ON $(2,3, t)$-GENERATIONS FOR THE JANKO GROUPS J_{1} AND J_{2}

MOHAMMED A. AL-KADHI

Department of Mathematics
Faculty of Science
Imam Mohammed Bin Saud Islamic University
P. O. Box 122037

Riyadh 11721, Saudi Arabia
e-mail: malki2@yahoo.com

Abstract

A group G is said to be (r, s, t)-generated if it is a quotient group of the triangle group $T(r, s, t)=\left\langle x, y, z \mid x^{r}=y^{s}=z^{t}=x y z=1\right\rangle$. In Moori [18], the question of finding all possible (r, s, t) -generations for any nonabelian finite simple group was posed. In this article we partially answer this question for the first two Janko groups J_{1} and J_{2}. We compute $(2,3, t)$-generations for the first two Janko groups J_{1} and J_{2}, where t is any divisor of $\left|J_{i}\right|$ for $i=1,2$.

1. Introduction and Preliminaries

Let G be a finite group. G is said to be $(2,3, t)$-generated if it can be generated by two elements x and y such that $o(x)=2, o(y)=3$ and $o(x y)=t$. Recently, there has been some reasonable interest in the $(2,3, t)$-generations of sporadic simple groups. Ali and Ibrahim in [5, 6]

2000 Mathematics Subject Classification: Primary 20D08, 20 F05.
Keywords and phrases: Janko group, J_{1}, J_{2}, sporadic group, $(2,3, t)$-generations, simple group.
Received March 12, 2008
investigated the ($2,3, t$) -generations for the Held's sporadic simple group He and Tits simple group T. Ganief and Moori in [10, 19] established $(2,3, t)$-generations and $(2,3, p)$-generations for the sporadic simple groups J_{3} and $F i_{22}$. For more information regarding the study of ($2,3, t$) -generations of sporadic simple groups as well as computational techniques, the reader is referred to $[1-6,10,12,18,22]$.

In the present paper we compute $(2,3, t)$-generations for the Janko's first two sporadic simple groups J_{1} and J_{2}, where t is any divisor of $\left|J_{i}\right|$ for $i=1,2$. For basic properties of the Janko groups J_{1} and J_{2} and information on its subgroup structure the reader is referred to [14-17]. The $\mathbb{A T L} A \mathbb{S}$ of Finite Groups [9] is an important reference and we adopt its notation for subgroups, conjugacy classes, etc. Computations were carried out with the aid of $\mathbb{G A P P}$ [21].

In this article, we adopt the same notation as in [1], [2], [10] and [19]. In particular, $\Delta(G)=\Delta_{G}\left(C_{1}, C_{2}, C_{3}\right)$ denotes the structure constant of G for the conjugacy classes C_{1}, C_{2} and C_{3}, whose value is the cardinality of the set $\Gamma=\{(x, y) \mid x y=z\}$, where $x \in C_{1}, y \in C_{2}$ and z is a fixed element of the conjugacy class C_{3}. It is well known that $\Delta_{G}\left(C_{1}, C_{2}, C_{3}\right)$ can easily be computed from the character table of G by the following formula:

$$
\Delta_{G}\left(C_{1}, C_{2}, C_{3}\right)=\frac{\left|C_{1}\right| \cdot\left|C_{2}\right|}{|G|} \times \sum_{i=1}^{m} \frac{\chi_{i}(x) \chi_{i}(y) \overline{\chi_{i}(z)}}{\chi_{i}\left(1_{G}\right)}
$$

where $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$ are the irreducible complex characters of G (see [13, p. 45]). Also, $\Delta^{*}(G)=\Delta_{G}^{*}\left(C_{1}, C_{2}, C_{3}\right)$ denotes the number of distinct ordered pairs (x, y) with $x \in C_{1}, \quad y \in C_{2}, \quad x y=z$ and $G=\langle x, y\rangle$. Obviously G is (l, m, n)-generated group if and only if there exist conjugacy classes C_{1}, C_{2}, C_{3} with representatives x, y, z, respectively, such that $o(x)=l, o(y)=m$ and $o(z)=n$, for which $\Delta_{G}^{*}\left(C_{1}, C_{2}, C_{3}\right)>0$. In this case we say that G is $\left(C_{1}, C_{2}, C_{3}\right)$-generated. If H is a subgroup of
G containing z and B is a conjugacy class of H such that $z \in B$, then $\Sigma_{H}\left(C_{1}, C_{2}, B\right)$ denotes the number of distinct pairs (x, y) such that $x \in C_{1}, y \in C_{2}, x y=z$ and $\langle x, y\rangle$.

For the description of the conjugacy classes, the character tables, permutation characters and for information on the maximal subgroups readers are referred to $\mathbb{A T L} A \mathbb{S}$ [9]. A general conjugacy class of elements of order n in G is denoted by $n X$, e.g., $2 A$ represents the first conjugacy class of involutions in a group G and $2 A B$ represents the conjugacy classes $2 A$ and $2 B$ of involutions in a group G. The following results in certain situations are very effective at establishing non-generations.

Theorem 1.1 (Ree [20]). Suppose G is a group of permutations of a set Ω of size n, and G is generated by $x_{1}, x_{2}, \ldots, x_{s}$, with product $x_{1} x_{2} \cdots x_{s}$ $=1_{G}$. If the generator x_{i} has exactly c_{i} disjoint cycles on $\Omega($ for $1 \leq i \leq s)$ and G is transitive on Ω, then

$$
c_{1}+c_{2}+\cdots+c_{s} \leq n(s-2)+2 .
$$

Lemma 1.2 [8]. Let G be a finite centerless group and suppose $l X, m Y, n Z$ are G-conjugacy classes for which $\Delta^{*}(G)=\Delta_{G}^{*}(l X, m Y, n Z)$ $<\left|C_{G}(z)\right|, z \in n Z$. Then $\Delta^{*}(G)=0$ and therefore G is not $(l X, m Y, n Z)$ generated.

2. $(2,3, t)$-generations of J_{1}

The first Janko group J_{1} is a sporadic simple group of order 175560 $=2^{3} \cdot 3 \cdot 5 \cdot 7.11 .19$ with 7 conjugacy classes of its maximal subgroups and 15 conjugacy classes of its elements. It has a just one conjugacy class of each element of orders 2 and 3, namely, $2 A$ and $3 A$, respectively. For basic properties of J_{1} and computational techniques used in this article, the reader is referred to [1], [2] and [18].

In this section we investigate the $(2,3, t)$-generations of the smallest Janko group J_{1}. If the group J_{1} is $(2,3, t)$-generated, then by Conder's result [7], $1 / 2+1 / 3+1 / t<1$. Thus we only need to consider
$t \in\{7,10,11,15,19\}$.
Lemma 2.1. The Janko group J_{1} is $(2,3,7)$-generated.
Proof. Woldar [23] proved that J_{1} is a Hurwitz group. That is, J_{1} is $(2,3,7)$-generated group.

Lemma 2.2. The sporadic group J_{1} is $(2,3,10)$-generated.
Proof. Using the character table of J_{1} we compute in $\mathbb{G A P P}$ [21] that $\Delta_{J_{1}}(2 A, 3 A, 10 A B)=45$. The only maximal subgroups of J_{1} having non-empty intersection with the classes $2 A, 3 A$ and $10 A$, up to isomorphism, are $2 \times A_{5}$ and $D_{6} \times D_{10}$. We have $\Sigma_{2 \times A_{5}}(2 A, 3 A, 10 A B)$ $=5$ and $\Sigma_{D_{6} \times D_{10}}(2 A, 3 A, 10 A B)=0$. A fixed element of order 10 in J_{1} lies in a unique conjugate copy of each of $2 \times A_{5}$ and $D_{6} \times D_{10}$. This implies that,

$$
\begin{aligned}
\Delta_{J_{1}}^{*}(2 A, 3 A, 10 A B) \geq & \Delta_{J_{1}}(2 A, 3 A, 10 A B)-\Sigma_{2 \times A_{5}}(2 A, 3 A, 10 A B) \\
& -\Sigma_{D_{6} \times D_{10}}(2 A, 3 A, 10 A B) \\
\geq & 45-5-0>0
\end{aligned}
$$

Hence, J_{1} is $(2 A, 3 A, 10 A)$ - and $(2 A, 3 A, 10 B)$-generated. This completes the proof.

Lemma 2.3. The group J_{1} is $(2,3,11)$-generated.
Proof. This has been proved in Moori [18].
Lemma 2.4. The Janko group J_{1} is $(2,3,15)$-generated.
Proof. Up to isomorphism, $D_{6} \times D_{10}$ is the only maximal subgroup of J_{1} having elements of order 15 . But for this maximal subgroup we have $\Sigma_{D_{6} \times D_{10}}(2 A, 3 A, 15 A B)=0$. Since $\Delta_{J_{1}}(2 A, 3 A, 15 A B)=60$, the result follows.

Lemma 2.5. The group J_{1} is $(2,3,19)$-generated.
Proof. This has been proved in Moori [18] as Lemma 2.4.

Next, we summarize our results in this section.
Theorem 2.6. The Janko group J_{1} is $(2,3, t)$-generated for all $t \in$ $\{7,10,11,15,19\}$.

Proof. The proof follows from Lemmas 2.1-2.5.
3. $(2,3, t)$-generations of J_{2}

The Janko's second sporadic simple group J_{2} has order 604800 $=2^{7} .3^{3} .5^{2}$ with 21 conjugacy classes of elements. It has two classes of involutions namely, $2 A$ and $2 B$. The group J_{2} acts as a transitive rank-3 group on a set X of 100 points. The point stabilizer of this action is isomorphic to $U_{3}(3)$ with orbits of lengths 1,36 and 63 . The permutation character of this action on the conjugates of $U_{3}(3)$ is given by $\chi_{U_{3}(3)}=$ $\underline{1 a}+\underline{36 a}+\underline{63 a}$, where $\underline{m a}$ is the first irreducible character of degree m in the character table of J_{2}. For basic properties of J_{2} and other related Janko groups and the subgroup structure of their maximal subgroups, the reader is referred to [14-17] and [21].

In this section we investigate the $(2,3, t)$-generations of the second Janko group J_{2}. It is well known that if the group J_{2} is $(2,3, t)$ generated, then $1 / 2+1 / 3+1 / t<1$. Thus we only need to consider $t \in\{7,8,10,12,15\}$.

Lemma 3.1. The Janko group J_{2} is $(2 X, 3 Y, 7 A)$-generated, where $X \in\{A, B\}$ and $Y \in\{A, B\}$, if and only if $X=Y=B$.

Proof. See [18].
Lemma 3.2. The sporadic group J_{2} is $(2,3,8)$-generated.
Proof. The non-generation of J_{2} by the triple ($2 A, 3 A, 8 A$) follows immediately since $\Delta_{J_{2}}(2 A, 3 A, 8 A)=0$. The group J_{2} is also not $(2 B, 3 A, 8 A)$-generated by Lemma 1.2 as $\Delta_{J_{2}}(2 B, 3 A, 8 A)<\left|C_{J_{2}}(8 A)\right|$.

Next we show that J_{2} is not $(2 A, 3 B, 8 A)$ - and $(2 B, 3 B, 8 A)$ generated. The group J_{2} acts as a transitive rank-3 group on a set X of 100 elements. The point stabilizer of this action is isomorphic to $U_{3}(3)$ and the permutation character of this action on the conjugates of $U_{3}(3)$ is given by $\chi_{U_{3}(3)}=\underline{1 a}+\underline{36 a}+\underline{63 a}$, where $\underline{m a}$ is the first irreducible character of degree m in the character table of J_{2}. This implies that, in the action of J_{2} on the set X, the elements in the classes $2 A, 2 B, 3 B$ and $8 A$ have cycle types $1^{20} 2^{40}, 2^{50}, 1^{4} 3^{32}$ and $1^{2} 2^{3} 4^{3} 8^{10}$, respectively and we obtain that number of cycles of representatives in the classes $2 A, 2 B$, $3 B$ and $8 A$ are $60,50,36$ and 18 , respectively. Since, $60+36+18>102$ and $50+36+18>102$. Ree's transitivity condition Lemma 1.1 shows that $(2 A, 3 B, 8 A)$ and $(2 B, 3 B, 8 A)$ are not generating triples for J_{2}. This completes the proof.

Lemma 3.3. The group J_{2} is $(2 X, 3 Y, 10 Z)$-generated, where $X, Y \in\{A, B\}$ and $Z \in\{A, B, C, D\}$, if and only if $X=Y=B$ and $Z=C, D$.

Proof. For the triples $(2 A, 3 A, 10 A),(2 A, 3 A, 10 B),(2 A, 3 B, 10 A)$, $(2 A, 3 B, 10 B),(2 B, 3 A, 10 A),(2 B, 3 A, 10 B),(2 A, 3 A, 10 C)$ and $(2 A, 3 A$, $10 D)$, non-generation follows immediately as the structure constant on J_{2} of each triple is zero.

For the triple $(2 B, 3 A, 10 C)$ and $(2 B, 3 A, 10 D)$ we obtain that $\Delta_{J_{2}}(2 B, 3 A, 10 C D)=5<\left|C_{J_{2}}(10 C D)\right|=10$. Thus $(2 B, 3 A, 10 C)$ and $(2 B, 3 A, 10 D)$ are not generating triples of J_{2}.

Next, consider the case $X=A, Y=B$ and $Z=C$ or D. Using the character table of the group J_{2}, we calculate $\Delta_{J_{2}}(2 A, 3 B, 10 C D)=10$. The only maximal subgroup of J_{2} that has non-empty intersection with the classes in the triples $(2 A, 3 B, 10 C)$ and $(2 A, 3 B, 10 D)$ is, up to isomorphism, $H_{1} \cong 5^{2}: D_{12}$. We obtain that $\Sigma_{H_{1}}(2 A, 3 B, 10 C D)=10$.

Further, a fixed element of order 10 in J_{2} lies in a unique conjugate of H_{1}. Since $\Delta_{J_{2}}^{*}(2 A, 3 B, 10 C D)=\Delta_{J_{2}}(2 A, 3 B, 10 C D)-\Sigma_{H_{1}}(2 A, 3 B, 10 C D)$ $=10-1(10)=0$. Therefore, $(2 A, 3 B, 10 C)$ and $(2 A, 3 B, 10 D)$ are not generating triples for J_{2}. Also, we can apply a similar method to show that J_{2} is not $(2 B, 3 B, 10 A)$ - and $(2 B, 3 B, 10 B)$-generated.

Finally, we consider the case $X=Y=B$ and $Z=C$ or D. As in the above case, the only maximal subgroup of J_{2} which may contribute to the structure constants $\Delta_{J_{2}}(2 B, 3 B, 10 C D)=60$, up to isomorphism, is the group $H_{1} \cong 5^{2}: D_{12}$. However we compute that $\Sigma_{H_{1}}(2 B, 3 B, 10 C D)$ $=0$. Hence $\Delta_{J_{2}}^{*}(2 B, 3 B, 10 C D)=\Delta_{J_{2}}(2 B, 3 B, 10 C D)=60$, proving that $(2 B, 3 B, 10 C)$ and $(2 B, 3 B, 10 D)$ are generating triples of J_{2}. This completes the proof.

Lemma 3.4. The Janko group J_{2} is $(2 X, 3 Y, 12 A)$-generated, where $X, Y \in\{A, B\}$ if and only if $X=Y=B$.

Proof. Since $\Delta_{J_{2}}(2 B, 3 A, 12 A)=0$, the group J_{2} is not $(2 B, 3 A, 12 A)$ generated. Consider the triples $(2 A, 3 A, 12 A)$ and $(2 A, 3 B, 12 A)$. By the algebra constants of the group J_{2}, we have $\Delta_{J_{2}}(2 A, 3 A, 12 A B)=3$ $<12=\left|C_{J_{2}}(12 A B)\right|$. Hence, by Lemma 1.2, the Janko group J_{2} is not $(2 A, 3 A, 12 A)$ - and $(2 A, 3 B, 12 A)$-generated.

Finally, we consider the case $X=Y=B$. The maximal subgroups of J_{2} that may contain $(2 B, 3 B, 12 A)$-generated proper subgroups are isomorphic to $3 \cdot A_{6} \cdot 2_{2}$ and $2^{2+4} \cdot 3 \cdot S_{3}$. We calculate that

$$
\begin{aligned}
& \Delta_{J_{2}}(2 B, 3 B, 12 A)=96 \\
& \Sigma_{3 \cdot A_{6} \cdot 2_{2}}(2 B, 3 B, 12 A)=0=\Sigma_{2^{2+4} \cdot 3 \cdot S_{3}}(2 B, 3 B, 12 A) .
\end{aligned}
$$

Thus, $\Delta_{J_{2}}^{*}(2 B, 3 B, 12 A)=\Delta_{J_{2}}(2 B, 3 B, 12 A)=96>0$, and so the group J_{2} is $(2 B, 3 B, 12 A)$-generated. This completes the proof.

Lemma 3.5. The Janko group J_{2} is $(2 X, 3 Y, 15 Z)$-generated, where $X, Y, Z \in\{A, B\}$ if and only if $X=Y=B$.

Proof. Since $(15 A)^{-1}=15 B$, the results obtained by replacing one of these classes with the other are the same. So, let $15 Z$ denote the class $15 A$ or $15 B$.

First consider the case $Y=A$. The non-generation of J_{2} by the triples $(2 A, 3 A, 15 Z)$ and $(2 B, 3 A, 15 Z)$ follows immediately since $\Delta_{J_{2}}(2 A, 3 A, 15 Z)=0=\Delta_{J_{2}}(2 B, 3 A, 15 Z)$. Next, since $\Delta_{J_{2}}(2 A, 3 B, 15 Z)$ $=10<15=\left|C_{J_{2}}(15 Z)\right|$, by Lemma 1.2, the Janko group J_{2} is not $(2 A, 3 B, 15 Z)$-generated.

Finally, consider the case $X=Y=B$. We compute that $\Delta_{J_{2}}(2 B, 3 B$, $15 Z)=75$. The maximal subgroups of J_{2} that have non-empty intersection with the classes $2 B, 3 B$ and $15 Z$, up to isomorphism, are $H_{2} \cong 3 . A_{6} \cdot 2_{2}$ and $H_{3} \cong A_{4} \times A_{5}$. We calculate that $\Sigma_{H_{2}}(2 B, 3 B, 15 Z)$ $=0$ and $\Sigma_{H_{3}}(2 B, 3 B, 15 Z)=15$. Further as an element of order 15 in J_{2} is contained in two conjugates of H_{3}, we obtain

$$
\begin{aligned}
\Delta_{J_{2}}^{*}(2 B, 3 B, 15 Z) \geq & \Delta_{J_{2}}(2 B, 3 B, 15 Z)-\Sigma_{J_{2}}(2 B, 3 B, 15 Z) \\
& -2 \Sigma_{J_{3}}(2 B, 3 B, 15 Z) \\
\geq & 75-2(15)>0
\end{aligned}
$$

proving that $(2 B, 3 B, 15 Z)$ is a generating triple of J_{2}. This completes the proof.

We now summarize the above results of this section in the following theorem.

Theorem 3.6. The Janko group J_{2} is $(2 X, 3 Y, t Z)$-generated if and only if $X=Y=B$ and $t Z \in\{10 C D, 12 A, 15 A B\}$.

Proof. This follows from Lemmas 3.1-3.5.

References

[1] F. Ali, On the ranks of O'N and Ly, Discrete Applied Mathematics 155 (2007), 394399.
[2] F. Ali and M. A. F. Ibrahim, On the ranks of $H S$ and $M c L$, Utilitas Mathematica 70 (2006), 187-195.
[3] F. Ali and M. A. F. Ibrahim, On the ranks of Conway groups Co_{2} and Co_{3}, J. Algebra Appl. 4 (2005), 557-565.
[4] F. Ali and M. A. F. Ibrahim, On the ranks of Conway group Co ${ }_{1}$, Proc. Japan Acad. Ser. A 81 (2005), 95-98.
[5] F. Ali and M. A. F. Ibrahim, (2, 3, t) -generations of the Held's sporadic simple group He, preprint.
[6] F. Ali and M. A. F. Ibrahim, On the generation of Conway groups by conjugate involutions, Algebras Groups Geom. 24 (2007), 203-210.
[7] M. D. E. Conder, Some results on quotients of triangle groups, Bull. Australian Math. Soc. 30 (1984), 73-90.
[8] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc. 116 (1992), 653-663.
[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press (Clarendon), Oxford, 1985.
[10] S. Ganief and J. Moori, (2, 3, t)-generations for the Janko group J_{3}, Comm. Algebra 23(12) (1995), 4427-4437.
[11] S. Ganief and J. Moori, $p X$-complementary generations of the Janko groups J_{1}, J_{2} and J_{3}, Comm. Algebra 24(3) (1996), 809-820.
[12] M. A. F. Ibrahim and F. Ali, On the ranks of Tits simple group ${ }^{2} F_{4}(2)^{\prime}$, WSEAS Transactions on Mathematics 5(7) (2006), 838-843.
[13] I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1976.
[14] Z. Janko, A finite simple group with abelian Sylow 2-subgroup, Proc. Nat. Acad. Sci. USA 53 (1965), 657-658.
[15] Z. Janko, A finite simple group with abelian Sylow 2 -subgroup, and its characterizations, J. Algebra 3 (1966), 147-186.
[16] Z. Janko, Some new simple groups of finite order, Theory of Finite Groups, Brauer and Sah, eds., Benjamin 1969, pp. 63-64.
[17] Z. Janko, Some new simple groups of finite order, Symp. Math. 1 (1968), 24-64.
[18] J. Moori, (p, q, r) -generations for the Janko groups J_{1} and J_{2}, Nova J. Algebra Geom. 2(3) (1993), 277-285.
[19] J. Moori, (2, 3, p) -generations for the Fischer group F_{22}, Comm. Algebra 22(11) (1994), 4597-4610.
[20] R. Ree, A theorem on permutations, J. Comb. Theory A 10 (1971), 174-175.
[21] The GAP Group, $\mathbb{G A P}$ - Groups, Algorithms and Programming, Version 4.3, Aachen, St Andrews, 2002 (http://www-gap.dcs.st-and.ac.uk/~gap).
[22] A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups, Illinois Math. J. (3) 33 (1989), 416-437.
[23] A. J. Woldar, Sporadic simple groups which are Hurwitz, J. Algebra 144 (1991), 443-450.

