ON PRIME SUBMODULES

YI QIU

Department of Economic Management
Youth Management Institute
Shanghai, 200083, P. R. China

Abstract

In this paper, we study the properties of prime submodules of a finite module over a Noetherian local ring. The results of the paper show that the properties of such prime submodules are similar to that of prime ideals. We will prove a prime avoidance theorem for prime submodules under a slight weaker assumption. Moreover, we will give an upper bound for the length of ascending chains of prime submodules of a finite module.

1. Introduction

In this paper, we will study the properties of prime submodules of a finite generated module over a Noetherian local ring.

As one of the most important notions of commutative rings, prime ideals play an essential role in the classical theory of commutative algebra. A very useful property of them is the prime avoidance theorem. We will prove a similar result for prime submodules under a slight weaker assumption. Another important property of prime ideals is that one can use them to define the Krull dimension for a Noetherian local ring. To be more explicit, the upper bound of the length of every ascending chain of prime ideals is finite. We will extend this to the case of prime submodules.

2000 Mathematics Subject Classification: 13C13, 13 E05.
Keywords and phrases: prime ideal, prime submodule, Noetherian local ring.

Let A be a ring and let N be an A-module. Recall that a submodule $M \subset N, M \neq N$, is said to be prime if for every $a \in A$, the homothety $h_{a}: N / M \rightarrow N / M, h_{a}(\bar{x})=a \bar{x}, x \in N$, is either injective or null [2], where \bar{x} stands for the image of x in N / M. In particular, it is clear that an ideal P of A is a prime submodule if and only if P is a prime ideal of A. The main results of the paper state as follows they stand cited in the paper:

Theorem 3.4. Let (A, m) be a local ring with infinite residue field. Let $M \subseteq N$ be a pair of finitely generated A-module. If $M_{1}, M_{2}, \ldots, M_{k}$ are prime submodules of N and $M \subseteq M_{1} \cup M_{2} \cup \cdots \cup M_{k}$, then there exists some $i(1 \leq i \leq k)$ such that $M \subseteq M_{i}$.

Theorem 4.5. Let A be a d-dimensional ring and N be an A-module generated by s elements. Then one upper bound of the length of every ascending chain of prime submodules of N is sd.

Throughout this paper all rings are commutative Noetherian rings with unit and all notions unexplained are standard, one can find in [3].

2. Basic Facts

In this section, we recall some basic facts about prime submodules and extend some results of [2].

Let A be a ring and let N be an A-module, a submodule $M \subset N$, $M \neq N$, is said to be prime if for every $a \in A$, the homothety $h_{a}: N / M$ $\rightarrow N / M, h_{a}(\bar{x})=a \bar{x}$, for $x \in N$, is either injective or null [2]. It is clear that an ideal P of A is a prime submodule if and only if P is a prime ideal of A. In the following we give some more examples.

Example 2.1. (i) If K is a field, then the prime submodules of a K-vector space V are exactly the vector subspaces $W \subset V, W \neq V$.
(ii) If A is a local ring with maximal ideal m, then m^{2} is a prime submodule of m.
(iii) If $M=A \oplus A$ is a free-module over domain A, then every direct factor $S \subset M, S \neq M$ is a prime submodule of M.

It is easy to see by the definition that if M is a prime submodule of N, then $\operatorname{ann}(N / M)$ is a prime ideal of A, denoted by P_{M}. We call P_{M} the prime ideal of M.

Clearly, if $M_{1} \subseteq M_{2}$ are prime submodules of N, then $P_{M_{1}} \subseteq P_{M_{2}}$. For a prime submodule M of N, we have for $a \in A$ and $n \in N$ with $a n \in M$ if and only if either $a \in P_{M}$ or $n \in M$. In particular, it follows $P_{M} N \subseteq M$. Thus to every prime submodule, we can associate a prime ideal. Conversely, one can associate a prime submodule to every prime ideal P by the following proposition.

Proposition 2.2. Let A be a ring and let N be a finitely generated A-module. If P is a prime ideal of A and $P \in \operatorname{supp} N=\{Q \mid Q$ is a prime ideal of $\left.A, N_{Q} \neq 0\right\}$. Set $N(P)=\{n \in N \mid$ there exists $a \notin P$, an $\in P N\}$, then
(i) $N(P)$ is a prime submodule of N;
(ii) $N(P)$ is contained in every prime submodule M with P as its prime ideal, i.e., $N\left(P_{M}\right) \subseteq M$.

Proof. (i) As P is a prime ideal, it is clear that $N(P)$ is a submodule.
Now, we claim $N(P) \neq N$. In fact, by the assumption $P \in \operatorname{supp} N$, so $N_{P} \neq 0$. It follows that $N_{P} \neq P N_{P}$, we conclude that $N(P) \neq N$. If on the contrary $N(P)=N$, then for an arbitrary element $n \in N$, there exists $a \notin P$ such that $a n \in P N$. It implies for any $\frac{n}{s} \in N_{P}$ with $s \in A \backslash P$, there exists $a \notin P$ such that $\frac{n}{s}=\frac{a n}{a s} \in P N_{P}$. Hence $N_{P} \subseteq P N_{P}$. Clearly, $P N_{P} \subseteq N_{P}$. It shows that $N_{P}=P N_{P}$, a contradiction. This proves $N(P) \neq N$.

Moreover, if $a \in P$, then h_{a} vanishes on $N / N(P)$, because $P N \subseteq$ $N(P)$. Assume $a \notin P$. If $h_{a}: N / N(P) \rightarrow N / N(P)$ is not injective, there exists $n \in N, n \notin N(P)$, such that $a n \in N(P)$, and this means that for some $b \notin P$, we have $b(a n) \in P N$. Hence $n \in N(P)$, by the fact $b a \notin P$. This is a contradiction and the proof completes.
(ii) Let M be a prime submodule having P as its prime ideal. Assume $n \in M\left(P_{M}\right)$. Then there exists $a \notin P$ such that $a n \in P_{M} N \subseteq M$, and thus $n \in M$, i.e., $N\left(P_{M}\right) \subseteq M$.

Remark 2.3. (i) $N(P)$ is called the minimal prime submodule associated to P.
(ii) Proposition 2.2 is an improvement of [2, Proposition 1.5], where A is a domain and N is torsion-free.
(iii) It is easy to see that if $P_{1} \subset P_{2}, P_{1} \neq P_{2}$ are prime ideals of A and $P_{i} \in \operatorname{supp} N(i=1,2)$, then $N\left(P_{1}\right)$ is a proper submodule of $N\left(P_{2}\right)$.

3. Prime Avoidance

It is well known that many important properties of a commutative ring can be characterized by prime ideals. One important reason is that there is a prime avoidance theorem for prime ideals. In this section we deal with such properties for prime submodules. Our results show that the prime avoidance theorem is still valid for prime submodules under a slight weaker assumption.

Let $P_{1}, P_{2}, \ldots, P_{n}$ be prime ideals of ring A and let I be an ideal of A. The prime avoidance theorem of prime ideals states that if $I \subseteq$ $P_{1} \cup P_{2} \cup \cdots \cup P_{n}$, then $I \subseteq P_{i}$ for some $i(1 \leq i \leq n)$. This result is not true for general prime submodules. For instance, let (A, m) be a local ring with finite residue field, set $M=A / m \oplus A / m$. Then M is contained in the union of finite one-dimensional A / m-subspaces, and all onedimensional subspaces are prime submodules. However, we can still obtain some results with some mild additional assumptions.

Proposition 3.1. Let A be a ring and let N be a finitely generated A-module. Let $M \subseteq N$ is a submodule of N and $M_{1}, M_{2}, \ldots, M_{k}$ are prime submodules of N. If $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{k}}$ are distinct and $M \nsubseteq M_{i}$ $(1 \leq i \leq k)$, then $M \nsubseteq M_{1} \cup M_{2} \cup \cdots \cup M_{k}$.

Proof. If necessary, one can reorder $M_{1}, M_{2}, \ldots, M_{k}$. So we may assume that $P_{M_{k}}$ is the minimal prime ideal of $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{k}}$.

Now we prove by induction on k. For $k=1$, the result is trivial.
Assume $k>1$. By induction there exists $x \in M \backslash M_{1} \cup \cdots \cup M_{k-1}$. If $x \notin M_{k}$, there is nothing to prove.

If $x \in M_{k}$, then we can choose $y \in M \backslash M_{k}$ and an element p such that

$$
p \in P_{M_{1}} \cap \cdots \cap P_{M_{k-1}} \backslash P_{M_{k}} .
$$

Since M_{i} are all prime submodules, we have

$$
p y \in M_{i}(1 \leq i \leq k-1) \quad \text { and } \quad p y \notin M_{k} .
$$

Set $z=x+p y$. It is clear $z \notin M_{i}(1 \leq i \leq k)$, and $z \in M$. Hence $M \nsubseteq$ $M_{1} \cup \cdots \cup M_{k}$. Equivalently, we have the following.

Proposition 3.2. Let A be a ring and let N be a finitely generated A-module. Let $M \subseteq N$ be a submodule of N and let $M_{1}, M_{2}, \ldots, M_{k}$ be prime submodules of N. If $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{k}}$ are distinct and $M \subseteq$ $M_{1} \cup \cdots \cup M_{k}$, then $M \subseteq M_{i}$ for some $i(1 \leq i \leq k)$.

To prove the main result of the section, we need the following lemma.
Lemma 3.3. Let (A, m) be a Noetherian local ring with infinite residue field. Let N be a finitely generated A-module and let $M \subseteq N$ be a submodule of N. If M_{1}, \ldots, M_{k} are prime submodules of $N, P_{M_{1}}=P_{M_{2}}$ $=\cdots=P_{M_{k}}=P$ and $M \subseteq M_{1} \cup M_{2} \cup \cdots \cup M_{k}$, then $M \subseteq M_{i}$ for some $i(1 \leq i \leq k)$.

Proof. As $N(P)$ is the minimal prime submodule having P as its prime ideal, $N(P) \subseteq M_{i}(1 \leq i \leq k)$. Since $M \subseteq M_{1} \cup M_{2} \cup \cdots \cup M_{k}$, we have

$$
(M+N(P)) / N(P) \subseteq M_{1} / N(P) \cup \cdots \cup M_{k} / N(P)
$$

Note that

$$
\left(M_{P}+N(P)_{P}\right) / N(P)_{P} \subseteq\left(M_{1}\right)_{P} / N(P)_{P} \cup \cdots \cup\left(M_{k}\right)_{P} / N(P)_{P} .
$$

As A / m is an infinite field, it implies $K=A_{P} / P A_{P}$ is an infinite field. It
follows that

$$
\left(M_{P}+N(P)_{P}\right) / N(P)_{P},\left(M_{j}\right)_{P} / N(P)_{P}(1 \leq j \leq k),
$$

are all finite vector spaces over K. Hence there exists $i(1 \leq i \leq k)$ such that

$$
\left(M_{P}+N(P)_{P}\right) / N(P)_{P} \subseteq\left(M_{i}\right)_{P} / N(P)_{P}
$$

Thus $M_{P} \subseteq\left(M_{i}\right)_{P}$, that is, $\left(\left(M+M_{i}\right) / M_{i}\right)_{P}=0$. Since M_{i} is a prime submodule having P as its prime ideal, we have $\left(M+M_{i}\right) / M_{i}=0$, and thus $M \subseteq M_{i}$.

We now come to the main result of this section.
Theorem 3.4. Let (A, m) be a local ring with the infinite residue field. Let N be a finitely generated A-module and M be a submodule of N. If $M_{1}, M_{2}, \ldots, M_{k}$ are prime submodules of N and $M \subseteq M_{1} \cup M_{1} \cup \cdots$ $\cup M_{k}$, then there exists some $i(1 \leq i \leq k)$ such that $M \subseteq M_{i}$.

Proof. If $k=1$, then there is nothing to prove.
Assume $k>1$. By induction we can assume that the conclusion holds for the number of the prime submodules less than k. If $P_{M_{1}}, P_{M_{2}}$, $\ldots, P_{M_{k}}$ are all the same as a prime ideal P, then the result is true according to Lemma 3.3.

If $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{k}}$ are not the same, without loss of generality, we can assume $P=P_{M_{k}}$ is a minimal prime ideal among $P_{M_{1}}, P_{M_{2}}$, $\ldots, P_{M_{k}}$ such that
(1) $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{s}}$ are not equal to P,
(2) $P_{M_{s+1}}=\cdots=P_{M_{k}}=P$.

If $M \nsubseteq M_{i}$ for all $i(1 \leq i \leq k)$, then by induction we can assume there exist $x \in M \backslash M_{1} \cup \cdots \cup M_{s}$ and $y \in M \backslash M_{s+1} \cup \cdots \cup M_{k}$. Hence, one can choose $p \in P_{M_{1}} \cap P_{M_{2}} \cap \cdots \cap P_{M_{s}} \backslash P$ such that for any positive
integer n,

$$
p^{n} y+x \notin M_{1} \cup \cdots \cup M_{s}
$$

For each $i(s+1 \leq i \leq k)$, there is at most one n_{i} such that $p^{n_{i}} y+x$ $\in M_{i}$. If on the contrary we have

$$
p^{n_{i}} y+x \in M_{i}, \quad p^{n_{i}^{\prime}} y+x \in M_{i} \quad\left(n_{i}^{\prime}>n_{i}\right)
$$

then it implies

$$
\left(1-p^{n_{i}^{\prime}-n_{i}}\right) p^{n_{i}} y \in M_{i}
$$

Since A is a local ring, we have $p^{n_{i}} y \in M_{i}$. This contradicts to the fact $p \notin P_{M_{i}}, y \notin M_{i}(s+1 \leq i \leq k)$.

So one can choose n large enough such that $p^{n} y+x \notin M_{i}$ for all $i(1 \leq i \leq k)$. On the other hand, $p^{n} y+x \in M$. This contradicts the fact $M \subseteq M_{1} \cup M_{2} \cup \cdots \cup M_{k}$. The proof is complete.

Next we wish to prove a result which can be considered as a natural extension of a result of Davis [1].

Theorem 3.5. Let (A, m) be a local ring with the infinite residue field and let $M \subset N$ be a pair of finitely generated A-modules. Let M_{1}, M_{2}, \ldots, M_{k} be prime submodules of N and $t \in N$. If $A t+M \nsubseteq M_{i}(1 \leq i \leq k)$, then there exists $y \in M$ such that $t+y \notin M_{i}(1 \leq i \leq k)$.

Proof. First we assume $P_{M_{1}}=P_{M_{2}}=\cdots=P_{M_{k}}=P$. Following three cases will be discussed:

Case (i). If $t \notin M_{i}$ for all $i(1 \leq i \leq k)$, then there is nothing to prove.
Case (ii). If $t \in M_{i}$ for all $i(1 \leq i \leq k)$, then $M \nsubseteq M_{i}(1 \leq i \leq k)$. According to Theorem 3.4, there exists $y \in M \backslash M_{1} \cup \cdots \cup M_{k}$. It is clear that $t+y$ is the required element.

Case (iii). If $t \in M_{i}(1 \leq i \leq s)$ and $t \notin M_{i}(s+1 \leq i \leq k)$, then by Case (ii), there exists

$$
y \in M \backslash M_{1} \cup \cdots \cup M_{s}
$$

such that $t+y \notin M_{i}(1 \leq i \leq s)$. For each $i(s+1 \leq i \leq k), M_{i}$ contains at most one of the elements of the form

$$
\left(1-p^{n_{i}}\right) t+y
$$

where p is fixed and $p \notin P, n_{i}$ is integer. Otherwise we have

$$
\left(1-p^{n_{i}}\right) t+y \in M_{i}, \quad\left(1-p^{n_{i}^{\prime}}\right) t+y \in M_{i} \quad\left(n_{i}^{\prime}>n_{i}\right) .
$$

Then $p^{n_{i}} t \in M_{i}$. Since A is a local ring and M_{i} is a prime submodule, we have $t \in M_{i}$. This contradicts to $t \notin M_{i}$. Hence we can choose n large enough such that $\left(1-p^{n}\right) t+y \notin M_{i}(i \geq s+1)$. It is clear that $\left(1-p^{n}\right) t$ $+y \notin M_{i}(1 \leq i \leq s)$. Hence $t+\left(1-p^{n}\right)^{-1} y \notin M_{i}(1 \leq i \leq k)$.

Secondly, we assume $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{k}}$ are not the same. Without loss of generality, we assume that $Q=P_{M_{k}}$ is a minimal prime ideal among $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{k}}$ such that the following two conditions hold:
(1) $P_{M_{1}}, P_{M_{2}}, \ldots, P_{M_{r}}$ are not equal to Q;
(2) $P_{M_{r+1}}=\cdots=P_{M_{k}}=Q$.

By induction there exist elements $\left(t+y_{1}\right) \notin M_{i}(1 \leq i \leq r)$ and $\left(t+y_{2}\right)$ $\notin M_{i}(r+1 \leq i \leq k)$. Set $q \in P_{M_{1}} \cap P_{M_{2}} \cap \cdots \cap P_{M_{t}} \backslash Q$. According to previous discussion in the proof of Theorem 3.4, there are at most one $q^{n_{i}}$ such that $t+y_{1}+q^{n_{i}}\left(t+y_{2}\right) \in M_{i}(r+1 \leq i \leq k)$. So we can choose n large enough such that $\left(1+q^{n}\right) t+y_{1}+q^{n} y_{2} \notin M_{i}(1 \leq i \leq k)$. Set

$$
y=\left(1+q^{n}\right)^{-1}\left(y_{1}+q^{n} y_{2}\right) .
$$

Then $t+y$ is the desired element, and this completes the proof.

Remark 3.6. Readers might notice that Proposition 3.1 is true for all Noetherian rings. However, the proofs of Theorems 3.4 and 3.5 depend on the property of any element which is not in the maximal ideal of a local ring has an inverse. We do not know if there is a positive answer to the following question, where the ring A need not be a local ring.

Question 3.7. Let A be a ring with infinite residue fields. Let N be an A-module and let M be a submodule of N. If $M_{1}, M_{2}, \ldots, M_{k}$ are prime submodules of N and $M \subseteq M_{1} \cup \cdots \cup M_{k}$, then $M \subseteq M_{i}$ for some i $(1 \leq i \leq k)$.

In the following we deal with the intersection of prime submodules. It is easy to see that if M_{1} and M_{2} are prime submodules of module N with prime ideal P, then $M_{1} \cap M_{2}$ is a prime submodule having P as its prime ideal.

Proposition 3.8. Let A be a ring and let N be a finitely generated A-module. If $M, M_{1}, M_{2}, \ldots, M_{k}$ are prime submodules of N and $M \supseteq$ $M_{1} \cap \cdots \cap M_{k}$, then $M \supseteq N\left(P_{M_{i}}\right)$ for some $i(1 \leq i \leq k)$.

Proof. Since $M \supset M_{1} \cap \cdots \cap M_{k} \supseteq N\left(P_{M_{1}}\right) \cap \cdots \cap N\left(P_{M_{k}}\right)$, we can assume that their prime ideals $P_{M_{1}}, \ldots, P_{M_{K}}$ are distinct and $P_{M_{k}}$ is a minimal prime ideal among $P_{M_{1}}, \ldots, P_{M_{K}}$.

Assume $M \nsupseteq N\left(P_{M_{i}}\right)(1 \leq i \leq k)$, then $P_{M} \nsupseteq P_{M_{i}}$. If on the contrary $P_{M} \supseteq P_{M_{i}}$, then $N\left(P_{M}\right) \supseteq N\left(P_{M_{i}}\right)$. It shows that $M \supseteq N\left(P_{M}\right) \supseteq$ $N\left(P_{M_{i}}\right)$, a contradiction. Hence $P_{M} \nsupseteq P_{M_{i}}(1 \leq i \leq k)$. We choose

$$
x \in N\left(P_{M_{k}}\right) \backslash M, \quad p \in P_{M_{1}} \cap \cdots \cap P_{M_{k-1}} \backslash P_{M_{k}} \cup P_{M}
$$

then $p x \in N\left(P_{M_{1}}\right) \cap \cdots \cap N\left(P_{M_{k}}\right)$. Notice that $p x \notin M$. So $M \nsupseteq N\left(P_{M_{1}}\right)$ $\cap \cdots \cap N\left(P_{M_{k}}\right)$. This leads us to a contradiction and the proof completes.

4. Prime Dimension of Modules

It is known that one can define the Krull dimension of a Noetherian
ring A by means of prime ideals of ring A, i.e., the maximal length n of a prime ideals chain of $A, P_{0} \subset P_{1} \subset \cdots \subset P_{n}$. The Krull dimension of a module N is defined by $\operatorname{dim} N=\operatorname{dim}(A / a n n N)$. In this section, we discuss the length of prime submodules chains. Naturally, we can define prime dimension of a module by means of prime submodules of a module. The main result of the section shows that there is a bound for such length. Let us begin with a definition.

Definition 4.1. Let A be a ring and let N be an A-module. Set $D(N)=\sup \left\{n \mid M_{0} \subset M_{1} \subset \cdots \subset M_{n}, M_{i} \neq M_{i+1}(0 \leq i \leq n-1), M_{i}\right.$ is a prime submodule of $N, 0 \leq i \leq n\}$. We call $D(N)$ the prime dimension of N.

Remark 4.2. (i) If $D(N)$ does not exist, then we set $D(N)=+\infty$;
(ii) If N has no prime submodules, then we set $D(N)=-1$.

Example 4.3. (i) If $N=A$, then $D(N)$ is just equal to the Krull dimension;
(ii) If V is an n-dimension k-vector space, where k is a field, then $N(V)=n-1$.

According to the theory of the Krull dimension, the Krull dimension of a Noetherian local ring is finite. Similarly, we wish to prove that prime dimension of a finitely generated module over a Noetherian ring is finite. Before proving this result, we need the following notion. Let A be a ring. Then a submodule $M \subset N, M \neq N$ of an A-module N is said to be an O-submodule if N / M is torsion-free or, equivalently, if zero is the unique non-injective homothety on N / M. Clearly, an O-submodule is a prime submodule. Moreover, we need the following proposition which one can refer to [2, Proposition 2.8]:

Proposition 4.4. Let A be a domain and let N be a torsion-free finitely generated A-module. Assume that $M \subseteq M^{\prime}$ with $M^{\prime} \neq N$ are two submodules of N such that:
(i) M is an O-submodule of N;
(ii) $\operatorname{rk}(M)=\operatorname{rk}\left(M^{\prime}\right)$, where $\operatorname{rk}(M)$ stands for the rank of M.

Then $M=M^{\prime}$.
Now we can prove the main result of this section.
Theorem 4.5. Let A be a d-dimensional Noetherian ring and let N be a finitely generated A-module. Then $D(N) \leq s d$, where s is the smallest number of generators of N.

Proof. First we consider the length of prime submodules of N with fixed prime ideal P. Let

$$
M_{0} \subset M_{2} \subset \cdots \subset M_{k}, \quad M_{i} \neq M_{i+1}(0 \leq i \leq k-1)
$$

be a chain of prime submodules of N such that $P_{M_{i}}=P(0 \leq i \leq k)$. We will show $k \leq s$.

For each $i(0 \leq i \leq k)$, let us consider the exact sequence of torsionfree A / P-module,

$$
0 \rightarrow M_{i+1} / M_{i} \rightarrow N / M_{i} \rightarrow N / M_{i+1} \rightarrow 0
$$

where $M_{i+1} / M_{i} \rightarrow N / M_{i}$ is an embedded homomorphism, $N / M_{i} \rightarrow$ N / M_{i+1} is a natural homomorphism. It is clear that M_{i+1} / M_{i} is an O-submodule of A / P-module N / M_{i}.

For any chain of O-submodules of N / M_{i},

$$
L_{1} / M_{i} \subset \cdots \subset L_{t} / M_{i}
$$

with $L_{j} / M_{i} \neq L_{j+1} / M_{i}(1 \leq j \leq t-1)$, we have

$$
\left(L_{1} / M_{i}\right)_{P} \subset \cdots \subset\left(L_{t} / M_{i}\right)_{P}, \quad\left(L_{j} / M_{i}\right)_{P} \neq\left(L_{j+1} / M_{i}\right)_{P} \quad(1 \leq j \leq t-1)
$$

Otherwise there exists $1 \leq j<j+1 \leq t$ such that $\left(L_{j} / M_{i}\right)_{P}=\left(L_{j+1} / M_{i}\right)_{P}$, according to Proposition $4.4, L_{j} / M_{i}=L_{j+1} / M_{i}$, a contradiction.

Since $\left(N / M_{i}\right)_{P}$ is a finite dimensional $A_{P} / P A_{P}$-vector space and s is the smallest number of generators, it shows that the dimension of the $A_{P} / P A_{P}$-vector space $\left(N / M_{i}\right)_{P}$ is at most s. Hence we have $t \leq s$.

Now, the following

$$
\begin{gathered}
M_{1} / M_{0} \subset M_{2} / M_{0} \subset \cdots \subset M_{k} / M_{0}, \quad M_{i} / M_{0} \neq M_{i+1} / M_{0} \\
(1 \leq i \leq k-1)
\end{gathered}
$$

is a chain of O-submodules of N / M_{0} which satisfies previous condition just discussed above. Hence $k \leq s$.

For any chain of prime submodules $N_{0} \subset N_{1} \subset \cdots \subset N_{n}$ of N such that $N_{i} \neq N_{i+1} \neq N(0 \leq i \leq n-1)$, we have a chain of prime ideals:

$$
P_{N_{0}} \subseteq P_{N_{1}} \subseteq \cdots \subseteq P_{N_{n}} .
$$

Note that $\operatorname{dim} A=d$, we have $n \leq d$. Hence $n \leq s d$, i.e., $D(N) \leq s d$.
Corollary 4.6. Let (A, m) be a local ring and let N be a finitely generated A-module. Then $s-1 \leq D(N) \leq s d$, where $d=\operatorname{dim}(A)$, s is the smallest number of generators.

The proof follows from Theorem 4.5 and [2, Proposition 3.5].

References

[1] E. Davis, Ideals of the principal class, R-sequences and certain monoidal transformation, Pacific J. Math. 20 (1967), 197-205.
[2] A. Marcelo and J. M. Masqué, Prime submodules, the descent invariant, and modules of finite length, J. Algebra 189 (1997), 273-293.
[3] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, New York, 1986.

