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Abstract

The joint spectrum o5(C) of a set of matrices C = {Cy, ..., Cp,} is

defined. When the matrices in C can be upper-triangularized by the

same similarity transformation, the fan spectrum, cg(C), is defined
and it is shown that oj(C) c o (C). If the matrices in C commute
amongst themselves, then ¢7(C) c op(C). A generalization of the fact

that an n xn matrix with n-distinct eigenvalues is diagonalizable is

also established.

1. Introduction

Let T : C" — C" be a linear transformation. A set V = {v, ..., v,}
belonging to C" is a fan basis for T'if, for each i in N(n) = {1, 2, ..., n},
i
span(vy, ..., v;) = thvj |tjeC
fEs|
is an invariant subspace of T'[5, p. 257]. Suppose C = {Cy, ..., C,,} is a set

of matrices contained in C"*". We say V = {vy, ..., v,} is a common fan
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basis for C provided Vis a fan basis for each C; in C. This definition is of
course equivalent to the statement that each member of C can be upper-
triangularized by the same similarity transformation. When C has a
common fan basis, we define the fan spectrum of C, 65 (C), to be the set
of m-dimensional vectors consisting of the corresponding diagonal
elements of the upper-triangularized matrices. See [4] where a joint
spectrum for several noncommuting linear operators is defined. The
definition of the joint spectrum in [4] is much more involved even in the
finite dimensional case and is developed for a functional calculus of
noncommuting linear operators. There are also other well-known
definitions of joint spectra of several commuting linear operators. See [6].
Our definition of fan spectrum for several matrices with common fan

basis appears to be new.

The definition of fan spectrum, though defined in terms of a fixed
basis, is, as we show, independent of the fan basis. The proof follows from
the fact if a single matrix 7' is similar to an upper-triangular matrix, then
the diagonals of this upper-triangular matrix are the eigenvalues of T

and, thus is independent of the similarity transformation.

For a set of matrices C = {Cy, ..., C,,} in C™", we define the joint

spectrum of C, o;(C), in terms of common eigenvectors of C. The vector

(A woes Apy) 1s in o4(C), if there exists a non zero vector v in C" such
that C;v = A;v for each i [6]. In this note we show that if C has a common
fan basis, then we show that ¢;(C) < o(C). We also show that if the
matrices in C commute amongst themselves, then 6;(C) = o5(C). Last
of all we show that if o;(C) consists of n-distinct vectors, then each

matrix in C is diagonalizable by the same similarity transformation. This
provides a generalization of the fact that an n x n matrix with n-distinct

eigenvalues is diagonalizable.
2. Fan Spectrum

Let T : C* - C" be a linear transformation. We recall that the set

V = {v, ..., v,} contained in C" is a fan basis for T'if, for each i in N(n),
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i
span(vy, ..., v;) = {thvj Itj € (C}
=1

1s an invariant subspace of T. The matrix representation of 7T relative to
V, [T]y, takes the form

[Tl =] : :
0 et
Since the matrix is upper-triangular, the fan spectrum of 7' is defined to
be the diagonal entries of [T']y;, {f11, ..., tpn}, Which is precisely the set of

eigenvalues of 7.

Let A = {4, ..., A,,} be a set of matrices contained in C™". We now
state the definition of the fan spectrum of A which we denote by cr(A).
Suppose that A has a common fan basis U = {u, ..., u,}. For i in N(m),
set

J
AL(u]) = Za(i, j, l)ul
=1
Define vectors a(j) in C™ by
. .. . T
a(.]) = [a(]-’ Js J)’ S a(m’ Js ])] .

Finally, define the fan spectrum of A, c(A) by

or(A) = {al), ..., a(n)}.

Example 1. If

36 21 48 -18 -19 -22
A =(-3 6 —6|andAy=|1 -2 2
-18 -9 -24 9 9 11

We show that A = {A;, Ay} has a common fan basis and we determine

OoF (A) Set
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5 4 2
S={1 -1 o0
'3 -2
Then
M o0 2][36 21 4875 4 2
S7tas = -1 2/|-3 6 -6|1 -1 0
1 2 1]|-18 -9 -24|[3 -2 -1
3 -3 0
=10 3 0}
0 0 12
1 0 2][-18 -19 -22][-5 4 2
StA,s=(1 1 2|1 -2 2|1 -1 0
1 2 1]l9 9 113 -2 4
-1 1 0
=10 -1 o0
0 0 -7

Thus o(4;) = {12, 3, 3}, o(Ay) = {-7, -1, -1} and

or = {212} 2]}

We now show that the definition of the fan spectrum is independent
of the fan basis. To be precise, suppose that A has two common fan bases
V={vy, .., v,} and W = {wy, ..., w,}. Foriin N(m) andjin N(n), set

J J
Ai(v)) = Y ali. J, Du and Ayw;) = Y pli, j, Dwy.

=1 =1

Define vectors a(j) and p(j) in C™ by
a(j) = [a(1, j, j), - alm, j, j)I"

and p(j) = [pQ, j, j) - p(m, j, DIF e C™
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The fan spectrum of A with respect to V, o y7(A), and the fan spectrum

of A with respect to W, o y(A), are given by

or,v(A) = {a(l), ... a(n)} and op w(A) = {p(Q), ..., p(n)}.

We will show that opy(A)=cpw(A). Consider the linear

transformation B : C" — C" defined by
m
B = ZaiAi, where o = [ag, ..., a,,] € C™.
=1

It 1s clear that
J J

B(vj) = iaiAi(Uj) = izaia(i: J, Doy = Z[i ao;ali, j, l)}vz,
i1 ' i

= i=1 [=1 I=1

Blwy) - Y aiditwy) = 303 aipli . oy - Zli wipli Z)]wl,
2.2

i=1 1=1 [=1 I=1i=1

that is, both V = {v;, ..., v,} and W = {wy, ..., w,} are fan bases of B and
the set

ﬂzaia(i, j, j)], j=1 .., m} ={a(j) o, j=1,.. m
=1

and the set

ﬂz o;p(i, Jj, j)], i=1 .., m} ={p(j) o, j=1,.. m}
=1

are both the set of the eigenvalues of B. Thus they are equal for any a. It
is easy to see that this can only happen when

{a(), ..., a(n) = {p(1), ..., p(n);.

Therefore o y(A) = op w(A).
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3. Commuting Matrices and the Joint Spectrum

Suppose that A = {4, ..., A,,} is a set of matrices. We define c_(A),
the joint spectrum of A. The vector [Aq, ..., km]T isin o;(A) if and only if
there exists a vector v € C™ such that

A;u = A for iin N(m).

In other words, v is an eigenvector for each A4;, and so will be referred to
as a common eigenvector (of A). It is clear that in general o ;(A) can be
empty. But if A has a common fan basis, we will show that ¢ ;(A) is not

empty and o ;(A) is a subset of cx(A).

The definition of the fan spectrum of A = {4, ..., 4,,} is an extrinsic
definition in that it is defined in terms of a particular basis for the
matrices in A. The joint spectrum, which does not rely on a particular
basis, is an intrinsic definition. We say that A ={A;, .., 4,} is
commuting if for i, j in N(m), A;A; = A;A;. It is well known that
commuting matrices have a common fan basis [7, p. 2]. For a commuting

set of matrices we will prove that o ;(A) = o (A).

Lemma 1. Suppose that A = {A;, ..., A,,} belongs to C"" and has a
common fan basis. Then
c(A) is a subset of cp(A).
Proof. Let {vy, ..., v,} be a common fan basis for A. For i in N(m)

and jin N(n), set

~.

Ailvj) = D al, j, Dor 3.1)
=1
Let
Vi, = Span(vy, ..., v)
and set

AV, = {A |V, oo, Ay |V

We establish by induction that for 2 in N(n), c;(A|V},) < op(A|V}).
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The case k =1, is obvious. So assume the result is true for the £ -1

case. The fan spectrum cr(A|V}) is given by

or(A[Vy) = {a(l), ..., al(k)},

where
a(j) = [a(1, j, j), ..., a(m, j, j)' is a vector in C™.

Let (A, ..., A,,)" be a vector in (A |V},) with common eigenvector v. If

v e V,_4q, then

T
(1, oo h) € 07 (A[Viy).

So by the induction assumption, (A1, ..., ,,). belongs to op(A|V,_ 1)
and hence belongs to op(A|V}).

Now assume that vis not in Vj,_;. Then v takes the form

¢y, and ¢ = 0.

=1
Let i be in N(m). On the one hand,

k k-1

A;(v) = i+ hcpup, (3.2)
DILTRNT

j=1 =

and on the other hand, by (3.1),

k-1
Ai(v) = z C; Ail)j + CkAiUk
Jj=1 Jj=1
k-1 J k
= cjz a(i, j, Du; + ckz a(i, k, 1)y,
=1 =1 I=1
k-1 k-1

Jj
Zc]a(i, i Du + Y cpali, k, Doy + crali, kb, B)v,. (3.3)
=1 l

~.

1l
—

1l
—_
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Equating the v, coefficients in (3.2) and (3.3), we have
ricp, = cpali, k, k).

Since ¢, # 0, it follows that A; = a(i, k, k). Therefore (A, ..., ,,) must
equal a(k) which belongs to o (A| V). 0

In the lemmas that follow, generalized eigenspaces will play a
significant role. If T is a matrix and ¢ is an eigenvalue of 7, then (T, t)

will denote the generalized eigenspace of T corresponding to the
eigenvalue ¢ and m(T, t) will denote the algebraic multiplicity of the

eigenvalue ¢. The dimension of a generalized eigenspace (T, ¢) equals the
multiplicity m(T, t) of the eigenvalue ¢, [2, p. 312], an important fact that

we put to use in the next lemma.

Lemma 2. Let V = {v;, ..., v,} contained in C" be a fan basis for a

linear transformation T : C" — C". Assume
i
T(Ui) = Ztijvj LULth tij € (C
Jj=1

Let v be a generalized eigenvector. If v does not belong to V' =
span(vy, ..., V,_1), then v is in (T, t,,), the generalized eigenspace of T

corresponding to the eigenvalue t,,.

Proof. Suppose that v is in (T, t;;), the generalized eigenspace of T
corresponding to the eigenvalue ¢;. Since v is not in V' and V' is an

invariant subspace of 7,
dim(T'| V', ¢;) + 1 = dim(T, ¢;).
So
m(T|V', t;)+1=m(T, t;;).

It is clear, from the matrix representation of 7, that i = n. Thus

tii = tyn- U
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Lemma 3. Suppose A = {A, ..., A,,} is a set of commuting matrices

belonging to C™". Let {vy, ..., v,} be a common fan basis for A. For i in

N(m) and jin N(n), set

M-

Ai(vj) = a(i, j, l)l)l.

=1
Then
{0} = NL1(4;, ali, n, n)) & V' = span(vy, ..., V1)

Proof. We argue by induction on m, the number of matrices in A. For
m =1, it is immediate that {0} = (4;, a(l, n, n)). For the second part,
observe that C" is a direct sum of the generalized eigenspaces of A;. So
there i1s a generalized eigenvector v not in V'. By Lemma 2, v is a vector
in (4, a(l, n, n)), so (A1, a(l, n, n)) is not contained in V'. Now we
consider the case when there are m linear transformations A;, i in

N(m). Set
J = ﬂ'i":_II(Ai, a(i, n, n)).

By the induction assumption, we have {0} # J and ¢/ is not a subset of
V'. Since A is commutative, A,, restricted to JJ, maps J into itself,
A, |J :J —> J. The vector space J is the direct sum of the generalized
spaces of A, |J. Since J is not a subset of V', there is a generalize
eigenvector v of A,, |J not in V'. But the v is a generalized eigenvector

of A,,. By Lemma 2, visin (4,,, a(m, n, n)). So

{0} = MiL1(4;, ali, n, n)) & V.
This completes the proof. 0
The following corollary is an immediate result of the above lemma.
Corollary 1. Suppose A ={A,, ..., A,,} is a set of commuting matrices

belonging to C™"™. Then A has a common basis of generalized

eigenvectors.
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Lemma 4. Suppose A = {A, ..., A,,} is a set of commuting matrices
belonging to C™". For i in N(m), let A; be an eigenvalue of A;. If
T 1(A;, &;) # {0}, then the linear transformations A have a common
eigenvector, i.e., there exists a v in N'1(A;, ;) such that A;v = My for i

in N(m).

Proof. Let W =N (4;, &;). Let E; be the eigenspace of A;
corresponding to A; and let F; = W) E;. Since A is commutative, for

each i and j in N(m), F; is an invariant subspace of A;. We need to
show that N7L; F; # {0}. We prove this by induction on m. The case

m =1 is obvious. So assume that J = 77! F; = {0}. It follows that J is
invariant for A,,. So A,, has an eigenvector v in J. It is clear that v

belongs to E,, since v is an eigenvector, v is in W and W is a subset of
(A,,, Ay)- Therefore v belongs to N2 F. O
Theorem 1. Suppose A = {A;, ..., A,,} is a set of commuting matrices
belonging to C'*". Then
o (A) = op(A).
Proof. By Lemma 1, 6;(A) is contained in 65 (A). We need to prove

or(A) is contained in o;(A). Let {v, ..., v,} be a common fan basis for
A. With iin N(m) and jin N(n), set
J
Ai(v;) = Za(i, J» Dy
=1
Then the fan spectrum of A, 6z (A), is

or(A) = {al), ..., a(n)},

where

a(j) = [a(1, j, j), ., a(m, j, j)I is a vector in C™.
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Pick a(j) in op(A) and set V;={v,..vj}. By Lemma 3,
N1 (4;1Vj,ali, j, j))#{0}. By Lemma 4, there is a v in N7 (4;[V;, a(j,i,1))
such that for i in N(m), Ay = a(i, j, j)v. Therefore a(j) belongs to

GJ(A). O

The fan spectrum need not be the same as the joint spectrum as the

next example illustrates.

Example 2. Let A = {4A;, Ay}, where

Calculating the joint spectrum, we find

]

Let
1 2
-1 -1
Then
3 1 2 -2
PlaP = , PlAP = .
0 2 0 3
So

1)

It is easy to see that if A = {4;, ..., 4,,} = C¥*2 and c;(A) # ¢, then
the matrices in A have a common fan basis. Next we provide an example
of two matrices A = {A;, Ay} = C>3, where o;(A)# ¢, but the matrices

in A do not have a common fan basis.
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Example 3. Let A = {4;, 45} = C¥3, where

1 -4 0 2 1 0
A =1 -3 0|and Ay =[-1 4 0]
0 0 1 0 0 2

A straightforward computation shows that

E :ﬂ and B ﬂ

do not have a common fan basis. It follows then from the block structure
of A; and A, that A; and Ay do not have a common fan basis. Let

v=[0 0 1]°. Then

Ajv =v and Ayv = 2,
so 1 2)f eoy(A). Infact o (A) = {1 2)'1.

If A={4, .., A,} is a set of commuting matrices in C"", then, as
a consequence of Theorem 1, every eigenvalue of every matrix A; is a

coordinate in at least one vector in o ;(A).

If an nxn matrix T has n distinct eigenvalues, then it is

diagonalizable. For a set of commuting matrices A = {4, ..., 4,,}, there

is a similar result; to establish it we find it helpful to introduce the
following notation.

We associate with m vectors wy, ..., w,, in C" an nxm matrix
[wy, ..., w,,], such that, as suggested by the notation, the (i, j) entry of

the matrix is the i-th coordinate of wj. For i in N(m), let A; be a

complex number. For a vector w in C", we write

Ay oor Appw = [MWw, ..., Apw].

For a set of matrices A = {4, ..., A,,} belonging to C™" and a vector v

in C", we write
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Av = [A, ..., A,v]

Proposition 1. Let A = {4, ..., A,,} be a set of matrices in C"". If
the joint spectrum of A, o j(A), consists of n distinct vectors, then every

matrix in A is diagonalizable by the same similarity matrix.

Proof. Set

cy(A) = {a(l), ..., a(n)},
where

a(i) = (a(i, 1), ..., ali, m)),
and let v; be a common eigenvector corresponding to a(i). We prove by
induction that V = {v, ..., v,} is a linearly independent set. For k in
N(n —1), we assume that {vj, ..., v} is a linearly independent set and
prove, from this assumption, that {vy, ..., vy, Up,1} is too. To the contrary,

assume that vy, can be written in the form

k
Vgl = Z c;v;. (3.4)
i=1
Then
k
Avp,q = Z c;Av;.
i=1
So
k
alk +1)vp,q = Z c;a(i)v;. (3.5)
i=1

It follows from (3.4) that

alk +1)vp, = Y calk+1)y;. (3.6)

M=

1=1

Subtracting (3.5) from (3.6), we have that

>

Zci (a(k +1) - a(i))v; = 0.

i=1
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Choose i in N(k). We claim that ¢; = 0. Since a(k + 1) — a(i) is not zero,
there is a coordinate of this vector, say a(k +1, 1) - a(i, [), not equal to

zero. Consider

k
Z cy(alk +1, 1) - ali, l))v; = 0.
i'=1
Since {v;, ..., v} 1s a linearly independent set and a(k + 1) — a(i) is not

zero, we have that ¢; is zero. Therefore, for i in N(k), ¢; is zero and this

contradicts the fact that v, ; is a common eigenvector.

It follows that V ={v;,...,v,} is a linearly independent set.

Consequently, every matrix in A has a basis of eigenvectors and 1is,

therefore, diagonalizable. 0
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