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Abstract 

In this paper, we obtain some criteria for determining the asymptotic 
stability of the zero solution of delay-difference system of cellular neural 
networks in terms of certain matrix inequalities by using a discrete 
version of the Lyapunov second method. 

1. Introduction 

In recent decades, cellular neural networks have been extensively 
studied in many aspects and successfully applied to many fields such as 
pattern identifying, voice recognizing, system controlling, signal 
processing systems, static image treatment and solving nonlinear 
algebraic equations, etc. Such applications are based on the existence of 
equilibrium points and qualitative properties of systems. In electronic 
implementation, time delays occur due to some reasons such as circuit 
integration, switching delays of the amplifiers and communication 
delays, etc. Therefore, the study of the asymptotic stability of cellular 
neural networks with delays is of particular importance to 
manufacturing high quality microelectronic cellular neural networks. 

While stability analysis of continuous-time neural networks can 
employ the stability theory of differential equations [12], it is much 
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harder to study the stability of discrete-time neural networks [8] with 
time delays [3] or impulses [11]. The techniques currently available in 
the literature for discrete-time systems are mostly based on the 
construction Lyapunov second method [10]. For Lyapunov second 
method, it is well known that no general rule exists to guide the 
construction of a proper Lyapunov function for a given system. In fact, 
the construction of the Lyapunov function becomes a very difficult task. 

In this paper, we consider delay-difference system of cellular neural 
networks of the form: 

( ) ( ) ( )( ) ( )( )1 ,u k Cu k AS u k BS u k h f+ = − + + − +  (1) 

where nu ∈ Ω ⊆ R  is the neuron state vector, 10, diag{ , ..., },nh C c c≥ =  

0, 1, 2, ...,ic i n≥ =  is the relaxation matrix, ( )ij n nA a ×=  and 

( )ij n nB b ×=  are weight matrices, 1( , , ) n
nf f f= ∈… R  is the constant 

external input vector and ( ) ( )1 1( ) , , T
n nS z s z s z =  …  with 

[ ]1 , ( 1, 1) ,is C∈ −R  where is  is the neuron activations and monotonically 

increasing for each 1, 2, ..., .i n=  

The asymptotic stability of the zero solution of the delay-difference 
system of cellular neural networks has been developed during the past 
several years. We refer to monographs by Arik [2] and Chua and Yang [6] 
and the references cited therein. Much less is known regarding the 
asymptotic stability of the zero solution of the delay-difference system of 
cellular neural networks. Therefore, the purpose of this paper is to 
establish sufficient conditions for the asymptotic stability of the zero 
solution of (1) in terms of certain matrix inequalities. 

2. Preliminaries 

The following notations will be used throughout the paper. +R  

denotes the set of all non-negative real numbers; +]  denotes the set of 

all non-negative integers; nR  denotes the n-dimensional Euclidean space 
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with Euclidean norm ⋅  and the scalar product between x and y is 

defined by ;T n mx y ×\  denotes the set of all ( )n m× -matrices and TA  

denotes the transpose of the matrix A . 

We assume that the neuron activation functions are bounded and 
satisfy the following hypotheses, respectively: 

( ) ( )1 2 1 2 1 2, ,i i is r s r l r r r r− ≤ − ∀ ∈ \ (2) 

and 
( ) ( )1 2

1 2
1 2

0 , , ,i i
i

s r s r
l r r

r r
−

≤ ≤ ∀ ∈
−

\  (3) 

where 0il >  are constants for 1, 2, ..., .i n=  

By assumptions (2) and (3), we know that the functions ( )⋅is  satisfy 

( ) , 1, 2, ...,i i i is x l x i n≤ =  

and 

( ) ( )2 , 1, 2, ..., .i i i i i is x l x s x i n≤ =  (4) 

Matrix n nQ ×∈ R  is positive semidefinite ( )0Q ≥  if 0,Tx Qx ≥  for all 

.nx ∈ \  If ( )0 0, resp.T Tx Qx x Qx> <  for any 0,x ≠  then Q  is positive 

(negative, resp.) definite and denoted by ( )0, 0, resp. .Q Q> <  It is easy 

to verify that ( )0, 0, resp.Q Q> <  iff 

20 : , ,T nx Qx x x∃β > ≥ β ∀ ∈ R  

( )20 : , , resp. .T nx Qx x x∃β > ≤ −β ∀ ∈ R  

Fact 1. For any positive scalar ε  and vectors x and y, the following 
inequality holds: 

1 .T T T Tx y y x x x y y−+ ≤ ε + ε  

Lemma 2.1 [4]. The zero solution of difference system is asymptotic 

stability if there exists a positive definite function ( ) : nV x +→R R  such 
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that 

( ( )) ( ( )) ( ( )) ( ) 20 : 1 ,V x k V x k V x k x k∃β > ∆ = + − ≤ −β  

along the solution of the system. In the case the above condition holds for 
all ( ) ,x k Vδ∈  we say that the zero solution is locally asymptotically 

stable. 

Lemma 2.2 [5]. For any constant symmetric matrix ,n nM ×∈ \  

0,TM M= >  scalar /{0},s +∈ ]  vector function : [0, ] ,nW s → \  we 

have 

( ( ) ( )) ( ) ( )
1 1 1

0 0 0
.

Ts s s
T

i i i
s w i Mw i w i M w i

− − −

= = =

   
   ≥
   
   

∑ ∑ ∑  

3. Main Results 

In this section, we consider the asymptotic stability of the zero 

solution *u  of (1) in terms of certain matrix inequalities. Without loss of 

generality, we can assume that * 0,u =  ( )0 0S =  and 0f =  (for 

otherwise, we let *x u u= −  and define ( ) ( ) ( ))* * .S x S x u S u= + −  

The new from of (1) is now given by 

( ) ( ) ( ( )) ( ( ))1 .x k Cx k AS x k BS x k h+ = − + + −  (5) 

Theorem 1. The zero solution of the discrete-time system (5) is 
asymptotic stable if there exist symmetric positive definite matrices and   
P, G, W and [ ]1diag , , 0nL l l= >…  satisfying the following matrix 

inequalities: 

(1, 1) 0 0
0 (2, 2) 0 0,
0 0 (3, 3)

 
 ψ = < 
 
 

 (6) 
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where 

( ) 11, 1 T T T T TC PC P hG W A PBB PA C PBB PC= − + + + ε + ε  

1
2 ,T T TLA PBB PAL LA PAL LL−+ ε + + ε  

( ) 1 1
1 22, 2 TLB PBL LL LL W− −= + ε + ε −    and 

( )3,3 .hG= −  

Proof. Consider the Lyapunov function 1 2 3,V V V V= + +  where 

( ) ( )1 ,TV x k Px k=  

( ) ( ) ( )
1

2 ,
k

T

i k h
V h k i x i Gx i

−

= −

= − +∑  

( ) ( )
1

3 ,
k

T

i k h
V x i Wx i

−

= −

= ∑  

P, G and W being symmetric positive definite solutions of (6), then 
difference of V along trajectory of solution of (5) is given by 

1 2 3,V V V V∆ = ∆ + ∆ + ∆  where 

( ( )) ( ( ))1 1 11V V x k V x k∆ = + −  

[ ( ) ( ( )) ( ( ))]TCx k AS x k BS x k h P= − + + −  

[ ( ) ( ( )) ( ( ))] ( ) ( )TCx k AS x k BS x k h x k Px k× − + + − −  

( ) [ ] ( )= −T Tx k C PC P x k  

( ) ( ( )) ( ( )) ( )T T T Tx k C PAS x k S x k A PCx k− −  

( ) ( ( )) ( ( )) ( )T T T Tx k C PBS x k h S x k h B PCx k− − − −  

( ( )) ( ( )) ( ( )) ( ( ))T T T TS x k A PBS x k h S x k h B PAS x k+ − + −  

( ( )) ( ( ))T TS x k A PAS x k+ ( ( )) ( ( ))+ − − ,T TS x k h B PBS x k h  
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( ) ( ) ( ) ( ) ( ) ( ) ( )
− −

= − = −

 
 ∆ = ∆ − + = −
 
 
∑ ∑

1 1

2

k k
T T T

i k h i k h
V h k i x i Gx i hx k Gx k x i Gx i   

and 

( ) ( ) ( ) ( ) ( ) ( )
−

= −

 
 ∆ = ∆ = − − −
 
 
∑

1

3 ,
k

T T T

i k h
V x i Wx i x k Wx k x k h Wx k h  

where (4) and Fact 1 are utilized in (7), respectively. 

Note that 

( ) ( ( )) ( ( )) ( )T T T Tx k C PAS x k S x k A PCx k− −  

( ) ( )T T Tx k C PAA PCx k≤ ε ( ( )) ( ( ))1 ,TS x k S x k−+ ε  

( ) ( ( )) ( ( )) ( )T T T Tx k C PBS x k h S x k h B PCx k− − − −  

( ) ( )1
T T Tx k C PBB PCx k≤ ε ( ( )) ( ( ))1

1 ,TS x k h S x k h−+ ε − −  

( ( )) ( ( )) ( ( )) ( ( ))T T T TS x k A PBS x k h S x k h B PAS x k+ − + −  

( ) ( )≤ ε2
T T TS k A PBB PAS k ( ( )) ( ( ))1

2 ,TS x k h S x k h−+ ε − −  

( ( )) ( ( )) ( ) ( )− − ≤ − − ,T T T TS x k h B PBS x k h x k h LB PBLx k h  

( ( )) ( ( )) ( ) ( ) ,T T T TS x k A PAS x k x k LA PALx k≤  

( ) ( ) ( ) ( )ε ≤ ε2 2
T T T T T TS k A PBB PAS k x k LA PBB PALx k  

and 

( ( )) ( ( )) ( ) ( )− −ε − − ≤ ε − −1 1
1 1 ,T TS x k h S x k h x k h LLx k h  

( ( )) ( ( )) ( ) ( )− −ε − − ≤ ε − −1 1
2 2 ,T TS x k h S x k h x k h LLx k h  

( ( )) ( ( )) ( ) ( )− −ε ≤ ε1 1 ,T TS x k S x k x k LLx k  
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hence 

( ) [ ] ( ) ( ) ( )1
T T T T TV x k C PC P x k x k A PBB PAx k∆ ≤ − + ε  

( ) ( )1
T T Tx k C PBB PCx k+ ε ( ) ( )T Tx k h LB PBLx k h+ − −  

( ) ( )T Tx k LA PALx k+ ( ) ( )2
T T Tx k LA PBB PALx k+ ε  

( ) ( )1
1

Tx k h LLx k h−+ ε − − ( ) ( )1
2

Tx k h LLx k h−+ ε − −  

( ) ( )1 ,Tx k LLx k−+ ε  

then we have 

( )[ 1
T T T T T TV x k C PC P hG W A PBB PA C PBB PC∆ ≤ − + + + ε + ε  

] ( )1
2

T T TLA PBB PAL LA PAL LL x k−+ ε + + ε  

( ) [ ] ( )1 1
1 2

T Tx k h LB PBL LL LL W x k h− −+ − + ε + ε − −  

( ) ( )
1

.
k

T

i k h
x i Gx i

−

= −

− ∑  

Using Lemma 2.2, we obtain 

( ) ( ) ( ) ( ) ( )
1 1 11 1 .

Tk k k
T

i k h i k h i k h
x i Gx i x i hG x i

h h

− − −

= − = − = −

   
   ≥
   
   

∑ ∑ ∑  

From the above inequality it follows that 

( )[ 1
T T T T T TV x k C PC P hG W A PBB PA C PBB PC∆ ≤ − + + + ε + ε  

] ( )1
2

T T TLA PBB PAL LA PAL LL x k−+ ε + + ε  

( ) [ ] ( )1 1
1 2

T Tx k h LB PBL LL LL W x k h− −+ − + ε + ε − −  

( ) ( ) ( )
1 11 1

Tk k

i k h i k h
x i hG x i

h h

− −

= − = −

   
   −
   
   
∑ ∑  
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( ) ( ) ( ( ))
1 (1, 1) 0 0

1, , 0 (2, 2) 0
0 0 (3, 3)

k
TT T

i k h
x k x k h x i

h

−

= −

     = −        
∑  

( )
( )

( )
11 k

i k h

x k
x k h

x i
h

−

= −

 
 
 
 
 × −
 
  
  
     

∑

 

( ) ( )
(1, 1) 0 0

0 (2, 2) 0
0 0 (3, 3)

Ty k y k
 
 =  
 
 

 

( ) ( ) ,Ty k y k= ψ  

where 

1(1, 1) T T T T TC PC P hG W A PBB PA C PBB PC= − + + + ε + ε  

1
2 ,T T TLA PBB PAL LA PAL LL−+ ε + + ε  

1 1
1 2(2, 2) ,TLB PBL LL LL W− −= + ε + ε −  

(3, 3) ,hG= −  

and 
( )

( )

( )
1

( ) .

1 k

i k h

x k
y k x k h

x i
h

−

= −

 
 
 
 
 = −
 
  
  
    
∑

 

By the condition (6), V∆  is negative definite, namely there is a 

number 0β >  such that ( ( )) ( ) 2 ,V y k y k∆ ≤ −β  and hence the 

asymptotic stability of the system immediately follows from Lemma 2.1. 
This completes the proof. 
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5. Conclusions 

In this paper based on a discrete analog of the Lyapunov second 
method, we have established a sufficient condition for the asymptotic 
stability of delay-difference system of cellular neural networks in terms 
of certain matrix inequalities. The result has been applied to obtain new 
stability conditions for some classes of delay-difference equation such as 
delay-difference system of cellular neural networks with multiple delays 
in the terms of certain matrix inequalities. 
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