JOINT SPECTRUM OF SEVERAL MATRICES

JACK GIROLO and CAIXING GU

Department of Mathematics
California Polytechnic State University
San Luis Obispo, CA 93405, U. S. A.
e-mail: jgirolo@calpoly.edu; cgu@calpoly.edu

Abstract

The joint spectrum $\sigma_{J}(\mathbf{C})$ of a set of matrices $\mathbf{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is defined. When the matrices in \mathbf{C} can be upper-triangularized by the same similarity transformation, the fan spectrum, $\sigma_{F}(\mathbf{C})$, is defined and it is shown that $\sigma_{J}(\mathbf{C}) \subseteq \sigma_{F}(\mathbf{C})$. If the matrices in \mathbf{C} commute amongst themselves, then $\sigma_{J}(\mathbf{C}) \subseteq \sigma_{F}(\mathbf{C})$. A generalization of the fact that an $n \times n$ matrix with n-distinct eigenvalues is diagonalizable is also established.

1. Introduction

Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformation. A set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ belonging to \mathbb{C}^{n} is a fan basis for T if, for each i in $N(n)=\{1,2, \ldots, n\}$,

$$
\operatorname{span}\left(v_{1}, \ldots, v_{i}\right)=\left\{\sum_{j=1}^{i} \tau_{j} v_{j} \mid \tau_{j} \in \mathbb{C}\right\}
$$

is an invariant subspace of $T[5, \mathrm{p} .257]$. Suppose $\mathbf{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is a set of matrices contained in $\mathbb{C}^{n \times n}$. We say $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a common fan 2000 Mathematics Subject Classification: Primary 15A18, 15A24; Secondary 15A04.
Keywords and phrases: joint eigenvalue, fan spectrum.
The research of the second author was partially supported by the SFSG Grant of California Polytechnic State University.

Received January 16, 2008
basis for \mathbf{C} provided V is a fan basis for each C_{i} in \mathbf{C}. This definition is of course equivalent to the statement that each member of \mathbf{C} can be uppertriangularized by the same similarity transformation. When \mathbf{C} has a common fan basis, we define the fan spectrum of $\mathbf{C}, \sigma_{F}(\mathbf{C})$, to be the set of m-dimensional vectors consisting of the corresponding diagonal elements of the upper-triangularized matrices. See [4] where a joint spectrum for several noncommuting linear operators is defined. The definition of the joint spectrum in [4] is much more involved even in the finite dimensional case and is developed for a functional calculus of noncommuting linear operators. There are also other well-known definitions of joint spectra of several commuting linear operators. See [6]. Our definition of fan spectrum for several matrices with common fan basis appears to be new.

The definition of fan spectrum, though defined in terms of a fixed basis, is, as we show, independent of the fan basis. The proof follows from the fact if a single matrix T is similar to an upper-triangular matrix, then the diagonals of this upper-triangular matrix are the eigenvalues of T and, thus is independent of the similarity transformation.

For a set of matrices $\mathbf{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ in $\mathbb{C}^{n \times n}$, we define the joint spectrum of $\mathbf{C}, \sigma_{J}(\mathbf{C})$, in terms of common eigenvectors of \mathbf{C}. The vector $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is in $\sigma_{J}(\mathbf{C})$, if there exists a non zero vector v in \mathbb{C}^{n} such that $C_{i} v=\lambda_{i} v$ for each $i[6]$. In this note we show that if \mathbf{C} has a common fan basis, then we show that $\sigma_{J}(\mathbf{C}) \subseteq \sigma_{F}(\mathbf{C})$. We also show that if the matrices in \mathbf{C} commute amongst themselves, then $\sigma_{J}(\mathbf{C})=\sigma_{F}(\mathbf{C})$. Last of all we show that if $\sigma_{J}(\mathbf{C})$ consists of n-distinct vectors, then each matrix in \mathbf{C} is diagonalizable by the same similarity transformation. This provides a generalization of the fact that an $n \times n$ matrix with n-distinct eigenvalues is diagonalizable.

2. Fan Spectrum

Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a linear transformation. We recall that the set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ contained in \mathbb{C}^{n} is a fan basis for T if, for each i in $N(n)$,

$$
\operatorname{span}\left(v_{1}, \ldots, v_{i}\right)=\left\{\sum_{j=1}^{i} \tau_{j} v_{j} \mid \tau_{j} \in \mathbb{C}\right\}
$$

is an invariant subspace of T. The matrix representation of T relative to $V,[T]_{V}$, takes the form

$$
[T]_{V}=\left[\begin{array}{ccc}
t_{11} & \cdots & t_{1 n} \\
\vdots & \ddots & \vdots \\
0 & \cdots & t_{n n}
\end{array}\right]
$$

Since the matrix is upper-triangular, the fan spectrum of T is defined to be the diagonal entries of $[T]_{V},\left\{t_{11}, \ldots, t_{n n}\right\}$, which is precisely the set of eigenvalues of T.

Let $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a set of matrices contained in $\mathbb{C}^{n \times n}$. We now state the definition of the fan spectrum of \mathbf{A} which we denote by $\sigma_{F}(\mathbf{A})$. Suppose that A has a common fan basis $U=\left\{u_{1}, \ldots, u_{n}\right\}$. For i in $N(m)$, set

$$
A_{i}\left(u_{j}\right)=\sum_{l=1}^{j} a(i, j, l) u_{l}
$$

Define vectors $a(j)$ in C^{m} by

$$
a(j)=[a(1, j, j), \ldots, a(m, j, j)]^{T}
$$

Finally, define the fan spectrum of $\mathbf{A}, \sigma_{F}(\mathbf{A})$ by

$$
\sigma_{F}(\mathbf{A})=\{a(1), \ldots, a(n)\} .
$$

Example 1. If

$$
A_{1}=\left[\begin{array}{ccc}
36 & 21 & 48 \\
-3 & 6 & -6 \\
-18 & -9 & -24
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{ccc}
-18 & -19 & -22 \\
1 & -2 & 2 \\
9 & 9 & 11
\end{array}\right]
$$

We show that $\mathbf{A}=\left\{A_{1}, A_{2}\right\}$ has a common fan basis and we determine $\sigma_{F}(\mathbf{A})$. Set

$$
S=\left[\begin{array}{ccc}
-5 & 4 & 2 \\
1 & -1 & 0 \\
3 & -2 & -1
\end{array}\right]
$$

Then

$$
\begin{aligned}
S^{-1} A_{1} S & =\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & -1 & 2 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
36 & 21 & 48 \\
-3 & 6 & -6 \\
-18 & -9 & -24
\end{array}\right]\left[\begin{array}{ccc}
-5 & 4 & 2 \\
1 & -1 & 0 \\
3 & -2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & -3 & 0 \\
0 & 3 & 0 \\
0 & 0 & 12
\end{array}\right], \\
S^{-1} A_{2} S & =\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & -1 & 2 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
-18 & -19 & -22 \\
1 & -2 & 2 \\
9 & 9 & 11
\end{array}\right]\left[\begin{array}{ccc}
-5 & 4 & 2 \\
1 & -1 & 0 \\
3 & -2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -7
\end{array}\right] .
\end{aligned}
$$

Thus $\sigma\left(A_{1}\right)=\{12,3,3\}, \sigma\left(A_{2}\right)=\{-7,-1,-1\}$ and

$$
\sigma_{F}(\mathbf{A})=\left\{\left[\begin{array}{c}
12 \\
-7
\end{array}\right],\left[\begin{array}{c}
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-1
\end{array}\right]\right\}
$$

We now show that the definition of the fan spectrum is independent of the fan basis. To be precise, suppose that \mathbf{A} has two common fan bases $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $W=\left\{w_{1}, \ldots, w_{n}\right\}$. For i in $N(m)$ and j in $N(n)$, set

$$
A_{i}\left(v_{j}\right)=\sum_{l=1}^{j} a(i, j, l) v_{l} \text { and } A_{i}\left(w_{j}\right)=\sum_{l=1}^{j} p(i, j, l) w_{l} .
$$

Define vectors $a(j)$ and $p(j)$ in C^{m} by

$$
a(j)=[a(1, j, j), \ldots, a(m, j, j)]^{T}
$$

and

$$
p(j)=[p(1, j, j), \ldots, p(m, j, j)]^{T} \in \mathbb{C}^{m}
$$

The fan spectrum of \mathbf{A} with respect to $V, \sigma_{F, V}(\mathbf{A})$, and the fan spectrum of \mathbf{A} with respect to $W, \sigma_{F, W}(\mathbf{A})$, are given by

$$
\sigma_{F, V}(\mathbf{A})=\{a(1), \ldots, a(n)\} \text { and } \sigma_{F, W}(\mathbf{A})=\{p(1), \ldots, p(n)\} .
$$

We will show that $\sigma_{F, V}(\mathbf{A})=\sigma_{F, W}(\mathbf{A})$. Consider the linear transformation $B: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by

$$
B=\sum_{i=1}^{m} \alpha_{i} A_{i}, \text { where } \alpha=\left[\alpha_{1}, \ldots, \alpha_{m}\right] \in \mathbb{C}^{m}
$$

It is clear that

$$
\begin{aligned}
& B\left(v_{j}\right)=\sum_{i=1}^{m} \alpha_{i} A_{i}\left(v_{j}\right)=\sum_{i=1}^{m} \sum_{l=1}^{j} \alpha_{i} a(i, j, l) v_{l}=\sum_{l=1}^{j}\left[\sum_{i=1}^{m} \alpha_{i} a(i, j, l)\right] v_{l} \\
& B\left(w_{j}\right)=\sum_{i=1}^{m} \alpha_{i} A_{i}\left(w_{j}\right)=\sum_{i=1}^{m} \sum_{l=1}^{j} \alpha_{i} p(i, j, l) w_{l}=\sum_{l=1}^{j}\left[\sum_{i=1}^{m} \alpha_{i} p(i, j, l)\right] w_{l}
\end{aligned}
$$

that is, both $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $W=\left\{w_{1}, \ldots, w_{n}\right\}$ are fan bases of B and the set

$$
\left\{\left[\sum_{i=1}^{m} \alpha_{i} \alpha(i, j, j)\right], j=1, \ldots, m\right\}=\{a(j) \cdot \alpha, j=1, \ldots, m\}
$$

and the set

$$
\left\{\left[\sum_{i=1}^{m} \alpha_{i} p(i, j, j)\right], j=1, \ldots, m\right\}=\{p(j) \cdot \alpha, j=1, \ldots, m\}
$$

are both the set of the eigenvalues of B. Thus they are equal for any α. It is easy to see that this can only happen when

$$
\{a(1), \ldots, a(n)\}=\{p(1), \ldots, p(n)\}
$$

Therefore $\sigma_{F, V}(\mathbf{A})=\sigma_{F, W}(\mathbf{A})$.

3. Commuting Matrices and the Joint Spectrum

Suppose that $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of matrices. We define $\sigma_{J}(\mathbf{A})$, the joint spectrum of \mathbf{A}. The vector $\left[\lambda_{1}, \ldots, \lambda_{m}\right]^{T}$ is in $\sigma_{J}(\mathbf{A})$ if and only if there exists a vector $v \in C^{m}$ such that

$$
A_{i} v=\lambda_{i} v \text { for } i \text { in } N(m)
$$

In other words, v is an eigenvector for each A_{i}, and so will be referred to as a common eigenvector (of \mathbf{A}). It is clear that in general $\sigma_{J}(\mathbf{A})$ can be empty. But if \mathbf{A} has a common fan basis, we will show that $\sigma_{J}(\mathbf{A})$ is not empty and $\sigma_{J}(\mathbf{A})$ is a subset of $\sigma_{F}(\mathbf{A})$.

The definition of the fan spectrum of $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is an extrinsic definition in that it is defined in terms of a particular basis for the matrices in \mathbf{A}. The joint spectrum, which does not rely on a particular basis, is an intrinsic definition. We say that $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is commuting if for i, j in $N(m), A_{i} A_{j}=A_{j} A_{i}$. It is well known that commuting matrices have a common fan basis [7, p. 2]. For a commuting set of matrices we will prove that $\sigma_{J}(\mathbf{A})=\sigma_{F}(\mathbf{A})$.

Lemma 1. Suppose that $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ belongs to $\mathbb{C}^{n \times n}$ and has a common fan basis. Then

$$
\sigma_{J}(\mathbf{A}) \text { is a subset of } \sigma_{F}(\mathbf{A})
$$

Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a common fan basis for A. For i in $N(m)$ and j in $N(n)$, set

$$
\begin{equation*}
A_{i}\left(v_{j}\right)=\sum_{l=1}^{j} a(i, j, l) v_{l} \tag{3.1}
\end{equation*}
$$

Let

$$
V_{k}=\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)
$$

and set

$$
\mathbf{A} \mid V_{k}=\left\{A_{1}\left|V_{k}, \ldots, A_{m}\right| V_{k}\right\}
$$

We establish by induction that for k in $N(n), \sigma_{J}\left(\mathbf{A} \mid V_{k}\right) \subseteq \sigma_{F}\left(\mathbf{A} \mid V_{k}\right)$.

The case $k=1$, is obvious. So assume the result is true for the $k-1$ case. The fan spectrum $\sigma_{F}\left(\mathbf{A} \mid V_{k}\right)$ is given by

$$
\sigma_{F}\left(\mathbf{A} \mid V_{k}\right)=\{a(1), \ldots, a(k)\}
$$

where

$$
a(j)=[a(1, j, j), \ldots, a(m, j, j)]^{T} \text { is a vector in } \mathbb{C}^{m}
$$

Let $\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{T}$ be a vector in $\sigma_{J}\left(\mathbf{A} \mid V_{k}\right)$ with common eigenvector v. If $v \in V_{k-1}$, then

$$
\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{T} \in \sigma_{J}\left(\mathbf{A} \mid V_{k-1}\right)
$$

So by the induction assumption, $\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{T}$ belongs to $\sigma_{F}\left(\mathbf{A} \mid V_{k-1}\right)$ and hence belongs to $\sigma_{F}\left(\mathbf{A} \mid V_{k}\right)$.

Now assume that v is not in V_{k-1}. Then v takes the form

$$
v=\sum_{l=1}^{k} c_{l} v_{l}, \text { and } c_{k} \neq 0
$$

Let i be in $N(m)$. On the one hand,

$$
\begin{equation*}
A_{i}(v)=\lambda_{i} \sum_{j=1}^{k} c_{j} v_{j}=\lambda_{i} \sum_{j=1}^{k-1} c_{j} v_{j}+\lambda_{i} c_{k} v_{k} \tag{3.2}
\end{equation*}
$$

and on the other hand, by (3.1),

$$
\begin{align*}
A_{i}(v) & =\sum_{j=1}^{k} c_{j} A_{i} v_{j}=\sum_{j=1}^{k-1} c_{j} A_{i} v_{j}+c_{k} A_{i} v_{k} \\
& =\sum_{j=1}^{k-1} c_{j} \sum_{l=1}^{j} a(i, j, l) v_{l}+c_{k} \sum_{l=1}^{k} a(i, k, l) v_{l} \\
& =\sum_{j=1}^{k-1} \sum_{l=1}^{j} c_{j} a(i, j, l) v_{l}+\sum_{l=1}^{k-1} c_{k} a(i, k, l) v_{l}+c_{k} a(i, k, k) v_{k} \tag{3.3}
\end{align*}
$$

Equating the v_{k} coefficients in (3.2) and (3.3), we have

$$
\lambda_{i} c_{k}=c_{k} \alpha(i, k, k)
$$

Since $c_{k} \neq 0$, it follows that $\lambda_{i}=\alpha(i, k, k)$. Therefore $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ must equal $a(k)$ which belongs to $\sigma_{F}\left(\mathbf{A} \mid V_{k}\right)$.

In the lemmas that follow, generalized eigenspaces will play a significant role. If T is a matrix and t is an eigenvalue of T, then (T, t) will denote the generalized eigenspace of T corresponding to the eigenvalue t and $m(T, t)$ will denote the algebraic multiplicity of the eigenvalue t. The dimension of a generalized eigenspace (T, t) equals the multiplicity $m(T, t)$ of the eigenvalue t, [2, p. 312], an important fact that we put to use in the next lemma.

Lemma 2. Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ contained in \mathbb{C}^{n} be a fan basis for a linear transformation $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. Assume

$$
T\left(v_{i}\right)=\sum_{j=1}^{i} t_{i j} v_{j} \text { with } t_{i j} \in \mathbb{C} .
$$

Let v be a generalized eigenvector. If v does not belong to $V^{\prime}=$ $\operatorname{span}\left(v_{1}, \ldots, v_{n-1}\right)$, then v is in $\left(T, t_{n n}\right)$, the generalized eigenspace of T corresponding to the eigenvalue $t_{n n}$.

Proof. Suppose that v is in $\left(T, t_{i i}\right)$, the generalized eigenspace of T corresponding to the eigenvalue $t_{i i}$. Since v is not in V^{\prime} and V^{\prime} is an invariant subspace of T,

$$
\operatorname{dim}\left(T \mid V^{\prime}, t_{i i}\right)+1=\operatorname{dim}\left(T, t_{i i}\right)
$$

So

$$
m\left(T \mid V^{\prime}, t_{i i}\right)+1=m\left(T, t_{i i}\right)
$$

It is clear, from the matrix representation of T, that $i=n$. Thus $t_{i i}=t_{n n}$.

Lemma 3. Suppose $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a common fan basis for A. For i in $N(m)$ and j in $N(n)$, set

$$
A_{i}\left(v_{j}\right)=\sum_{l=1}^{j} a(i, j, l) v_{l} .
$$

Then

$$
\{0\} \neq \bigcap_{i=1}^{m}\left(A_{i}, a(i, n, n)\right) \nsubseteq V^{\prime}=\operatorname{span}\left(v_{1}, \ldots, v_{n-1}\right) .
$$

Proof. We argue by induction on m, the number of matrices in A. For $m=1$, it is immediate that $\{0\} \neq\left(A_{1}, a(1, n, n)\right)$. For the second part, observe that \mathbb{C}^{n} is a direct sum of the generalized eigenspaces of A_{1}. So there is a generalized eigenvector v not in V^{\prime}. By Lemma 2, v is a vector in $\left(A_{1}, a(1, n, n)\right)$, so $\left(A_{1}, a(1, n, n)\right)$ is not contained in V^{\prime}. Now we consider the case when there are m linear transformations A_{i}, i in $N(m)$. Set

$$
J=\bigcap_{i=1}^{m-1}\left(A_{i}, a(i, n, n)\right) .
$$

By the induction assumption, we have $\{0\} \neq J$ and J is not a subset of V^{\prime}. Since \mathbf{A} is commutative, A_{m} restricted to J, maps J into itself, $A_{m} \mid J: J \rightarrow J$. The vector space J is the direct sum of the generalized spaces of $A_{m} \mid J$. Since J is not a subset of V^{\prime}, there is a generalize eigenvector v of $A_{m} \mid J$ not in V^{\prime}. But the v is a generalized eigenvector of A_{m}. By Lemma 2, v is in $\left(A_{m}, a(m, n, n)\right.$. So

$$
\{0\} \neq \bigcap_{i=1}^{m}\left(A_{i}, a(i, n, n)\right) \nsubseteq V^{\prime} .
$$

This completes the proof.
The following corollary is an immediate result of the above lemma.
Corollary 1. Suppose $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. Then \mathbf{A} has a common basis of generalized eigenvectors.

Lemma 4. Suppose $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. For i in $N(m)$, let λ_{i} be an eigenvalue of A_{i}. If $\bigcap_{i=1}^{m}\left(A_{i}, \lambda_{i}\right) \neq\{0\}$, then the linear transformations \mathbf{A} have a common eigenvector, i.e., there exists $a v$ in $\bigcap_{i=1}^{m}\left(A_{i}, \lambda_{i}\right)$ such that $A_{i} v=\lambda_{i} v$ for i in $N(m)$.

Proof. Let $W=\bigcap_{i=1}^{m}\left(A_{i}, \lambda_{i}\right)$. Let E_{i} be the eigenspace of A_{i} corresponding to λ_{i} and let $F_{i}=W \cap E_{i}$. Since \mathbf{A} is commutative, for each i and j in $N(m), F_{j}$ is an invariant subspace of A_{i}. We need to show that $\bigcap_{i=1}^{m} F_{i} \neq\{0\}$. We prove this by induction on m. The case $m=1$ is obvious. So assume that $J=\bigcap_{i=1}^{m-1} F_{i} \neq\{0\}$. It follows that J is invariant for A_{m}. So A_{m} has an eigenvector v in J. It is clear that v belongs to E_{m} since v is an eigenvector, v is in W and W is a subset of $\left(A_{m}, \lambda_{m}\right)$. Therefore v belongs to $\bigcap_{i=1}^{m} F_{i}$.

Theorem 1. Suppose $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of commuting matrices belonging to $\mathbb{C}^{n \times n}$. Then

$$
\sigma_{J}(\mathbf{A})=\sigma_{F}(\mathbf{A})
$$

Proof. By Lemma 1, $\sigma_{J}(\mathbf{A})$ is contained in $\sigma_{F}(\mathbf{A})$. We need to prove $\sigma_{F}(\mathbf{A})$ is contained in $\sigma_{J}(\mathbf{A})$. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a common fan basis for A. With i in $N(m)$ and j in $N(n)$, set

$$
A_{i}\left(v_{j}\right)=\sum_{l=1}^{j} a(i, j, l) v_{l} .
$$

Then the fan spectrum of $\mathbf{A}, \sigma_{F}(\mathbf{A})$, is

$$
\sigma_{F}(\mathbf{A})=\{a(1), \ldots, a(n)\}
$$

where

$$
a(j)=[a(1, j, j), \ldots, a(m, j, j)]^{T} \text { is a vector in } \mathbb{C}^{m}
$$

Pick $a(j)$ in $\sigma_{F}(\mathbf{A})$ and set $V_{j}=\left\{v_{1}, \ldots, v_{j}\right\}$. By Lemma 3, $\bigcap_{i=1}^{m}\left(A_{i} \mid V_{j}, a(i, j, j)\right) \neq\{0\}$. By Lemma 4 , there is a v in $\bigcap_{i=1}^{m}\left(A_{i} \mid V_{j}, a(j, i, i)\right)$ such that for i in $N(m), A_{i} v=a(i, j, j) v$. Therefore $a(j)$ belongs to $\sigma_{J}(\mathbf{A})$.

The fan spectrum need not be the same as the joint spectrum as the next example illustrates.

Example 2. Let $\mathbf{A}=\left\{A_{1}, A_{2}\right\}$, where

$$
A_{1}=\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right]
$$

Calculating the joint spectrum, we find

$$
\sigma_{J}(\mathbf{A})=\left\{\binom{2}{3}\right\} .
$$

Let

$$
P=\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]
$$

Then

$$
P^{-1} A_{1} P=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right], \quad P^{-1} A_{2} P=\left[\begin{array}{cc}
2 & -2 \\
0 & 3
\end{array}\right]
$$

So

$$
\sigma_{F}(\mathbf{A})=\left\{\binom{3}{2},\binom{2}{3}\right\} .
$$

It is easy to see that if $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\} \subset \mathbb{C}^{2 \times 2}$ and $\sigma_{J}(\mathbf{A}) \neq \phi$, then the matrices in \mathbf{A} have a common fan basis. Next we provide an example of two matrices $\mathbf{A}=\left\{A_{1}, A_{2}\right\} \subset \mathbb{C}^{3 \times 3}$, where $\sigma_{J}(\mathbf{A}) \neq \phi$, but the matrices in \mathbf{A} do not have a common fan basis.

Example 3. Let $\mathbf{A}=\left\{A_{1}, A_{2}\right\} \subset \mathbb{C}^{3 \times 3}$, where

$$
A_{1}=\left[\begin{array}{ccc}
1 & -4 & 0 \\
1 & -3 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

A straightforward computation shows that

$$
\left[\begin{array}{ll}
1 & -4 \\
1 & -3
\end{array}\right] \text { and }\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]
$$

do not have a common fan basis. It follows then from the block structure of A_{1} and A_{2} that A_{1} and A_{2} do not have a common fan basis. Let $v=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$. Then

$$
A_{1} v=v \text { and } A_{2} v=2 v
$$

so $\left(\begin{array}{ll}1 & 2\end{array}\right)^{T} \in \sigma_{J}(\mathbf{A})$. In fact $\left.\sigma_{J}(\mathbf{A})=\left\{\begin{array}{ll}1 & 2\end{array}\right)^{T}\right\}$.
If $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of commuting matrices in $\mathbb{C}^{n \times n}$, then, as a consequence of Theorem 1, every eigenvalue of every matrix A_{i} is a coordinate in at least one vector in $\sigma_{J}(\mathbf{A})$.

If an $n \times n$ matrix T has n distinct eigenvalues, then it is diagonalizable. For a set of commuting matrices $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$, there is a similar result; to establish it we find it helpful to introduce the following notation.

We associate with m vectors w_{1}, \ldots, w_{m} in \mathbb{C}^{n} an $n \times m$ matrix $\left[w_{1}, \ldots, w_{m}\right]$, such that, as suggested by the notation, the (i, j) entry of the matrix is the i-th coordinate of w_{j}. For i in $N(m)$, let λ_{i} be a complex number. For a vector w in \mathbb{C}^{n}, we write

$$
\left(\lambda_{1}, \ldots, \lambda_{m}\right) w=\left[\lambda_{1} w, \ldots, \lambda_{m} w\right]
$$

For a set of matrices $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ belonging to $\mathbb{C}^{n \times n}$ and a vector v in \mathbb{C}^{n}, we write

$$
\mathbf{A} v=\left[A_{1} v, \ldots, A_{m} v\right] .
$$

Proposition 1. Let $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a set of matrices in $\mathbb{C}^{n \times n}$. If the joint spectrum of $\mathbf{A}, \sigma_{J}(\mathbf{A})$, consists of n distinct vectors, then every matrix in \mathbf{A} is diagonalizable by the same similarity matrix.

Proof. Set

$$
\sigma_{J}(\mathbf{A})=\{a(1), \ldots, a(n)\}
$$

where

$$
a(i)=(a(i, 1), \ldots, a(i, m))
$$

and let v_{i} be a common eigenvector corresponding to $a(i)$. We prove by induction that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set. For k in $N(n-1)$, we assume that $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set and prove, from this assumption, that $\left\{v_{1}, \ldots, v_{k}, v_{k+1}\right\}$ is too. To the contrary, assume that v_{k+1} can be written in the form

$$
\begin{equation*}
v_{k+1}=\sum_{i=1}^{k} c_{i} v_{i} \tag{3.4}
\end{equation*}
$$

Then

$$
\mathbf{A} v_{k+1}=\sum_{i=1}^{k} c_{i} \mathbf{A} v_{i}
$$

So

$$
\begin{equation*}
a(k+1) v_{k+1}=\sum_{i=1}^{k} c_{i} a(i) v_{i} \tag{3.5}
\end{equation*}
$$

It follows from (3.4) that

$$
\begin{equation*}
a(k+1) v_{k+1}=\sum_{i=1}^{k} c_{i} a(k+1) v_{i} \tag{3.6}
\end{equation*}
$$

Subtracting (3.5) from (3.6), we have that

$$
\sum_{i=1}^{k} c_{i}(a(k+1)-a(i)) v_{i}=0
$$

Choose i in $N(k)$. We claim that $c_{i}=0$. Since $a(k+1)-a(i)$ is not zero, there is a coordinate of this vector, say $a(k+1, l)-a(i, l)$, not equal to zero. Consider

$$
\sum_{i^{\prime}=1}^{k} c_{i^{\prime}}(a(k+1, l)-a(i, l)) v_{i^{\prime}}=0
$$

Since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set and $a(k+1)-a(i)$ is not zero, we have that c_{i} is zero. Therefore, for i in $N(k), c_{i}$ is zero and this contradicts the fact that v_{k+1} is a common eigenvector.

It follows that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set. Consequently, every matrix in \mathbf{A} has a basis of eigenvectors and is, therefore, diagonalizable.

References

[1] B. Datta, Numerical Method for Linear Control Systems, Elsevier Academic Press, 2004.
[2] S. Friedberg, A. Insel and L. Spence, Linear Algebra, Prentice-Hall, 1979.
[3] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[4] B. Jefferies, Spectral Properties of Noncommuting Operators, Springer, 2004.
[5] S. Lang, Linear Algebra, 2nd ed., Addison-Wesley, 1992.
[6] Vladimir Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhaüser, Basel, 2007.
[7] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Springer-Verlag, New York, Inc., 2000.

