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Abstract

The periodic solutions for a perturbation of autonomous fuzzy
differential equations are investigated, by the use of generalized
differentiability and the index of fixed point of a compact mapping.

1. Introduction

The fuzzy sets theory has grown considerably during the last decades
because of the applicability and the flexibility of the fuzzy sets and fuzzy
numbers in many areas. Differential equations in a fuzzy setting
constitute a natural way to model uncertainty of dynamical systems. The
most used setting is the H-differentiability due to Puri and Radulescu [8].
Many papers have been published in this setting with some shortcomings
[7]. The existence of periodic solutions are studied by interpreting the
fuzzy differential equation as a system of differential inclusions, but this
approach has in turn some shortcomings. Indeed, the solutions obtained

are not fuzzy-number-valued functions.
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In this paper, we use a different approach to study the existence of
periodic solution of the perturbed fuzzy differential equation

x' = f(x)+ Byl x),t [0, T], T >0, 1)

where the derivative is in the generalized sense introduced in [1]. We
embed the fuzzy numbers set Rz into an absolute retract (A. R. in short)

of a Banach space (Section 2), and we define a complete metric space of
continuous function on [0, 7'] from this A. R., and by using the fixed point

properties in A. R., and the fixed point index of compact mapping, we
prove the existence of periodic solutions of the equation (1) with respect to
a homeomorphism. The advantage of the proposed approach as compared
with the differential inclusions’ consists of the fact, that it is simple, and
the solutions obtained are fuzzy-number-valued functions. Our approach
seems to be new in the theory of fuzzy differential equations.

The paper is organized as follows. In Section 2, we give some
preliminaries. In Section 3, we present our approach and show our main
result. In Section 4, we give an application.

2. Preliminaries

Let X be a non empty set, and F(X) be the set of all fuzzy subsets of X.

Definition 1. A fuzzy set u € F(X) is normal if there exists an
xg € X such that u(xg) =1, v e F(X) is fuzzy convex if u(hx + (1 -
A)y) = min{u(x), u(y)}, forall » € [0, 1] and x, y € X.

Let Rs denote the family of all normal and fuzzy convex sets such
that

(a) u 1s upper semicontinuous

®) [u]’ = clfx € R|u(x) > 0} is compact.
We observe that R is a subset of Rz, since R can be considered as the
set {x, : x € R}.

Definition 2. The level set [u]”* of u € Rx is defined by [u]* = {x

R| u(x) > a} for a € [0,1]. Consequently, [u]*, a € [0, 1] is a bounded
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and closed interval of R represented by [u]* =[u®, u?], where
u_,u, :[0,1] > R are bounded, left continuous mappings such that
u_(a) = u% is non decreasing in [0, 1] and u,(a) = u¢ is non increasing
in [0, 1].

The following concepts are well known (see [1]).

Definition 3. (1) For u,v € Ry, the sum u ®v and the scalar
multiplicity . © u for all A € R are defined by [u @ v]* = [u]” + [v]* and
o ul* =n-[u]”.

(2) The set 0 = 39 € Ry and it is the neutral element for the
addition ® in Rr.

(3) No u € Rx\R has a symmetric with respect to ® and 0.

(4) For all ue Ry and a,beR, or a,beR_,(a+b)0u=
a © u®b o u. The case of general a, b € R does not hold.

B)Forany L e Rand u,veRr, A0 (0 v)=20u®Xr O v
B)For ,peRandueRs, A0 (nou)=R-p)ouw
We define the following Hausdorff metric in Rz (see [1]).

Definition 4. Define d : Ry x R — R, U {0} by the equation

d(u, v) = sup max(u? —v?|, |uf - v]).
0<a<1

Using results in [1], we know that (R £, d) is a complete metric space

and d satisfies
(@ du ®w, v®w) =du, v) forall u, v, w e Rz;
M) dh © u, h ©v) =|1|d(u, v) forall u,v e Rg, A € R;

(© du®w, v®ws) < du,v)+dw, wy) for all u, v, w;, wy €
R
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We recall some differentiability properties for the fuzzy-number-
valued mappings in [1].

Definition 5. A mapping f:(a,b)c R > Ry 1is strongly
differentiable in the generalized sense at ¢,  (a, b), if for all A > 0

sufficiently small, there exists a f'(¢{y) € Rz such that

(1) there exist f(ty +h) - f(ty) and f(tg) - f(ty + h) such that the

limits (in the metric d)
tim o + 1) - f(to)
h—0" h

and

lim fto — f(ty — h))

h—0" h

exist and are equal to f'(¢y) or

(1) there exist f(ty)— f(tg + k) and f(ty —h)— f(tyg) such that the

limits in the metric d

lim fto) - ftg + h)
h—0" -h

and

lim f(to —h) - f(to)

h—0" —h
exist and are equal to f'(¢y) or
(i11) there exist f(ty)— f(to + h) and f(ty)— f(ty — h) such that the
limits in the metric d

lim f(to) = fltg + R)
h—0" —h

and
lim fto) - fltg — h)

h—0" h

exist and are equal to f'(¢y) or

(iv) there exist f(tg + h)— f({y) and f(tyg —h)— f(ty) such that the
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limits in the metric d

lim f(to +h) = f(to)
h—0" h

and
lim ftoy —h) = f(to)

h—0" —h

exist and are equal to f'(¢g).

Definition 6. Consider f:(a,b)c R > Ry, ¢y e(a,b) and
(hy),cn @ positive sequence in R such that A, - 0 as n - « and

ng € N. Denote by

A} = {n 2 ng|3E} = f(ty + hy) — f(to)}
A2 = {n>ng|3E2 = flty) - f(to — hy)}
AR = {n > ng|3E} = fto) - f(to + Ry}

Ay ={n 2 ng|3E, = f(ty - hy) - f(to)}
f 1s said weakly differentiable in the generalized sense, if and only if,

U?zl Afilo ={neN:n>ng} and there exists an element f'(¢{y) € Rz

such that, if for some i € {1, 2, 3, 4}, Card (AZ) = 4+ then,

Ei
lim d ——"— f'(xo)| = 0.
n—w (_ 1)L+1hn

neA;O

Let C[0,1] = {9 : [0, 1] > R|¢ is bounded on [0, 1], left continuous
at 0 and has right limit for any ¢ < [0, 1[}.
C[0, 1] is a Banach space with the norm | ¢ | = sup{ o(t)| : t < [0, 1]},

sois E = C[0, 1]x C[0, 1] with the norm | (¢, v)| = max{| ¢ |, | w|[}. Let
j : Rr — E be a mapping defined by j(u) = (u_, u, ), where u_, u, : [0,

1] - R are the mappings defined above by u_(a) = u and u, (o) = u$.

We shall use the following embedding theorem [5]:
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Theorem 1. The mapping j embeds R r into the Banach space E as a

closed and convex cone with vertex at 0. Moreover, j satisfies the following
properties:

1) jhoud®pov)=2n{u)+ww), forall u,v e R, A, u > 0;

(2) d(u, v) = | j(w) - j@)].
J and its inverse are clearly continuous.

Theorem 2 [1]. Let f : (a, b)) =« R > Rz and ¢y € (a, b).

(1) If f is strongly differentiable in the generalized sense (1) (resp. (i1))
at ty, then jo f is Fréchet differentiable at ty, and (j o f)’(to) = j(f'(ty));

(i1) If f is strongly differentiable at ty in the generalized sense (iii)
(resp. (iv)), then jo f is Fréchet differentiable at left and at right (resp. at

right and at left)y at ty, and (jo f),r(to = j(f'(t)), (o f)'l(to)
= F(F(to)) (resp. (o f)r = =7 (F(to)) and (j o f)1(to) = i(f(to))).

Theorem 3 [1]. Let g :(a,b)c R - R be differentiable and
C e R]:

(1) If g'(t) has at most a finite number of roots in (a, b), then
f=c0 g:R > Ry isstrongly differentiable in the generalized sense on
(a, b) and f'(t) = c © g'(t) forall t € (a, b);

(2) For all te(a,b),f=co g is weakly differentiable in the
generalized sense and f'(t) = ¢ © g'(t).

3. Main Result

Consider the space A of all functions u : [0, T] - Rz continuously
differentiable on [0, T'], T > 0 and define on A the distance D(u, v) =
supyefo, 7] d((t), v(t)). Then (A, D) is clearly a complete metric space.

Consider j(A) and the distance D"(j(u), j(v)) = sup;ejo, 7]l j(u(t)) -
Jj(v())|- Then, by the definition of j, (A, D) and (j(A), D*) are isometric.

Therefore, (j(A), D*) is a complete metric space. Since j(Rr) is a non
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empty closed and convex subset of a Banach space, it is an absolute
retract (AR) of this space, and since (j(A), D*) is a complete metric space

defined on j(R £), it is an absolute retract of the same Banach space (see
e.g. [2] p. 65). Therefore, (j(A), D*) has the fixed point property.

We consider the following assumptions for the functions f and y in
equation (1).

Let f:Rr > Rz be C' and y:R, xRy — Rz be continuous
and T-periodic in ¢ for some real number 7 > 0. Define F(t, x; B) = f(x)
+B © y(t, x), then

(A1) jo F(t, x; B) € T(y, j(Rz)) forall y € 3j(Rz), and B > 0, where

T0 R = fo: tim L1+ ho) = TR )| =0, € (R )]

is the Bouligand tangent cone to j(R) at y.

(A2) There exists Q < j(A) an open and bounded set, such that
f(x) = 0 forall x e j1(5Q).
We observe that, solutions of
x' = f(x) (2)
correspond to the solutions of
) = j(f(x)). ®3)
Since f is Cl, jof 1is ct too, and there exists g3 > 0 such that (3)
induces a semi dynamical system (g, - ) = n (- ). By (A2), n.(-) has no
rest point on 0Q. Therefore, i(r,, Q, j(A)) is well defined and constant
for all 0 < ¢ < g5 whenever g is small enough ([8] Proposition 4.2).

Define
i(mg, Q, j(A)) = lim+ i(mg, Q, j(A)),

e—0

let x(¢) = o(t, 0, xg) be the unique and maximal solution of the Cauchy

problem x’ = f(x), x(0) = xg, and assume that
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(A3),: w(z)(t, 0,x0) = %m(t, 0, xg) exists and is continuously invertible.
Define the compact operator y : j(A) — j(A) by
1(j(x)) = jeoof-, 0, x(T)).
Then our main result can be formulated as follows:
Theorem 4. Assume that (A1), (A2), (A3) hold and
(A4) x(C) = ¢ forall £ € oQ
(A5) ix(ng, Q, j(A)) = 0.

Then there exists By > 0 such that for all 0 < < B, the problem (1) has

at least one T-periodic solution in A.
To prove Theorem 4, we need some additional and technical results.

Consider the homotopy H, : j(A)x [0, 1] — j(A) defined as follows:

H,(y,1)=(1-2)me(y)+2x(y),

then for all 0 < ¢ <gy and gy > 0 sufficiently small, H.(-, 1) is an
admissible homotopy by (A2) and (A4). Hence, i(H (-, 1), Q, j(A)) is well
defined and constant for all A < [0, 1].

Therefore,
i(H(-,0),Q, j(A)) = i(H(-, 1), j(A)),
that is
i(mg, Q, j(A)) = iy, Q. J(A)). 4)
Then, taking limits as ¢ - 0", we obtain the following Lemma:
Lemma 1. Assume that (Al), (A2) and (A4) hold. Then
(1o, Q, Jj(A)) = ix, @ J(A)).

We are now in a position to prove Theorem 4.
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3.1. Proof of Theorem 4

Consider the following change of variable in (1)
x(t) = oft, 0, 2(2)), (5)

for every z(¢) € A. Then (5) defines x uniquely such that x(0) = z(0), and

x 1s a solution of (1) in A, if and only if, z satisfies the equation
o(1)(t, 0, 2(t)) @ ofz)(t, 0, 2(t)) - 2'(t)

= f(oft, 0, 2(1)) ® (B © y(t, lt, 0, 2(2)), ®)

U

where  o{j) = %m(xl, X9, %3), j=1,2 8 By the definition of
o(t, 0, 2(t)), we know that
olut, 0, 2(0)) = flolt, 0, 2(2)).
Hence, by (A3), one can rewrite (6) as
2(t) = B © (o). 0, 2(t)) " wit, o, 0, 2(t))
=B © Yt 2(t)). 7

By integrating (7), we obtain
2(t) = 2(0) @ (B o | ; w(s, z(s))ds} ®

If x is a T-periodic solution of (1), then
J(2(0)) = j(x(0)) = j(x(T)) = j(o(T, 0, 2(T)))

Hence, the problem of existence of T-periodic solutions of equation (1)
1s equivalent to the problem of existence of solutions of the integral

equation

JE0) = AT, 0, (1) + B[ J(s, 2(s))ds. ©
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Define the constants

Mo = max{] j&) - x(i(©))[.& = x(0)}

M; = min{] y(0) - 2((0) | : 5(0) € 2 ¢ < [0, T}

My = max{

L) 50 e Qe <o, 7))

My = max{] j(¥(t, 20))| : @ 2@) e [0, T]x jH(Q)},

and define

Bp = min M, M,
0= TMy(My +1)+ M, TMs(My +1)+ My + Ky )’

where K = max{| j(o(T, 0, 2(T)))| : z € Q}.

For every 0 < B < By, define the mapping

Dp : j(A) = j(A)

Dyl 0 = JOAT, 0, () + B[ 0¥, 2(s))ds. (10)

Then, for all 0 < B < By, the problem of existence of solutions of
equation (9) in j(A) is equivalent to the problem of finding the fixed
points of the mapping ®g in j(A). Since j(A) is an absolute retract, it
will suffice to find an open and bounded set O — j(A) such that (see [4]),

(1) @g : O = j(A) is compact;

(2) Fix(d)B) N o0 = &,

(3) i@, O, j(A)) = 0.

Let us choose O = Q and prove (1), (2), (3) for Q.

(1) Since j(A) is a complete metric space of continuous functions

defined on [0, T'], it will suffice to prove that ® B is completely continuous,

i.e., equicontinuous and uniformly bounded. Let ¢, ¢y € [0, 7] and
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ze j 1(Q). Then

l0g(i(2)) (t2) - g (i(2)) ()]

=) [ dovts. oy - [ v, st

]2 vt senas | [t st

= Bd(jf Y(s, z(s))ds, I;l Y(s, z(s))dsj

=P

to ~
<B I (¥, 2(s)), D)ds

- ijn J(¥(s, 2(s))) | ds

< BMs|ty - t; |, (11)

and for every ¢ € [0, 1], and every z € j7}(Q), we have

[OpEN O < (T, 0, )|+ B[ 1C¥Gs, 25 s

< KO + BTM3 (12)

Hence by (11) and (12) and the Arzela-Ascoli theorem, it results that

g is compact on Q.

(2) Let us assume by contradiction that there exist a B € (0, Bg] and

z(-) € i H(eQ) such that

J(zp(2)) = @p(j(z5)) (1)

for all ¢t €[0,1]. Then using the constants M;, j=0,1,2 3, and the
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mean value theorem, we get

17(zp () = x (g DI = [[i(zp (@) = J(e, (T, O, 2(T)))

+ (o, (T, 0, 23(T))) - x(i(zp @)

- o] vt syas ok 0,200 - 2ty

< Bo [ 1i0¥s, zpds + Lio(T 0, 55 - iz O]

+ [ x(i(zp(0)) - 2(iz @)
< BoTM; + | j(z5(0)) — x(i(zg ON] + [ x(i(z5(0))) = x(i(zp @)
< BoTM3 + MO + BOMZMST < M17

a contradiction with the definition of M;. Hence, Fix(®g)oQ = &, for
all 0< B < Bo.

(3) Consider the homotopy F : j(A)x [0, 1] = j(A) defined by
F(j(z@)), 1) = @ = 1) x(j(z@)) + 2@p(j(2(2))),
and assume by contradiction that there exist B e (0, By], and zﬁ( ) e

7 H(eQ) such that J(zp(®)) = F(j(z5(t)), 1), then

17(z (@) = x(i(zp @)

2 a0 = (T, 0. 5T Bf G D)

< Bo [ 107G 2p(6)lds Lol 0, 2(T) - e OD)

+[70i(25(0))) = x(j(z5(0))]
< BOTMS + MO + BoTM2M3 < Ml,

which contradicts the definition of M;. Therefore, F(-, 1) is an
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admissible homotopy and by the homotopy invariance property, we have
i(F(-,0), Q, j(A) = i(F(-, 1), Q, j(A)),
that is
i, Q, j(A)) = i(®p, Q, j(A)).
By using Lemma 1 and (A5), we have
i(®p, Q, j(A)) # 0,

for all B < (0, Byl

4. Application

Let g: j(Rr) »> R be continuously differentiable such that dg(y)
has only a finite number of roots in B(0, ¢), 0 > 0. Let ¢ € Rx and

f:Rz — Ry suchthat f(x) = ¢ © g(j(x)). As gis C!, we have fis C.
Since (Al) and (A2) are standard and can easily be satisfied by
f=c©® goj, we shall only prove that (A3) is satisfied. We need the
following hypotheses:

(H1) There exists a function V : j(A) - R, continuous such that
(1) V(0)=0 and V(y) # 0 for all y # 0;

(2) if there exists (y,), € N c j(A) such that lim, ,, V(y,)=0

then lim,_, | w, || = 0.

(H2) There exists a function M, : j(A)x j(A) > R such that

M, (u, y) is continuous in y uniformly for all u € B(ug, Ry) = j(A) and

satisfies
@) Viu+y)-V) < M (u, y)+of y|);
() M, (u, ry) = AM, (u, y), for all » > 0;

(lll) M+(u7 N+ y2) < M+(u7 yl) + M+(u7 yZ)r
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(iv) There exists a function gy : R, — R, continuous such that

M., (y, j(f'(x)y) < go(V(y))
for all ¥y € j(A) and x € B(xg, 0) < A.
Theorem 5. Assume that (Al), (A2), (H1) and (H2) hold and
(H3) the maximal solution of
o' = go(w), ®(0) =0
is o(t) =0 forall t > 0.
Then the Fréchet derivative of j(x(t)) = j(o(t, 0, x¢)) exists and

satisfies the equation

y/ = j(f,((’)(t7 07 X())))y, (y(O)) =1 (13)
Proof. By (A1) if B = 0, then the Cauchy problem
x' = f(x), x(0) = xo (14)

has a unique maximal solution x(¢) = (¢, 0, x() for all ¢ > 0, and clearly
(13) has a unique solution. Let us denote this solution by y(¢) = j({U(2))
for U(t) € A, and define the function

J(z() = j(olt, 0, xg + h)) = j(al, 0, x)) - jUE)) - h
forall ¢ € [0, T], xog + A and xy € B(xg, 0) = A, 0 > 0, h # 0. Since

z(t)) = 2(t) we have 1
[0 = { iy |, we have by (12) 0,

ov{iF)) - oo (V) )75

=M ( (nzf(f )nj (u fﬁ)l
We observe that

( (t)j J(f(o(t, 0, xo +h))) — j(f(alt, 0, x0)))
17 ] I7]

~ J(f (ot 0, xo»n(U(t»m,

and from the Fréchet differentiability of jo f and the definition of f, we
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have

J(f(e(t, 0, xg + h))) = j(f(alt, 0, xo)))

= jlc © g(j(olt, 0, xg + h)))) = j(c © g(j(alt, 0, xo)))

= jlc © g'(j(wlt, 0, xp))[i(e(, 0, xo + A)) - j(alt, 0, xo))]
+0( j(o(, 0, xg + h)) = j(o(, 0, xo)) ).

By setting n(h) = O(] j(o(¢, 0, xo + h)) — j(w(t, 0, xq))|), and using
the definition of j(z(¢)) and (H1) (ii), we get

o)< e 3£
s o o)

() FeT) as)

Therefore, by using (H2) (iv), we can write

sl o oo

since it can be shown that for every ¢ € [0, T'],

i, {70, 7)o -
im0 () T o
see [6] for more detail. Since j(U(0)) = y(0) = I and (0, 0, x() = x¢, we

z(0)

have j(z(0)) = 0. Thus, by (H1) (i), V( (" Al

D = 0. Therefore, using the
. ( 2(¢)
Lemma 1.1 of [6], we get hmHhH—’()V]m =0, and hence

limy 5 50 ](%) =0. Thus, j(o@, 0,xg)) is Fréchet differentiable

relative to xy and its Fréchet derivative is % J((t, 0, xq)) = j(U(?)).
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Since j(U(t)) is invertible with continuous inverse, an j ' is

continuous, we get U! exists, 1s continuous and equal to

-1
(% o(t, 0, xo)) . Thus f = ¢ ® g satisfies (A3).
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