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Abstract 

A group G is said to be ( )tsr ,, -generated if it is a quotient group of the 

triangle group ( ) .1,,,, ====|= xyzzyxzyxtsrT tsr  In Moori 

[18], the question of finding all possible ( )tsr ,, -generations for any non-

abelian finite simple group was posed. In this article we partially 

answer this question for the first two Janko groups 1J  and .2J  We 

compute ( )t,3,2 -generations for the first two Janko groups 1J  and ,2J  

where t is any divisor of iJ  for .2,1=i  

1. Introduction and Preliminaries 

Let G be a finite group. G is said to be ( )t,3,2 -generated if it can be 

generated by two elements x and y such that ( ) ( ) 3,2 == yoxo  and 

( ) .txyo =  Recently, there has been some reasonable interest in the 

( )t,3,2 -generations of sporadic simple groups. Ali and Ibrahim in [5, 6] 
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investigated the ( )t,3,2 -generations for the Held’s sporadic simple group 

He and Tits simple group T. Ganief and Moori in [10, 19] established 

( )t,3,2 -generations and ( )p,3,2 -generations for the sporadic simple 

groups 3J  and .22Fi  For more information regarding the study of 

( )t,3,2 -generations of sporadic simple groups as well as computational 

techniques, the reader is referred to [1-6, 10, 12, 18, 22]. 

In the present paper we compute ( )t,3,2 -generations for the Janko’s 

first two sporadic simple groups 1J  and ,2J  where t is any divisor of 

iJ  for .2,1=i  For basic properties of the Janko groups 1J  and 2J  

and information on its subgroup structure the reader is referred to       

[14-17]. The ATLAS of Finite Groups [9] is an important reference and 

we adopt its notation for subgroups, conjugacy classes, etc. Computations 

were carried out with the aid of GAP  [21]. 

In this article, we adopt the same notation as in [1], [2], [10] and [19]. 

In particular, ( ) ( )321 ,, CCCG G∆=∆  denotes the structure constant of G 

for the conjugacy classes 21, CC  and ,3C  whose value is the cardinality 

of the set ( ){ },, zxyyx =|=Γ  where 21, CyCx ∈∈  and z is a fixed 

element of the conjugacy class .3C  It is well known that ( )321 ,, CCCG∆  

can easily be computed from the character table of G by the following 

formula: 

( ) ( ) ( ) ( )
( )∑

=
χ

χχχ
×

⋅
=∆

m

i Gi

iii
G

zyx
G

CC
CCC

1

21
321 ,

1
,,  

where mχχχ ...,,, 21  are the irreducible complex characters of G (see [13, 

p. 45]). Also, ( ) ( )321 ,, CCCG G
∗∗ ∆=∆  denotes the number of distinct 

ordered pairs ( )yx,  with ,1Cx ∈  ,2Cy ∈  zxy =  and ., yxG =  

Obviously G is ( )nml ,, -generated group if and only if there exist 

conjugacy classes 321 ,, CCC  with representatives ,,, zyx  respectively, 

such that ( ) ( ) myolxo == ,  and ( ) ,nzo =  for which ( ) .0,, 321 >∆∗ CCCG  

In this case we say that G is ( )321 ,, CCC -generated. If H is a subgroup of 
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G containing z and B is a conjugacy class of H such that ,Bz ∈  then 

( )BCCH ,, 21Σ  denotes the number of distinct pairs ( )yx,  such that 

zxyCyCx =∈∈ ,, 21  and ., yx  

For the description of the conjugacy classes, the character tables, 
permutation characters and for information on the maximal subgroups 

readers are referred to ATLAS  [9]. A general conjugacy class of elements 

of order n in G is denoted by ,nX  e.g., A2  represents the first conjugacy 

class of involutions in a group G and 2AB represents the conjugacy 

classes 2A and 2B of involutions in a group G. The following results in 

certain situations are very effective at establishing non-generations. 

Theorem 1.1 (Ree [20]). Suppose G is a group of permutations of a set 

Ω of size n, and G is generated by ,...,,, 21 sxxx  with product sxxx 21  

.1G=  If the generator ix  has exactly ic  disjoint cycles on Ω (for )1 si ≤≤  

and G is transitive on Ω, then 

( ) .2221 +−≤+++ snccc s  

Lemma 1.2 [8]. Let G be a finite centerless group and suppose 

nZmYlX ,,  are G-conjugacy classes for which ( ) ( )nZmYlXG G ,,∗∗ ∆=∆  

( ) ., nZzzCG ∈<  Then ( ) 0=∆∗ G  and therefore G is not ( )nZmYlX ,, -

generated. 

2. ( )t,3,2 -generations of 1J  

The first Janko group 1J  is a sporadic simple group of order 175560  

19.11.7.5.3.23=  with 7 conjugacy classes of its maximal subgroups and 

15 conjugacy classes of its elements. It has a just one conjugacy class of 

each element of orders 2 and 3, namely, 2A and 3A, respectively. For 

basic properties of 1J  and computational techniques used in this article, 

the reader is referred to [1], [2] and [18]. 

In this section we investigate the ( )t,3,2 -generations of the smallest 

Janko group .1J  If the group 1J  is ( )t,3,2 -generated, then by Conder’s 

result [7], .113121 <++ t  Thus we only need to consider 
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{ ,11,10,7∈t  }.19,15  

Lemma 2.1. The Janko group 1J  is ( )7,3,2 -generated. 

Proof. Woldar [23] proved that 1J  is a Hurwitz group. That is, 1J  is 

( )7,3,2 -generated group.  9 

Lemma 2.2. The sporadic group 1J  is ( )10,3,2 -generated. 

Proof. Using the character table of 1J  we compute in GAP  [21] that 

( ) .4510,3,2
1

=∆ ABAAJ  The only maximal subgroups of 1J  having 

non-empty intersection with the classes 2A, 3A and 10A, up to 

isomorphism, are 52 A×  and .106 DD ×  We have ( )ABAAA 10,3,2
52×Σ  

5=  and ( ) .010,3,2
106

=Σ × ABAADD  A fixed element of order 10 in 1J  

lies in a unique conjugate copy of each of 52 A×  and .106 DD ×  This 

implies that, 

( ) ( ) ( )ABAAABAAABAA AJJ 10,3,210,3,210,3,2
511 2×

∗ Σ−∆≥∆  

( )ABAADD 10,3,2
106×Σ−  

.00545 >−−≥  

Hence, 1J  is ( )AAA 10,3,2 - and ( )BAA 10,3,2 -generated. This completes 

the proof.  9 

Lemma 2.3. The group 1J  is ( )11,3,2 -generated. 

Proof. This has been proved in Moori [18]. 9 

Lemma 2.4. The Janko group 1J  is ( )15,3,2 -generated. 

Proof. Up to isomorphism, 106 DD ×  is the only maximal subgroup of 

1J  having elements of order 15. But for this maximal subgroup we have 

( ) .015,3,2
106

=Σ × ABAADD  Since ( ) ,6015,3,2
1

=∆ ABAAJ  the result 

follows. 9 

Lemma 2.5. The group 1J  is ( )19,3,2 -generated. 

Proof. This has been proved in Moori [18] as Lemma 2.4. 9 
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Next, we summarize our results in this section. 

Theorem 2.6. The Janko group 1J  is ( )t,3,2 -generated for all ∈t  

{ }.19,15,11,10,7  

Proof. The proof follows from Lemmas 2.1-2.5. 9 

3. ( )t,3,2 -generations of 2J  

The Janko’s second sporadic simple group 2J  has order 604800  

237 5.3.2=  with 21 conjugacy classes of elements. It has two classes of 

involutions namely, 2A and .2B  The group 2J  acts as a transitive rank-3 

group on a set X of 100 points. The point stabilizer of this action is 

isomorphic to ( )33U  with orbits of lengths 1, 36 and 63. The permutation 

character of this action on the conjugates of ( )33U  is given by ( ) =χ 33U  

,63361 aaa ++  where ma  is the first irreducible character of degree m 

in the character table of .2J  For basic properties of 2J  and other related 

Janko groups and the subgroup structure of their maximal subgroups, 

the reader is referred to [14-17] and [21]. 

In this section we investigate the ( )t,3,2 -generations of the second 

Janko group .2J  It is well known that if the group 2J  is ( )t,3,2 -

generated, then .113121 <++ t  Thus we only need to consider 

{ }.15,12,10,8,7∈t  

Lemma 3.1. The Janko group 2J  is ( )AYX 7,3,2 -generated, where 

{ }BAX ,∈  and { },, BAY ∈  if and only if .BYX ==  

Proof. See [18]. 9 

Lemma 3.2. The sporadic group 2J  is ( )8,3,2 -generated. 

Proof. The non-generation of 2J  by the triple ( )AAA 8,3,2  follows 

immediately since ( ) .08,3,2
2

=∆ AAAJ  The group 2J  is also not 

( )AAB 8,3,2 -generated by Lemma 1.2 as ( ) ( ) .88,3,2
22

ACAAB JJ <∆  



MOHAMMED A. AL-KADHI 384

Next we show that 2J  is not ( )ABA 8,3,2 - and ( )ABB 8,3,2 -

generated. The group 2J  acts as a transitive rank-3 group on a set X of 

100 elements. The point stabilizer of this action is isomorphic to ( )33U  

and the permutation character of this action on the conjugates of ( )33U    

is given by ( ) ,6336133
aaaU ++=χ  where ma  is the first irreducible 

character of degree m in the character table of .2J  This implies that, in 

the action of 2J  on the set X, the elements in the classes BBA 3,2,2  and 

8A have cycle types 324504020 31,2,21  and ,8421 10332  respectively and 

we obtain that number of cycles of representatives in the classes 2A, 2B, 

3B and 8A are 36,50,60  and 18, respectively. Since, 102183660 >++  

and .102183650 >++  Ree’s transitivity condition Lemma 1.1 shows 

that ( )ABA 8,3,2  and ( )ABB 8,3,2  are not generating triples for .2J  

This completes the proof. 9 

Lemma 3.3. The group 2J  is ( )ZYX 10,3,2 -generated, where 

{ }BAYX ,, ∈  and { },,,, DCBAZ ∈  if and only if BYX ==  and 

., DCZ =  

Proof. For the triples ( ) ( ) ( ),10,3,2,10,3,2,10,3,2 ABABAAAAA  

( ) ( ) ( ) ( )CAABABAABBBA 10,3,2,10,3,2,10,3,2,10,3,2  and ( ,3,2 AA  

),10D  non-generation follows immediately as the structure constant on 

2J  of each triple is zero. 

For the triple ( )CAB 10,3,2  and ( )DAB 10,3,2  we obtain that 

( ) ( ) .1010510,3,2
22

=<=∆ CDCCDAB JJ  Thus ( )CAB 10,3,2  and 

( )DAB 10,3,2  are not generating triples of .2J  

Next, consider the case ,AX =  BY =  and CZ =  or D. Using the 

character table of the group ,2J  we calculate ( ) .1010,3,2
2

=∆ CDBAJ  

The only maximal subgroup of 2J  that has non-empty intersection with 

the classes in the triples ( )CBA 10,3,2  and ( )DBA 10,3,2  is, up to 

isomorphism, .:5 12
2

1 DH ≅  We obtain that ( ) .1010,3,2
1

=Σ CDBAH  
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Further, a fixed element of order 10 in 2J  lies in a unique conjugate of 

.1H  Since ( ) ( ) ( )CDBACDBACDBA HJJ 10,3,210,3,210,3,2
122

Σ−∆=∆∗  

( ) .010110 =−=  Therefore, ( )CBA 10,3,2  and ( )DBA 10,3,2  are not 

generating triples for .2J  Also, we can apply a similar method to show 

that 2J  is not ( )ABB 10,3,2 - and ( )BBB 10,3,2 -generated. 

Finally, we consider the case BYX ==  and CZ =  or D. As in the 

above case, the only maximal subgroup of 2J  which may contribute to 

the structure constants ( ) ,6010,3,2
2

=∆ CDBBJ  up to isomorphism, is 

the group .:5 12
2

1 DH ≅  However we compute that ( )CDBBH 10,3,2
1

Σ  

.0=  Hence ( ) ( ) ,6010,3,210,3,2
22

=∆=∆∗ CDBBCDBB JJ  proving that 

( )CBB 10,3,2  and ( )DBB 10,3,2  are generating triples of .2J  This 

completes the proof. 9 

Lemma 3.4. The Janko group 2J  is ( )AYX 12,3,2 -generated, where 

{ }BAYX ,, ∈  if and only if .BYX ==  

Proof. Since ( ) ,012,3,2
2

=∆ AABJ  the group 2J  is not ( )AAB 12,3,2 -

generated. Consider the triples ( )AAA 12,3,2  and ( ).12,3,2 ABA  By the 

algebra constants of the group ,2J  we have ( ) 312,3,2
2

=∆ ABAAJ  

( ) .1212
2

ABCJ=<  Hence, by Lemma 1.2, the Janko group 2J  is not 

( )AAA 12,3,2 - and ( )ABA 12,3,2 -generated. 

Finally, we consider the case .BYX ==  The maximal subgroups of 

2J  that may contain ( )ABB 12,3,2 -generated proper subgroups are 

isomorphic to 26 2..3 A  and ..3.2 3
42 S+  We calculate that  

( ) ,9612,3,2
2

=∆ ABBJ  

( ) ( ).12,3,2012,3,2
3

4226 .3.22..3 ABBABB
SA +Σ==Σ  

Thus, ( ) ( ) ,09612,3,212,3,2
22

>=∆=∆∗ ABBABB JJ  and so the group 

2J  is ( )ABB 12,3,2 -generated. This completes the proof. 9 
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Lemma 3.5. The Janko group 2J  is ( )ZYX 15,3,2 -generated, where 

{ }BAZYX ,,, ∈  if and only if .BYX ==  

Proof. Since ( ) ,1515 1 BA =−  the results obtained by replacing one of 

these classes with the other are the same. So, let Z15  denote the class 

A15  or .15B  

First consider the case .AY =  The non-generation of 2J  by the 

triples ( )ZAA 15,3,2  and ( )ZAB 15,3,2  follows immediately since 

( ) ( ).15,3,2015,3,2
22

ZABZAA JJ ∆==∆  Next, since ( )ZBAJ 15,3,2
2

∆  

( ) ,151510
2

ZCJ=<=  by Lemma 1.2, the Janko group 2J  is not 

( )ZBA 15,3,2 -generated. 

Finally, consider the case .BYX ==  We compute that ( ,3,2
2

BBJ∆  

) .7515 =Z  The maximal subgroups of 2J  that have non-empty 

intersection with the classes BB 3,2  and ,15Z  up to isomorphism, are 

262 2..3 AH ≅  and .543 AAH ×≅  We calculate that ( )ZBBH 15,3,2
2

Σ  

0=  and ( ) .1515,3,2
3

=Σ ZBBH  Further as an element of order 15 in 2J  

is contained in two conjugates of ,3H  we obtain 

( ) ( ) ( )ZBBZBBZBB JJJ 15,3,215,3,215,3,2
222

Σ−∆≥∆∗  

( )ZBBJ 15,3,22
3

Σ−  

( ) ,015275 >−≥  

proving that ( )ZBB 15,3,2  is a generating triple of .2J  This completes 

the proof. 9 

We now summarize the above results of this section in the following 
theorem. 

Theorem 3.6. The Janko group 2J  is ( )tZYX ,3,2 -generated if and 

only if BYX ==  and { }.15,12,10 ABACDtZ ∈  

Proof. This follows from Lemmas 3.1-3.5.  9 
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