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Abstract 

We prove that the i.i.d. hypothesis in Lai’s theorem cannot be relaxed to 
bounded sequences, not even to bounded martingales. 

Let us recall the following classical result (cf. Lai [1]). Let …,,, 21 XXX  

be i.i.d. random variables with ,,0 22 σ== EXEX  and partial sums 

.1 nn XXS ++= "  Let ,1>p  and assume that [ ( ) ] .log2 ∞<−+ pp XXE  

Then, for any ,22 −σ>ε p  
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n
p nnSPn  

Conversely, if the sum is finite for some ,0>ε  then 

[ ( ) ] .log2 ∞<−+ pp XXE  
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Our main result below shows that Lai’s theorem cannot be extended 
to bounded sequences, not even to bounded martingales. This is in sharp 
contrast with the limiting case of Lai’s theorem (i.e., 1=p ); the i.i.d. case 
was proved in [2] assuming more than a second moment and in [3]-[4] we 

proved that the corresponding series converges for any -qL martingale 

difference and along a subsequence of any -qL bounded sequence, for 
.2>q  

Throughout the paper, 0>C  denotes a generic numerical constant. 

Let ;1≥p  we say that the sequence ( ) 1≥nnX  is -pL bounded if it has 

finite pth moments, i.e., CX pn ≤  for some 0>C  and any .1≥n  We 

say that ( ) 1≥nnX  is a martingale difference if [ ] 11 −− =| nnn SSE F  a.s. for 

,1≥n  where nF  is the σ-algebra generated by nXX ...,,1  (here 00 =S  

and 0F  is the trivial σ-algebra). 

Theorem. Let .1>p  Then there exists a martingale difference 
( ) 1≥nnX   that satisfies 

[ ( ) ] ∞<−+

≥

p
n

p
n

n
XXE logsup 2

1
 (1) 

(in particular ( ) 1≥nnX  is -pL bounded), and such that the series 
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diverges for any subsequence "<<≤ 211 nn  of natural numbers and 
.0>ε  

Proof. Consider ,nn YZX ⋅=  where ( ) 1≥nnY  is an i.i.d. bounded 

sequence with ( ) ,01 =YE  and Z is independent of ( ) 1≥nnY  with 

[ ] γ−=> CnnZP  (3) 

for .1≥n  Here 0>C  is a normalization factor and .2p>γ  
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Obviously ( ) 1≥nnX  is a martingale difference and has finite (2p)th 

moments, as 

[ ] [ ]( )∑
∞

=

+>−>≤≤
1
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As the sequence ( ) 1≥nnY  is bounded, we have 

( ) ( ) CCZX pp
n ≤+≤ −+−+ loglog    a.s. 

and, together with (4), implies Condition (1). 

As Z is independent of ( ) ,1≥nnY  and applying the central limit theorem 

to ( ) ,1≥nnY  we obtain 
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Hence, applying (3) to (5), we obtain that series (2) is greater than or 
equal to 

( )∑
∞

=

γ−−⋅
2

22 ,log
N

p NNC  

which diverges if .1>p  
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