<≤+−
≥

.131if,112

,310if,123

ccc

ccc
A

This is a contradiction, and so .0=µ  The proof is complete.
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