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Abstract 

The joint spectrum ( )CJσ  of a set of matrices { }mCC ...,,1=C  is 

defined. When the matrices in C can be upper-triangularized by the 

same similarity transformation, the fan spectrum, ( ),CFσ  is defined 

and it is shown that ( ) ( ).CC FJ σ⊆σ  If the matrices in C commute 

amongst themselves, then ( ) ( ).CC FJ σ⊆σ  A generalization of the fact 

that an nn ×  matrix with n-distinct eigenvalues is diagonalizable is 

also established. 

1. Introduction 

Let nnT CC →:  be a linear transformation. A set { }nvvV ...,,1=  

belonging to nC  is a fan basis for T if, for each i in ( ) { },...,,2,1 nnN =  

( )












∈τ|τ= ∑
=

i

j
jjji vvvspan

1
1 ...,, C   

is an invariant subspace of T [5, p. 257]. Suppose { }mCC ...,,1=C  is a set 

of matrices contained in .nn×C  We say { }nvvV ...,,1=  is a common fan 
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basis for C provided V is a fan basis for each iC  in C. This definition is of 

course equivalent to the statement that each member of C can be upper-

triangularized by the same similarity transformation. When C has a 

common fan basis, we define the fan spectrum of C, ( ),CFσ  to be the set 

of m-dimensional vectors consisting of the corresponding diagonal 

elements of the upper-triangularized matrices. See [4] where a joint 
spectrum for several noncommuting linear operators is defined. The 

definition of the joint spectrum in [4] is much more involved even in the 
finite dimensional case and is developed for a functional calculus of 

noncommuting linear operators. There are also other well-known 
definitions of joint spectra of several commuting linear operators. See [6]. 

Our definition of fan spectrum for several matrices with common fan 
basis appears to be new. 

The definition of fan spectrum, though defined in terms of a fixed 

basis, is, as we show, independent of the fan basis. The proof follows from 

the fact if a single matrix T is similar to an upper-triangular matrix, then 

the diagonals of this upper-triangular matrix are the eigenvalues of T 

and, thus is independent of the similarity transformation. 

For a set of matrices { }mCC ...,,1=C  in ,nn×C  we define the joint  

spectrum of C, ( ),CJσ  in terms of common eigenvectors of C. The vector 

( )mλλ ...,,1  is in ( ),CJσ  if there exists a non zero vector v in nC  such 

that vvC ii λ=  for each i [6]. In this note we show that if C has a common 

fan basis, then we show that ( ) ( ).CC FJ σ⊆σ  We also show that if the 

matrices in C commute amongst themselves, then ( ) ( ).CC FJ σ=σ  Last 

of all we show that if ( )CJσ  consists of n-distinct vectors, then each 

matrix in C is diagonalizable by the same similarity transformation. This 

provides a generalization of the fact that an nn ×  matrix with n-distinct 

eigenvalues is diagonalizable. 

2. Fan Spectrum 

Let nnT CC →:  be a linear transformation. We recall that the set 

{ }nvvV ...,,1=  contained in nC  is a fan basis for T if, for each i in ( ),nN  
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is an invariant subspace of T. The matrix representation of T relative to 

V, [ ] ,VT  takes the form 
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Since the matrix is upper-triangular, the fan spectrum of T is defined to 

be the diagonal entries of [ ] ,VT  { },...,,11 nntt  which is precisely the set of 

eigenvalues of T. 

Let { }mAA ...,,1=A  be a set of matrices contained in .nn×C  We now 

state the definition of the fan spectrum of A which we denote by ( ).AFσ  

Suppose that A has a common fan basis { }....,,1 nuuU =  For i in ( ),mN  

set 

( ) ( ) .,,
1
∑
=

=
j

l
lji uljiauA  

Define vectors ( )ja  in mC  by 

( ) ( ) ( )[ ] .,,...,,,,1 Tjjmajjaja =  

Finally, define the fan spectrum of A, ( )AFσ  by 

( ) ( ) ( ){ }....,,1 naaF =σ A  

Example 1. If 


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
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



−−−
−−=
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2


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
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








−

−−−
=A  

We show that { }21, AA=A  has a common fan basis and we determine 

( ).AFσ  Set 
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Thus ( ) { },3,3,121 =σ A  ( ) { }1,1,72 −−−=σ A  and 

( ) .
1
3

,
1
3

,
7
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

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
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−
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−
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We now show that the definition of the fan spectrum is independent 

of the fan basis. To be precise, suppose that A has two common fan bases 

{ }nvvV ...,,1=  and { }....,,1 nwwW =  For i in ( )mN  and j in ( ),nN  set 

( ) ( )∑
=

=
j

l
lji vljiavA

1

,,  and ( ) ( ) .,,
1
∑
=

=
j

l
lji wljipwA  

Define vectors ( )ja  and ( )jp  in mC  by 

( ) ( ) ( )[ ]Tjjmajjaja ,,...,,,,1=   

and                             ( ) ( ) ( )[ ] .,,...,,,,1 mTjjmpjjpjp C∈=  
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The fan spectrum of A with respect to V, ( ),, AVFσ  and the fan spectrum 

of A with respect to W, ( ),, AWFσ  are given by 

( ) ( ) ( ){ }naaVF ...,,1, =σ A  and ( ) ( ) ( ){ }....,,1, nppWF =σ A  

We will show that ( ) ( ).,, AA WFVF σ=σ  Consider the linear 

transformation nnB CC →:  defined by 

,
1
∑
=

α=
m

i
ii AB  where [ ] ....,,1

m
m C∈αα=α  

It is clear that 

( ) ( ) ( ) ( ) ,,,,,
1 1 1 1 1

l

m

i

m

i

j

l

j

l

m

i
ilijiij vljiavljiavAvB ∑ ∑∑ ∑ ∑

= = = = = 










α=α=α=  

( ) ( ) ( ) ( ) ,,,,,
1 1 1 1 1

l

m

i

m

i

j

l

j

l

m

i
ilijiij wljipwljipwAwB ∑ ∑∑ ∑ ∑

= = = = = 










α=α=α=  

that is, both { }nvvV ...,,1=  and { }nwwW ...,,1=  are fan bases of B and 

the set 

( ) ( ){ }mjjamjjjia
m

i
i ...,,1,...,,1,,,

1

=α⋅=












=
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
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




α∑

=

 

and the set 

( ) ( ){ }mjjpmjjjip
m

i
i ...,,1,...,,1,,,

1

=α⋅=












=











α∑

=

 

are both the set of the eigenvalues of B. Thus they are equal for any α. It 

is easy to see that this can only happen when 

( ) ( ){ } ( ) ( ){ }....,,1...,,1 nppnaa =  

Therefore ( ) ( ).,, AA WFVF σ=σ  
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3. Commuting Matrices and the Joint Spectrum 

Suppose that { }mAA ...,,1=A  is a set of matrices. We define ( ),AJσ  

the joint spectrum of A. The vector [ ]Tmλλ ...,,1  is in ( )AJσ  if and only if 

there exists a vector mCv ∈  such that 

vvA ii λ=  for i in ( ).mN  

In other words, v is an eigenvector for each ,iA  and so will be referred to 

as a common eigenvector (of A). It is clear that in general ( )AJσ  can be 

empty. But if A has a common fan basis, we will show that ( )AJσ  is not 

empty and ( )AJσ  is a subset of ( ).AFσ  

The definition of the fan spectrum of { }mAA ...,,1=A  is an extrinsic 

definition in that it is defined in terms of a particular basis for the 

matrices in A. The joint spectrum, which does not rely on a particular 

basis, is an intrinsic definition. We say that { }mAA ...,,1=A  is 

commuting if for i, j in ( ),mN  .ijji AAAA =  It is well known that 

commuting matrices have a common fan basis [7, p. 2]. For a commuting 

set of matrices we will prove that ( ) ( ).AA FJ σ=σ  

Lemma 1. Suppose that { }mAA ...,,1=A  belongs to nn×C  and has a 

common fan basis. Then 

( )AJσ  is a subset of ( ).AFσ  

Proof. Let { }nvv ...,,1  be a common fan basis for A. For i in ( )mN  

and j in ( ),nN  set 

 ( ) ( ) .,,
1
∑
=

=
j

l
lji vljiavA  (3.1) 

Let 

( )kk vvSpanV ...,,1=  
and set 

{ }....,,1 kmkk VAVAV ||=|A  

We establish by induction that for k in ( ),nN  ( ) ( ).kFkJ VV |σ⊆|σ AA  
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The case ,1=k  is obvious. So assume the result is true for the 1−k  

case. The fan spectrum ( )kF V|σ A  is given by 

( ) ( ) ( ){ },...,,1 kaaVkF =|σ A  

where 

( ) ( ) ( )[ ]Tjjmajjaja ,,...,,,,1=  is a vector in .mC  

Let ( )Tmλλ ...,,1  be a vector in ( )kJ V|σ A  with common eigenvector v. If 

,1−∈ kVv  then 

( ) ( )....,, 11 −|σ∈λλ kJ
T

m VA  

So by the induction assumption, ( )Tmλλ ...,,1  belongs to ( )1−|σ kF VA  

and hence belongs to ( ).kF V|σ A  

Now assume that v is not in .1−kV  Then v takes the form 

,
1
∑
=

=
k

l
llvcv  and .0≠kc  

Let i be in ( ).mN  On the one hand, 

 ( ) ∑ ∑
=

−

=

λ+λ=λ=
k

j

k

j
kkijjijjii vcvcvcvA

1

1

1

,  (3.2) 

and on the other hand, by (3.1), 

( ) ∑ ∑
=

−

=

+==
k

j

k

j
kikjijjiji vAcvAcvAcvA

1

1

1

 

( ) ( )∑ ∑ ∑
−

= = =

+=
1

1 1 1

,,,,
k

j

j

l

k

l
lklj vlkiacvljiac  

( ) ( ) ( ) .,,,,,,
1

1 1

1

1
∑∑ ∑
−

= =

−

=

++=
k

j

j

l

k

l
kklklj vkkiacvlkiacvljiac  (3.3) 
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Equating the kv  coefficients in (3.2) and (3.3), we have 

( ).,, kkiacc kki =λ  

Since ,0≠kc  it follows that ( ).,, kkiai =λ  Therefore ( )mλλ ...,,1  must 

equal ( )ka  which belongs to ( ).kF V|σ A  � 

In the lemmas that follow, generalized eigenspaces will play a 

significant role. If T is a matrix and t is an eigenvalue of T, then ( )tT ,  

will denote the generalized eigenspace of T corresponding to the 

eigenvalue t and ( )tTm ,  will denote the algebraic multiplicity of the 

eigenvalue t. The dimension of a generalized eigenspace ( )tT ,  equals the 

multiplicity ( )tTm ,  of the eigenvalue t, [2, p. 312], an important fact that 

we put to use in the next lemma. 

Lemma 2. Let { }nvvV ...,,1=  contained in nC  be a fan basis for a 

linear transformation .: nnT CC →  Assume 

( ) ∑
=

=
i

j
jiji vtvT

1

 with .C∈ijt  

Let v be a generalized eigenvector. If v does not belong to =′V  

( ),...,, 11 −nvvspan  then v is in ( ),, nntT  the generalized eigenspace of T 

corresponding to the eigenvalue .nnt  

Proof. Suppose that v is in ( ),, iitT  the generalized eigenspace of T 

corresponding to the eigenvalue .iit  Since v is not in V ′  and V ′  is an 

invariant subspace of T, 

( ) ( ).,dim1,dim iiii tTtVT =+′|  

So 

( ) ( ).,1, iiii tTmtVTm =+′|  

It is clear, from the matrix representation of T, that .ni =  Thus 

.nnii tt =  � 



JOINT EIGENVALUES OF SEVERAL MATRICES 335

Lemma 3. Suppose { }mAA ...,,1=A  is a set of commuting matrices 

belonging  to .nn×C  Let { }nvv ...,,1  be a common fan basis for A. For i in 

( )mN  and j in ( ),nN  set 

( ) ( ) .,,
1
∑
=

=
j

l
lji vljiavA  

Then 

{ } ( )( ) ( )....,,,,,0 111 −= =′≠ ni
m
i vvspanVnniaA y�∩  

Proof. We argue by induction on m, the number of matrices in A. For 

,1=m  it is immediate that { } ( )( ).,,1,0 1 nnaA≠  For the second part, 

observe that nC  is a direct sum of the generalized eigenspaces of .1A  So 

there is a generalized eigenvector v not in .V ′  By Lemma 2, v is a vector 

in ( )( ),,,1,1 nnaA  so ( )( )nnaA ,,1,1  is not contained in .V ′  Now we 

consider the case when there are m linear transformations ,iA  i in 

( ).mN  Set 

( )( ).,,,1
1 nniaAJ i

m
i
−
== ∩  

By the induction assumption, we have { } J≠0  and J is not a subset of 

.V ′  Since A is commutative, mA  restricted to J, maps J into itself, 

.: JJJAm →|  The vector space J is the direct sum of the generalized 

spaces of .JAm |  Since J is not a subset of ,V ′  there is a generalize 

eigenvector v of JAm |  not in .V ′  But the v is a generalized eigenvector 

of .mA  By Lemma 2, v is in ( )( ).,,, nnmaAm  So 

{ } ( )( ) .,,,0 1 VnniaAi
m
i ′≠ = y∩  

This completes the proof. � 

The following corollary is an immediate result of the above lemma. 

Corollary 1. Suppose { }mAA ...,,1=A  is a set of commuting matrices 

belonging to .nn×C  Then A has a common basis of generalized 

eigenvectors. 
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Lemma 4. Suppose { }mAA ...,,1=A  is a set of commuting matrices 

belonging to .nn×C  For i in ( ),mN  let iλ  be an eigenvalue of .iA  If 

( ) { },0,1 ≠λ= ii
m
i A∩  then the linear transformations A have a common 

eigenvector, i.e., there exists a v in ( )ii
m
i A λ= ,1∩  such that vvA ii λ=  for i 

in ( ).mN  

Proof. Let ( ).,1 ii
m
i AW λ= =∩  Let iE  be the eigenspace of iA  

corresponding to iλ  and let .ii EWF ∩=  Since A is commutative, for 

each i and j in ( ),mN  jF  is an invariant subspace of .iA  We need to 

show that { }.01 ≠= i
m
i F∩  We prove this by induction on m. The case 

1=m  is obvious. So assume that { }.01
1 ≠= −
= i

m
i FJ ∩  It follows that J is 

invariant for .mA  So mA  has an eigenvector v in J. It is clear that v 

belongs to mE  since v is an eigenvector, v is in W and W is a subset of 

( )., mmA λ  Therefore v belongs to .1 i
m
i F=∩  � 

Theorem 1. Suppose { }mAA ...,,1=A  is a set of commuting matrices 

belonging to .nn×C  Then 

( ) ( ).AA FJ σ=σ  

Proof. By Lemma 1, ( )AJσ  is contained in ( ).AFσ  We need to prove 

( )AFσ  is contained in ( ).AJσ  Let { }nvv ...,,1  be a common fan basis for 

A. With i in ( )mN  and j in ( ),nN  set 

( ) ( ) .,,
1
∑
=

=
j

l
lji vljiavA  

Then the fan spectrum of A, ( ),AFσ  is 

( ) ( ) ( ){ },...,,1 naaF =σ A  

where 

( ) ( ) ( )[ ]Tjjmajjaja ,,...,,,,1=  is a vector in .mC  
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Pick ( )ja  in ( )AFσ  and set { }....,,1 jj vvV =  By Lemma 3, 

( ( )) { }.0,,,1 ≠|= jjiaVA ji
m
i∩  By Lemma 4, there is a v in ( ( ))iijaVA ji

m
i ,,,1 |=∩  

such that for i in ( ),mN  ( ) .,, vjjiavAi =  Therefore ( )ja  belongs to 

( ).AJσ  � 

 The fan spectrum need not be the same as the joint spectrum as the 

next example illustrates. 

Example 2. Let { },, 21 AA=A  where 

.
30

12
,

31

02
21 












 −
=














= AA  

Calculating the joint spectrum, we find 

( ) .
3

2


























=σ AJ  

Let 

.
11
21






−−
=P  

Then 

.
30

22
,

20

13
2

1
1

1













 −
=














= −− PAPPAP  

So 

( ) .
3

2
,

2

3








































=σ AF  

It is easy to see that if { } 22
1 ...,, ×⊂= CmAAA  and ( ) ,φ≠σ AJ  then 

the matrices in A have a common fan basis. Next we provide an example 

of two matrices { } ,, 33
21

×⊂= CAAA  where ( ) ,φ≠σ AJ  but the matrices 

in A do not have a common fan basis. 
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Example 3. Let { } ,, 33
21

×⊂= CAAA  where 
















−
−

=
100
031
041

1A  and .
200
041
012

2
















−=A  

A straightforward computation shows that 







−
−

31
41

 and 




− 41

12
 

do not have a common fan basis. It follows then from the block structure 

of 1A  and 2A  that 1A  and 2A  do not have a common fan basis. Let 

[ ] .100 Tv =  Then 

vvA =1  and ,22 vvA =  

so ( ) ( ).21 AJ
T σ∈  In fact ( ) {( ) }.21 T

J =σ A  

If { }mAA ...,,1=A  is a set of commuting matrices in ,nn×C  then, as 

a consequence of Theorem 1, every eigenvalue of every matrix iA  is a 

coordinate in at least one vector in ( ).AJσ  

If an nn ×  matrix T has n distinct eigenvalues, then it is 

diagonalizable. For a set of commuting matrices { },...,,1 mAA=A  there 

is a similar result; to establish it we find it helpful to introduce the 

following notation. 

We associate with m vectors mww ...,,1  in nC  an mn ×  matrix 

[ ],...,,1 mww  such that, as suggested by the notation, the ( )ji,  entry of 

the matrix is the i-th coordinate of .jw  For i in ( ),mN  let iλ  be a 

complex number. For a vector w in ,nC  we write 

( ) [ ]....,,...,, 11 www mm λλ=λλ  

For a set of matrices { }mAA ...,,1=A  belonging to nn×C  and a vector v 

in ,nC  we write 
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[ ]....,,1 vAvAv m=A  

Proposition 1. Let { }mAA ...,,1=A  be a set of matrices in .nn×C  If 

the joint spectrum of A, ( ),AJσ  consists of n distinct vectors, then every 

matrix in A is diagonalizable by the same similarity matrix. 

Proof. Set 

( ) ( ) ( ){ },...,,1 naaJ =σ A  

where 

( ) ( ) ( )( ),,...,,1, miaiaia =  

and let iv  be a common eigenvector corresponding to ( ).ia  We prove by 

induction that { }nvvV ...,,1=  is a linearly independent set. For k in 

( ),1−nN  we assume that { }kvv ...,,1  is a linearly independent set and 

prove, from this assumption, that { }11 ,...,, +kk vvv  is too. To the contrary, 

assume that 1+kv  can be written in the form 

 .
1

1 ∑
=

+ =
k

i
iik vcv  (3.4) 

Then 

.
1

1 ∑
=

+ =
k

i
iik vcv AA  

So 

 ( ) ( ) .1
1

1 ∑
=

+ =+
k

i
iik viacvka  (3.5) 

It follows from (3.4) that 

 ( ) ( ) .11
1

1 ∑
=

+ +=+
k

i
iik vkacvka  (3.6) 

Subtracting (3.5) from (3.6), we have that 

( ) ( )( ) .01
1
∑
=

=−+
k

i
ii viakac  
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Choose i in ( ).kN  We claim that .0=ic  Since ( ) ( )iaka −+ 1  is not zero, 

there is a coordinate of this vector, say ( ) ( ),,,1 lialka −+  not equal to 

zero. Consider 

( ) ( )( ) .0,,1
1
∑
=′

′′ =−+
k

i
ii vlialkac  

Since { }kvv ...,,1  is a linearly independent set and ( ) ( )iaka −+ 1  is not 

zero, we have that ic  is zero. Therefore, for i in ( ),kN  ic  is zero and this 

contradicts the fact that 1+kv  is a common eigenvector. 

It follows that { }nvvV ...,,1=  is a linearly independent set. 

Consequently, every matrix in A has a basis of eigenvectors and is, 

therefore, diagonalizable. � 
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