JOINT SPECTRUM OF SEVERAL MATRICES

JACK GIROLO and CAIXING GU

Department of Mathematics California Polytechnic State University San Luis Obispo, CA 93405, U. S. A. e-mail: jgirolo@calpoly.edu; cgu@calpoly.edu

Abstract

The joint spectrum $\sigma_J(\mathbf{C})$ of a set of matrices $\mathbf{C} = \{C_1, ..., C_m\}$ is defined. When the matrices in \mathbf{C} can be upper-triangularized by the same similarity transformation, the fan spectrum, $\sigma_F(\mathbf{C})$, is defined and it is shown that $\sigma_J(\mathbf{C}) \subseteq \sigma_F(\mathbf{C})$. If the matrices in \mathbf{C} commute amongst themselves, then $\sigma_J(\mathbf{C}) \subseteq \sigma_F(\mathbf{C})$. A generalization of the fact that an $n \times n$ matrix with n-distinct eigenvalues is diagonalizable is also established.

1. Introduction

Let $T:\mathbb{C}^n\to\mathbb{C}^n$ be a linear transformation. A set $V=\{v_1,...,v_n\}$ belonging to \mathbb{C}^n is a fan basis for T if, for each i in $N(n)=\{1,\,2,\,...,\,n\}$,

$$span(v_1, ..., v_i) = \left\{ \sum_{j=1}^{i} \tau_j v_j \mid \tau_j \in \mathbb{C} \right\}$$

is an invariant subspace of T [5, p. 257]. Suppose $\mathbf{C} = \{C_1, ..., C_m\}$ is a set of matrices contained in $\mathbb{C}^{n \times n}$. We say $V = \{v_1, ..., v_n\}$ is a common fan

2000 Mathematics Subject Classification: Primary 15A18, 15A24; Secondary 15A04.

Keywords and phrases: joint eigenvalue, fan spectrum.

The research of the second author was partially supported by the SFSG Grant of California Polytechnic State University.

Received January 16, 2008

basis for ${\bf C}$ provided V is a fan basis for each C_i in ${\bf C}$. This definition is of course equivalent to the statement that each member of ${\bf C}$ can be upper-triangularized by the same similarity transformation. When ${\bf C}$ has a common fan basis, we define the fan spectrum of ${\bf C}$, $\sigma_F({\bf C})$, to be the set of m-dimensional vectors consisting of the corresponding diagonal elements of the upper-triangularized matrices. See [4] where a joint spectrum for several noncommuting linear operators is defined. The definition of the joint spectrum in [4] is much more involved even in the finite dimensional case and is developed for a functional calculus of noncommuting linear operators. There are also other well-known definitions of joint spectra of several commuting linear operators. See [6]. Our definition of fan spectrum for several matrices with common fan basis appears to be new.

The definition of fan spectrum, though defined in terms of a fixed basis, is, as we show, independent of the fan basis. The proof follows from the fact if a single matrix T is similar to an upper-triangular matrix, then the diagonals of this upper-triangular matrix are the eigenvalues of T and, thus is independent of the similarity transformation.

For a set of matrices $\mathbf{C} = \{C_1, ..., C_m\}$ in $\mathbb{C}^{n \times n}$, we define the *joint* spectrum of \mathbf{C} , $\sigma_J(\mathbf{C})$, in terms of common eigenvectors of \mathbf{C} . The vector $(\lambda_1, ..., \lambda_m)$ is in $\sigma_J(\mathbf{C})$, if there exists a non zero vector v in \mathbb{C}^n such that $C_i v = \lambda_i v$ for each i [6]. In this note we show that if \mathbf{C} has a common fan basis, then we show that $\sigma_J(\mathbf{C}) \subseteq \sigma_F(\mathbf{C})$. We also show that if the matrices in \mathbf{C} commute amongst themselves, then $\sigma_J(\mathbf{C}) = \sigma_F(\mathbf{C})$. Last of all we show that if $\sigma_J(\mathbf{C})$ consists of n-distinct vectors, then each matrix in \mathbf{C} is diagonalizable by the same similarity transformation. This provides a generalization of the fact that an $n \times n$ matrix with n-distinct eigenvalues is diagonalizable.

2. Fan Spectrum

Let $T:\mathbb{C}^n\to\mathbb{C}^n$ be a linear transformation. We recall that the set $V=\{v_1,...,v_n\}$ contained in \mathbb{C}^n is a fan basis for T if, for each i in N(n),

$$span(v_1, ..., v_i) = \left\{ \sum_{j=1}^{i} \tau_j v_j \mid \tau_j \in \mathbb{C} \right\}$$

is an invariant subspace of T. The matrix representation of T relative to V, $[T]_V$, takes the form

$$[T]_V = \begin{bmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_{nn} \end{bmatrix}.$$

Since the matrix is upper-triangular, the fan spectrum of T is defined to be the diagonal entries of $[T]_V$, $\{t_{11}, ..., t_{nn}\}$, which is precisely the set of eigenvalues of T.

Let $\mathbf{A} = \{A_1, ..., A_m\}$ be a set of matrices contained in $\mathbb{C}^{n \times n}$. We now state the definition of the fan spectrum of \mathbf{A} which we denote by $\sigma_F(\mathbf{A})$. Suppose that \mathbf{A} has a common fan basis $U = \{u_1, ..., u_n\}$. For i in N(m), set

$$A_i(u_j) = \sum_{l=1}^{j} a(i, j, l)u_l.$$

Define vectors a(j) in C^m by

$$a(j) = [a(1, j, j), ..., a(m, j, j)]^{T}.$$

Finally, define the fan spectrum of **A**, $\sigma_F(\mathbf{A})$ by

$$\sigma_F(\mathbf{A}) = \{a(1), ..., a(n)\}.$$

Example 1. If

$$A_1 = \begin{bmatrix} 36 & 21 & 48 \\ -3 & 6 & -6 \\ -18 & -9 & -24 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} -18 & -19 & -22 \\ 1 & -2 & 2 \\ 9 & 9 & 11 \end{bmatrix}$.

We show that $\mathbf{A} = \{A_1, A_2\}$ has a common fan basis and we determine $\sigma_F(\mathbf{A})$. Set

$$S = \begin{bmatrix} -5 & 4 & 2 \\ 1 & -1 & 0 \\ 3 & -2 & -1 \end{bmatrix}.$$

Then

$$S^{-1}A_1S = \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 36 & 21 & 48 \\ -3 & 6 & -6 \\ -18 & -9 & -24 \end{bmatrix} \begin{bmatrix} -5 & 4 & 2 \\ 1 & -1 & 0 \\ 3 & -2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -3 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 12 \end{bmatrix},$$

$$S^{-1}A_2S = \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -18 & -19 & -22 \\ 1 & -2 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -5 & 4 & 2 \\ 1 & -1 & 0 \\ 3 & -2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -7 \end{bmatrix}.$$

Thus $\sigma(A_1) = \{12, 3, 3\}, \ \sigma(A_2) = \{-7, -1, -1\}$ and

$$\sigma_F(\mathbf{A}) = \left\{ \begin{bmatrix} 12 \\ -7 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix} \right\}.$$

We now show that the definition of the fan spectrum is independent of the fan basis. To be precise, suppose that A has two common fan bases $V = \{v_1, ..., v_n\}$ and $W = \{w_1, ..., w_n\}$. For i in N(m) and j in N(n), set

$$A_i(v_j) = \sum_{l=1}^{j} a(i, j, l)v_l$$
 and $A_i(w_j) = \sum_{l=1}^{j} p(i, j, l)w_l$.

Define vectors a(j) and p(j) in C^m by

$$a(j) = [a(1, j, j), ..., a(m, j, j)]^T$$

and $p(j) = [p(1, j, j), ..., p(m, j, j)]^T \in \mathbb{C}^m$.

The fan spectrum of **A** with respect to V, $\sigma_{F,V}(\mathbf{A})$, and the fan spectrum of **A** with respect to W, $\sigma_{F,W}(\mathbf{A})$, are given by

$$\sigma_{F,V}(\mathbf{A}) = \{a(1), ..., a(n)\} \text{ and } \sigma_{F,W}(\mathbf{A}) = \{p(1), ..., p(n)\}.$$

We will show that $\sigma_{F,V}(\mathbf{A}) = \sigma_{F,W}(\mathbf{A})$. Consider the linear transformation $B: \mathbb{C}^n \to \mathbb{C}^n$ defined by

$$B = \sum_{i=1}^{m} \alpha_i A_i$$
, where $\alpha = [\alpha_1, ..., \alpha_m] \in \mathbb{C}^m$.

It is clear that

$$B(v_j) = \sum_{i=1}^m \alpha_i A_i(v_j) = \sum_{i=1}^m \sum_{l=1}^j \alpha_i a(i, j, l) v_l = \sum_{l=1}^j \left[\sum_{i=1}^m \alpha_i a(i, j, l) \right] v_l,$$

$$B(w_j) = \sum_{i=1}^m \alpha_i A_i(w_j) = \sum_{i=1}^m \sum_{l=1}^j \alpha_i p(i, j, l) w_l = \sum_{l=1}^j \left[\sum_{i=1}^m \alpha_i p(i, j, l) \right] w_l,$$

that is, both $V = \{v_1, \, ..., \, v_n\}$ and $W = \{w_1, \, ..., \, w_n\}$ are fan bases of B and the set

$$\left\{ \left[\sum_{i=1}^{m} \alpha_i a(i, j, j) \right], j = 1, ..., m \right\} = \left\{ a(j) \cdot \alpha, j = 1, ..., m \right\}$$

and the set

$$\left\{ \left[\sum_{i=1}^{m} \alpha_{i} p(i, j, j) \right], j = 1, ..., m \right\} = \left\{ p(j) \cdot \alpha, j = 1, ..., m \right\}$$

are both the set of the eigenvalues of B. Thus they are equal for any α . It is easy to see that this can only happen when

$$\{a(1), ..., a(n)\} = \{p(1), ..., p(n)\}.$$

Therefore $\sigma_{F,V}(\mathbf{A}) = \sigma_{F,W}(\mathbf{A})$.

3. Commuting Matrices and the Joint Spectrum

Suppose that $\mathbf{A} = \{A_1, ..., A_m\}$ is a set of matrices. We define $\sigma_J(\mathbf{A})$, the joint spectrum of \mathbf{A} . The vector $[\lambda_1, ..., \lambda_m]^T$ is in $\sigma_J(\mathbf{A})$ if and only if there exists a vector $v \in C^m$ such that

$$A_i v = \lambda_i v$$
 for i in $N(m)$.

In other words, v is an eigenvector for each A_i , and so will be referred to as a common eigenvector (of \mathbf{A}). It is clear that in general $\sigma_J(\mathbf{A})$ can be empty. But if \mathbf{A} has a common fan basis, we will show that $\sigma_J(\mathbf{A})$ is not empty and $\sigma_J(\mathbf{A})$ is a subset of $\sigma_F(\mathbf{A})$.

The definition of the fan spectrum of $\mathbf{A} = \{A_1, ..., A_m\}$ is an extrinsic definition in that it is defined in terms of a particular basis for the matrices in \mathbf{A} . The joint spectrum, which does not rely on a particular basis, is an intrinsic definition. We say that $\mathbf{A} = \{A_1, ..., A_m\}$ is commuting if for i, j in N(m), $A_iA_j = A_jA_i$. It is well known that commuting matrices have a common fan basis [7, p. 2]. For a commuting set of matrices we will prove that $\sigma_J(\mathbf{A}) = \sigma_F(\mathbf{A})$.

Lemma 1. Suppose that $\mathbf{A} = \{A_1, ..., A_m\}$ belongs to $\mathbb{C}^{n \times n}$ and has a common fan basis. Then

$$\sigma_J(\mathbf{A})$$
 is a subset of $\sigma_F(\mathbf{A})$.

Proof. Let $\{v_1, ..., v_n\}$ be a common fan basis for **A**. For i in N(m) and j in N(n), set

$$A_i(v_j) = \sum_{l=1}^{j} a(i, j, l) v_l.$$
 (3.1)

Let

$$V_k = Span(v_1, ..., v_k)$$

and set

$$\mathbf{A} | V_k = \{ A_1 | V_k, ..., A_m | V_k \}.$$

We establish by induction that for k in N(n), $\sigma_J(\mathbf{A}|V_k) \subseteq \sigma_F(\mathbf{A}|V_k)$.

The case k=1, is obvious. So assume the result is true for the k-1 case. The fan spectrum $\sigma_F(\mathbf{A} | V_k)$ is given by

$$\sigma_F(\mathbf{A} | V_k) = \{a(1), ..., a(k)\},\$$

where

$$a(j) = [a(1, j, j), ..., a(m, j, j)]^T$$
 is a vector in \mathbb{C}^m .

Let $(\lambda_1,...,\lambda_m)^T$ be a vector in $\sigma_J(\mathbf{A}\,|\,V_k)$ with common eigenvector v. If $v\in V_{k-1}$, then

$$(\lambda_1, ..., \lambda_m)^T \in \sigma_{\mathcal{J}}(\mathbf{A} | V_{k-1}).$$

So by the induction assumption, $(\lambda_1, ..., \lambda_m)^T$ belongs to $\sigma_F(\mathbf{A} | V_{k-1})$ and hence belongs to $\sigma_F(\mathbf{A} | V_k)$.

Now assume that v is not in V_{k-1} . Then v takes the form

$$v = \sum_{l=1}^{k} c_l v_l$$
, and $c_k \neq 0$.

Let i be in N(m). On the one hand,

$$A_{i}(v) = \lambda_{i} \sum_{j=1}^{k} c_{j} v_{j} = \lambda_{i} \sum_{j=1}^{k-1} c_{j} v_{j} + \lambda_{i} c_{k} v_{k},$$
(3.2)

and on the other hand, by (3.1),

$$A_{i}(v) = \sum_{j=1}^{k} c_{j} A_{i} v_{j} = \sum_{j=1}^{k-1} c_{j} A_{i} v_{j} + c_{k} A_{i} v_{k}$$

$$= \sum_{j=1}^{k-1} c_{j} \sum_{l=1}^{j} a(i, j, l) v_{l} + c_{k} \sum_{l=1}^{k} a(i, k, l) v_{l}$$

$$= \sum_{j=1}^{k-1} \sum_{l=1}^{j} c_{j} a(i, j, l) v_{l} + \sum_{l=1}^{k-1} c_{k} a(i, k, l) v_{l} + c_{k} a(i, k, k) v_{k}.$$
 (3.3)

Equating the v_k coefficients in (3.2) and (3.3), we have

$$\lambda_i c_k = c_k a(i, k, k).$$

Since $c_k \neq 0$, it follows that $\lambda_i = a(i, k, k)$. Therefore $(\lambda_1, ..., \lambda_m)$ must equal a(k) which belongs to $\sigma_F(\mathbf{A} | V_k)$.

In the lemmas that follow, generalized eigenspaces will play a significant role. If T is a matrix and t is an eigenvalue of T, then (T, t) will denote the generalized eigenspace of T corresponding to the eigenvalue t and m(T, t) will denote the algebraic multiplicity of the eigenvalue t. The dimension of a generalized eigenspace (T, t) equals the multiplicity m(T, t) of the eigenvalue t, [2, p. 312], an important fact that we put to use in the next lemma.

Lemma 2. Let $V = \{v_1, ..., v_n\}$ contained in \mathbb{C}^n be a fan basis for a linear transformation $T : \mathbb{C}^n \to \mathbb{C}^n$. Assume

$$T(v_i) = \sum_{j=1}^{i} t_{ij} v_j \text{ with } t_{ij} \in \mathbb{C}.$$

Let v be a generalized eigenvector. If v does not belong to $V' = span(v_1, ..., v_{n-1})$, then v is in (T, t_{nn}) , the generalized eigenspace of T corresponding to the eigenvalue t_{nn} .

Proof. Suppose that v is in (T, t_{ii}) , the generalized eigenspace of T corresponding to the eigenvalue t_{ii} . Since v is not in V' and V' is an invariant subspace of T,

$$\dim(T | V', t_{ii}) + 1 = \dim(T, t_{ii}).$$

So

$$m(T | V', t_{ii}) + 1 = m(T, t_{ii}).$$

It is clear, from the matrix representation of T, that i=n. Thus $t_{ii}=t_{nn}$.

Lemma 3. Suppose $\mathbf{A} = \{A_1, ..., A_m\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. Let $\{v_1, ..., v_n\}$ be a common fan basis for \mathbf{A} . For i in N(m) and j in N(n), set

$$A_i(v_j) = \sum_{l=1}^{j} a(i, j, l) v_l.$$

Then

$$\{0\} \neq \bigcap_{i=1}^{m} (A_i, \alpha(i, n, n)) \subsetneq V' = span(v_1, ..., v_{n-1}).$$

Proof. We argue by induction on m, the number of matrices in A. For m=1, it is immediate that $\{0\} \neq (A_1, a(1, n, n))$. For the second part, observe that \mathbb{C}^n is a direct sum of the generalized eigenspaces of A_1 . So there is a generalized eigenvector v not in V'. By Lemma 2, v is a vector in $(A_1, a(1, n, n))$, so $(A_1, a(1, n, n))$ is not contained in V'. Now we consider the case when there are m linear transformations A_i , i in N(m). Set

$$J = \bigcap_{i=1}^{m-1} (A_i, a(i, n, n)).$$

By the induction assumption, we have $\{0\} \neq J$ and J is not a subset of V'. Since \mathbf{A} is commutative, A_m restricted to J, maps J into itself, $A_m \mid J : J \to J$. The vector space J is the direct sum of the generalized spaces of $A_m \mid J$. Since J is not a subset of V', there is a generalize eigenvector v of $A_m \mid J$ not in V'. But the v is a generalized eigenvector of A_m . By Lemma 2, v is in $(A_m, a(m, n, n))$. So

$$\{0\} \neq \bigcap_{i=1}^{m} (A_i, a(i, n, n)) \subseteq V'.$$

This completes the proof.

The following corollary is an immediate result of the above lemma.

Corollary 1. Suppose $A = \{A_1, ..., A_m\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. Then A has a common basis of generalized eigenvectors.

Lemma 4. Suppose $\mathbf{A} = \{A_1, ..., A_m\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. For i in N(m), let λ_i be an eigenvalue of A_i . If $\bigcap_{i=1}^m (A_i, \lambda_i) \neq \{0\}$, then the linear transformations \mathbf{A} have a common eigenvector, i.e., there exists a v in $\bigcap_{i=1}^m (A_i, \lambda_i)$ such that $A_i v = \lambda_i v$ for i in N(m).

Proof. Let $W = \bigcap_{i=1}^m (A_i, \lambda_i)$. Let E_i be the eigenspace of A_i corresponding to λ_i and let $F_i = W \cap E_i$. Since A is commutative, for each i and j in N(m), F_j is an invariant subspace of A_i . We need to show that $\bigcap_{i=1}^m F_i \neq \{0\}$. We prove this by induction on m. The case m=1 is obvious. So assume that $J=\bigcap_{i=1}^{m-1} F_i \neq \{0\}$. It follows that J is invariant for A_m . So A_m has an eigenvector v in J. It is clear that v belongs to E_m since v is an eigenvector, v is in V and V is a subset of V is invariant.

Theorem 1. Suppose $\mathbf{A} = \{A_1, ..., A_m\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. Then

$$\sigma_{J}(\mathbf{A}) = \sigma_{F}(\mathbf{A}).$$

Proof. By Lemma 1, $\sigma_J(\mathbf{A})$ is contained in $\sigma_F(\mathbf{A})$. We need to prove $\sigma_F(\mathbf{A})$ is contained in $\sigma_J(\mathbf{A})$. Let $\{v_1, ..., v_n\}$ be a common fan basis for \mathbf{A} . With i in N(m) and j in N(n), set

$$A_i(v_j) = \sum_{l=1}^{j} a(i, j, l) v_l.$$

Then the fan spectrum of **A**, $\sigma_F(\mathbf{A})$, is

$$\sigma_F(\mathbf{A}) = \{a(1), ..., a(n)\},\$$

where

$$a(j) = [a(1, j, j), ..., a(m, j, j)]^T$$
 is a vector in \mathbb{C}^m .

Pick a(j) in $\sigma_F(\mathbf{A})$ and set $V_j = \{v_1, ..., v_j\}$. By Lemma 3, $\bigcap_{i=1}^m (A_i | V_j, a(i,j,j)) \neq \{0\}$. By Lemma 4, there is a v in $\bigcap_{i=1}^m (A_i | V_j, a(j,i,i))$ such that for i in N(m), $A_i v = a(i,j,j) v$. Therefore a(j) belongs to $\sigma_J(\mathbf{A})$.

The fan spectrum need not be the same as the joint spectrum as the next example illustrates.

Example 2. Let $A = \{A_1, A_2\}$, where

$$A_1 = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}.$$

Calculating the joint spectrum, we find

$$\sigma_J(\mathbf{A}) = \left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}.$$

Let

$$P = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}.$$

Then

$$P^{-1}A_1P = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \quad P^{-1}A_2P = \begin{bmatrix} 2 & -2 \\ 0 & 3 \end{bmatrix}.$$

So

$$\sigma_F(\mathbf{A}) = \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}.$$

It is easy to see that if $\mathbf{A}=\{A_1,...,A_m\}\subset\mathbb{C}^{2\times 2}$ and $\sigma_J(\mathbf{A})\neq \emptyset$, then the matrices in \mathbf{A} have a common fan basis. Next we provide an example of two matrices $\mathbf{A}=\{A_1,A_2\}\subset\mathbb{C}^{3\times 3}$, where $\sigma_J(\mathbf{A})\neq \emptyset$, but the matrices in \mathbf{A} do not have a common fan basis.

Example 3. Let $\mathbf{A} = \{A_1, A_2\} \subset \mathbb{C}^{3\times 3}$, where

$$A_1 = \begin{bmatrix} 1 & -4 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } A_2 = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

A straightforward computation shows that

$$\begin{bmatrix} 1 & -4 \\ 1 & -3 \end{bmatrix}$$
and
$$\begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$

do not have a common fan basis. It follows then from the block structure of A_1 and A_2 that A_1 and A_2 do not have a common fan basis. Let $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$. Then

$$A_1v = v$$
 and $A_2v = 2v$,

so
$$(1 2)^T \in \sigma_J(\mathbf{A})$$
. In fact $\sigma_J(\mathbf{A}) = \{(1 2)^T\}$.

If $\mathbf{A} = \{A_1, ..., A_m\}$ is a set of commuting matrices in $\mathbb{C}^{n \times n}$, then, as a consequence of Theorem 1, every eigenvalue of every matrix A_i is a coordinate in at least one vector in $\sigma_J(\mathbf{A})$.

If an $n \times n$ matrix T has n distinct eigenvalues, then it is diagonalizable. For a set of commuting matrices $\mathbf{A} = \{A_1, ..., A_m\}$, there is a similar result; to establish it we find it helpful to introduce the following notation.

We associate with m vectors $w_1, ..., w_m$ in \mathbb{C}^n an $n \times m$ matrix $[w_1, ..., w_m]$, such that, as suggested by the notation, the (i, j) entry of the matrix is the i-th coordinate of w_j . For i in N(m), let λ_i be a complex number. For a vector w in \mathbb{C}^n , we write

$$(\lambda_1, ..., \lambda_m)w = [\lambda_1 w, ..., \lambda_m w].$$

For a set of matrices $\mathbf{A} = \{A_1, ..., A_m\}$ belonging to $\mathbb{C}^{n \times n}$ and a vector v in \mathbb{C}^n , we write

$$\mathbf{A}v = [A_1v, ..., A_mv].$$

Proposition 1. Let $\mathbf{A} = \{A_1, ..., A_m\}$ be a set of matrices in $\mathbb{C}^{n \times n}$. If the joint spectrum of \mathbf{A} , $\sigma_J(\mathbf{A})$, consists of n distinct vectors, then every matrix in \mathbf{A} is diagonalizable by the same similarity matrix.

Proof. Set

$$\sigma_{J}(\mathbf{A}) = \{a(1), ..., a(n)\},\$$

where

$$a(i) = (a(i, 1), ..., a(i, m)),$$

and let v_i be a common eigenvector corresponding to a(i). We prove by induction that $V=\{v_1,...,v_n\}$ is a linearly independent set. For k in N(n-1), we assume that $\{v_1,...,v_k\}$ is a linearly independent set and prove, from this assumption, that $\{v_1,...,v_k,v_{k+1}\}$ is too. To the contrary, assume that v_{k+1} can be written in the form

$$v_{k+1} = \sum_{i=1}^{k} c_i v_i. (3.4)$$

Then

$$\mathbf{A}v_{k+1} = \sum_{i=1}^k c_i \mathbf{A}v_i.$$

So

$$a(k+1)v_{k+1} = \sum_{i=1}^{k} c_i a(i)v_i.$$
(3.5)

It follows from (3.4) that

$$a(k+1)v_{k+1} = \sum_{i=1}^{k} c_i a(k+1)v_i.$$
 (3.6)

Subtracting (3.5) from (3.6), we have that

$$\sum_{i=1}^{k} c_i (a(k+1) - a(i)) v_i = 0.$$

Choose i in N(k). We claim that $c_i = 0$. Since a(k+1) - a(i) is not zero, there is a coordinate of this vector, say a(k+1, l) - a(i, l), not equal to zero. Consider

$$\sum_{i'=1}^{k} c_{i'}(a(k+1, l) - a(i, l))v_{i'} = 0.$$

Since $\{v_1, ..., v_k\}$ is a linearly independent set and a(k+1) - a(i) is not zero, we have that c_i is zero. Therefore, for i in N(k), c_i is zero and this contradicts the fact that v_{k+1} is a common eigenvector.

It follows that $V = \{v_1, ..., v_n\}$ is a linearly independent set. Consequently, every matrix in **A** has a basis of eigenvectors and is, therefore, diagonalizable.

References

- B. Datta, Numerical Method for Linear Control Systems, Elsevier Academic Press, 2004.
- [2] S. Friedberg, A. Insel and L. Spence, Linear Algebra, Prentice-Hall, 1979.
- [3] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
- [4] B. Jefferies, Spectral Properties of Noncommuting Operators, Springer, 2004.
- [5] S. Lang, Linear Algebra, 2nd ed., Addison-Wesley, 1992.
- [6] Vladimir Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhaüser, Basel, 2007.
- [7] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Springer-Verlag, New York, Inc., 2000.