ON TOTALLY PARANORMAL OPERATORS

JONG-KWANG YOO

(Received November 8, 2005)

Submitted by K. K. Azad

Abstract

If $T \in L(X)$ is a totally paranormal operator on a complex Banach space X, then for all $\lambda \in \mathbb{C}$,

$$X_T(\{\lambda\}) = Ker(T-\lambda) = \{x \in X : \lim_{n \to \infty} \|(T-\lambda)^n x\|^{\frac{1}{n}} = 0\}.$$

In particular, the kernel KerT is the quasi-nilpotent part of T. If λ and μ are distinct eigenvalues of T, then

$$X^* = X_T(\{\lambda\})^{\perp} + X_T(\{\mu\})^{\perp}.$$

Moreover, if $T \in L(H)$ is a totally paranormal operator on a complex Hilbert space H, then $H_T(\{\lambda\}) \perp H_T(\{\mu\})$.

We first recall some basic notions and results from spectral theory; the monographs [4] and [10]. Let X be a complex Banach space, and let L(X) denote the Banach algebra of all bounded linear operators on X. As usual, for $T \in L(X)$ and let $\sigma(T)$, $\sigma_p(T)$ and $\sigma_{sur}(T)$ denote the spectrum, point spectrum and surjectivity spectrum of T, respectively and let Lat(T)

© 2006 Pushpa Publishing House

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A11; Secondary 47B40.

Keywords and phrases: algebraic spectral subspace, local spectrum, totally paranormal operator.

stand for the collection of all T-invariant closed linear subspaces of X. Thus $\sigma_{sur}(T)$ consists of all $\lambda \in \mathbb{C}$ for which $(T - \lambda)X \neq X$. It is well known from Proposition 1.3.2 of [8] that $\sigma_{sur}(T)$ is compact with $\partial \sigma(T) \subseteq \sigma_{sur}(T) \subseteq \sigma(T)$. Moreover, if T has the single valued extension property, then $\sigma_{sur}(T) = \sigma(T)$, and if the adjoint T^* has SVEP, then $\sigma_{ap}(T) = \sigma(T)$.

An operator $T \in L(X)$ is said to have the *single-valued extension* property, if for every open $U \subseteq \mathbb{C}$, the only analytic solution $f: U \to X$ of the equation $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in U$ is the constant $f \equiv 0$. Given an arbitrary operator $T \in L(X)$, let $\sigma_T(x) \subseteq \mathbb{C}$ denote the *local spectrum* of T at the point $x \in X$, i.e., complement of the set $\rho_T(x)$ of all $\lambda \in \mathbb{C}$ for which there exist an open neighborhood U of λ in \mathbb{C} and analytic function $f: U \to X$ such that $(T - \mu)f(\mu) = x$ holds for all $\mu \in U$. For every closed subset F of \mathbb{C} , let $X_T(F) = \{x \in X : \sigma_T(x) \subseteq F\}$ denote the corresponding analytic spectral subspace of T. It is easy to see that $X_T(F)$ is a

T-invariant linear subspace of X and also hyperinvariant for T. An operator $T \in L(X)$ is said to have Dunford's property (C) if $X_T(F)$ is closed for every closed $F \subseteq \mathbb{C}$. This condition plays an important role in the theory of spectral operators. It is well known that Dunford's property (C) implies the single-valued extension property.

If $A \subseteq \mathbb{C}$, then the algebraic spectral subspace $E_T(A)$ is the largest subspace of X on which all the restrictions of $T - \lambda$, $\lambda \in \mathbb{C} \setminus A$, are surjective. Thus $E_T(A)$ is the largest linear subspace of Y for which

$$(T - \lambda)Y = Y$$
 for all $\lambda \in \mathbb{C} \setminus A$.

It follows from Proposition 1.2.16 in [10] that $X_T(F) \subseteq E_T(F) = E_T(F \cap \sigma(T))$ for every $T \in L(X)$ and for all subsets F of \mathbb{C} . The space $E_T(A)$ need not be closed in general. It is clear that $(T - \lambda)E_T(F) = E_T(F)$ for all $\lambda \in \mathbb{C} \setminus F$ as well so that the class which we consider has a maximal element if ordered by inclusion. Algebraic spectral subspace was introduced in [6] in connection with certain problems in automatic

continuity. Recall from Corollary 1.3.3 of [3] and [7] that if $T \in L(H)$ is hyponormal, then

$$H_T(F) = E_T(F) = \bigcap_{\lambda \in \mathbb{C} \setminus F} (T - \lambda)H$$

 $\text{for all closed sets } F\subseteq \mathbb{C} \text{ and in particular, } \bigcap_{\lambda\in\mathbb{C}} (T-\lambda)H=\{0\}.$

For an arbitrary operator $T \in L(X)$ on a complex Banach space X, the *quasi-nilpotent part* of T is the set

$$H_0(T) := \{ x \in X : \lim_{n \to \infty} || T^n x ||_{n}^{\frac{1}{n}} = 0 \}.$$

It is easy to check that $H_0(T)$ is a linear hyperinvariant subspace of X, and $Ker(T^n) \subseteq H_0(T) \subseteq \{x \in X : \sigma_T(x) \subseteq \{0\}\}$ for all $n \in \mathbb{N}$. Clearly, T is quasi-nilpotent if and only if $H_0(T) = X$, see Theorem 1.5 in [13]. Moreover, if T is invertible, then $H_0(T) = \{0\}$. In general, $H_0(T)$ need to be closed.

An operator $T \in L(X)$ on the Banach space X is said to be paranormal if $\|Tx\|^2 \le \|T^2x\| \|x\|$ for all $x \in X$. Paranormality is preserved under restriction to invariant subspaces. It is clear that T is paranormal and invertible, then T^{-1} is also paranormal. If $T - \lambda$ is paranormal for every $\lambda \in \mathbb{C}$, then we say that T is totally paranormal, abbreviate it by TPN. The TPN operators form a proper subclass of the paranormal operators. Moreover, all totally paranormal operators have property (C). It is well known that every paranormal operator is isoloid, that is, every isolated point in $\sigma(T)$ is an eigenvalue. Also, every totally paranormal operator is normaloid, that is, the spectral radius $r(T) = \|T\|$.

Lemma 1. If $T \in L(X)$ is TPN, then T has property (C). Moreover, $\sigma(T | E_T(F)) \subseteq F$ for any $F \subseteq \mathbb{C}$, and

$$E_T(F) = \bigcap_{\lambda \in \mathbb{C} \setminus F, n \in \mathbb{N}} (T - \lambda)^n X.$$

Proof. It is easy to check that T has property (C). At first, we show that $Ker(T-\lambda)=Ker(T-\lambda)^n$ for every $\lambda\in\mathbb{C}$ and $n\in\mathbb{N}$. By definition of TPN, $Ker(T-\lambda)=Ker(T-\lambda)^2$ for every $\lambda\in\mathbb{C}$, and hence $Ker(T-\lambda)=Ker(T-\lambda)^n$ for every $\lambda\in\mathbb{C}$ and $n\in\mathbb{N}$. Let $\lambda\in\mathbb{C}\setminus F$. By definition of $E_T(F)$, $(T-\lambda)^nE_T(F)=E_T(F)$ for all $n=2,3,\ldots$ If $x\in E_T(F)$, then there is $y\in E_T(F)$ for which $x=(T-\lambda)^ny$. If $x\in Ker(T-\lambda)$, then $y\in Ker(T-\lambda)^2=Ker(T-\lambda)$ and hence x=0. Since $(T-\lambda)|E_T(F)$ is surjective, $\sigma(T|E_T(F))\subseteq F$ for any $F\subseteq\mathbb{C}$. This completes the proof.

Theorem 2. Let $T \in L(X)$ be a totally paranormal operator on a Banach space X. Then the kernel KerT is the quasi-nilpotent part of T. Moreover,

$$H_0(T) = X_T(\{0\}) = KerT = \{x \in X : \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0\}.$$

Proof. It suffices to show that

$$X_T(\{\lambda\}) = Ker(T - \lambda) = \{x \in X : \lim_{n \to \infty} \|(T - \lambda)^n x\|^{\frac{1}{n}} = 0\} \text{ for all } \lambda \in \mathbb{C}.$$

It is clear that $Ker(T-\lambda) \subseteq X_T(\{\lambda\})$ for all $\lambda \in \mathbb{C}$. For the converse, it suffices to show that $X_T(\{\lambda\}) \subseteq Ker(T-\lambda)$ for all $\lambda \in \mathbb{C}$. At first, we show that $\|(T-\lambda)x\|^n \le \|(T-\lambda)^n x\|$ for any unit vector x and $n \in \mathbb{N}$. Let $x \in X$ be a unit vector. Since T is totally paranormal,

$$||(T - \lambda)x||^2 \le ||(T - \lambda)^2 x|| ||x||.$$

For any n = 2, 3, ..., we obtain

$$\| (T - \lambda)^n x \|^2 = \| (T - \lambda) (T - \lambda)^{n-1} x \|^2$$

$$\leq \| (T - \lambda)^2 (T - \lambda)^{n-1} x \| \| (T - \lambda)^{n-1} x \|$$

$$= \| (T - \lambda)^{n+1} x \| \| (T - \lambda)^{n-1} x \|.$$

It follows from Lemma 1.2 in [7] that

$$\|(T-\lambda)x\|^n \le \|(T-\lambda)^n x\|$$
 for all $n \in \mathbb{N}$.

This implies that if $\lim_{n\to\infty} \|(T-\lambda)^n x\|_n^{\frac{1}{n}} = 0$, then $(T-\lambda)x = 0$. Since T has the single-valued extension property,

$$X_T(\{\lambda\}) = X_{T-\lambda}(\{0\}) = \{x \in X : \lim_{n \to \infty} \| (T - \lambda)^n x \|_n^{\frac{1}{n}} = 0 \}.$$

Hence $X_T(\{\lambda\}) \subseteq \mathit{Ker}(T-\lambda)$ for any $\lambda \in \mathbb{C}$. This completes the proof.

It is easy to see that all hyponormal operators are totally paranormal.

Corollary 3. Let $T \in L(H)$ be a hyponormal operator on a Hilbert space H, and $x_0 \in H$. Then $\lim_{n\to\infty} \|T^n x_0\|^{\frac{1}{n}} = 0$ if and only if $Tx_0 = 0$. Moreover, the kernel KerT is the quasi-nilpotent part of T.

Theorem 4. Let $T \in L(X)$ be a totally paranormal operator on a complex Banach space X. If λ and μ are distinct eigenvalues of T, then

$$X^* = X_T(\{\lambda\})^{\perp} + X_T(\{\mu\})^{\perp}.$$

In particular, if $T \in L(H)$ is a TPN operator on a complex Hilbert space H, then $H_T(\{\lambda\}) \perp H_T(\{\mu\})$.

Proof. Let $M=X_T(\{\lambda\})$ and $N=X_T(\{\mu\})$. Then $M\cap N=\{0\}$, and $M+N=X_T(\mathbb{C})=X$. Since we know from Lemma 1 that T has SVEP. It follows from (f) and (g) of Proposition 1.2.6 in [10] that

$$X = X_T(\{\lambda\} \cup \{\mu\}) = X_T(\{\lambda\}) \oplus X_T(\{\mu\}).$$

Finally, we show that $H_T(\{\lambda\}) \perp H_T(\{\mu\})$. It follows from Theorem 2 that $H_T(\{\zeta\}) = Ker(T-\zeta)$ for all $\zeta \in \mathbb{C}$. Thus $H_T(\{\zeta\})^{\perp} = Ker(T-\zeta)^{\perp} = \overline{ran(T-\zeta)^*}$ for all $\zeta \in \mathbb{C}$. Without loss of generality, we suppose that $|\lambda| \leq 1$ and $\mu = 1$. Let $T := \begin{pmatrix} \lambda & A \\ 0 & B \end{pmatrix}$ on $H_T(\{\lambda\}) \oplus H_T(\{\lambda\})^{\perp}$. If $x = y \oplus z \in H$

is an arbitrary eigenvector of T with respect to 1, then $\lambda y + Az = y$ and Bz = z. If z = 0, then y = 0, and so x = 0. This contradiction shows that $z \neq 0$. Let $u := z/\|z\|$ and $w = 0 \oplus u \in H$. Then $T^n w = (1 - \lambda^n) y \oplus u$. By totally paranormality of T, $\|Tw\|^n \leq \|T^n w\|$ for all $n \in \mathbb{N}$. Thus we have

$$(\sqrt{|1-\lambda|^2 \|y\|^2 + 1})^n \le \sqrt{|1-\lambda^n|^2 \|y\|^2 + 1} \le \sqrt{1+4 \|y\|^2}.$$
 (1)

If $y \neq 0$, then the left side of (1) tends to ∞ as $n \to \infty$. This is impossible unless y = 0. Hence $x = 0 \oplus z \in H_T(\{\lambda\})^{\perp}$.

References

- [1] E. Albrecht and J. Eschmeier, Functional models and local spectral theory, University of Saarbrucken and University of Munster, 1988, preprint.
- [2] E. Bishop, A duality theory for arbitrary operators, Pacific J. Math. 9 (1959), 379-397.
- [3] K. Clancey, Seminormal operators, Lecture Note in Math., 742, Springer, Berlin, Heidelberg, New York, 1979.
- [4] I. Colojoarva and C. Foiás, Theory of Generalized Spectral Operators, Gordon & Breach, New York, 1968.
- [5] J. Eschmeier and B. Prunaru, Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. 94 (1990), 196-222.
- [6] B. E. Johnshon and A. M. Sinclair, Continuity of linear operators commuting with linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540.
- [7] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 326-336.
- [8] K. B. Laursen and M. M. Neumann, Automatic continuity of intertwining linear operators on Banach spaces, Rendiconti Del circolo Matematico di Palermo, Serie II, Tomo XL (1991), 325-341.
- [9] K. B. Laursen and M. M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czechoslovak Math. J. 43(118) (1993), 483-497.
- [10] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford, New York, 2000.
- [11] K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasg. Math. J. 36 (1994), 331-343.

- [12] V. G. Miller and M. M. Neumann, Local spectral theory for multipliers and convolution operators, Algebraic Methods in Operator Theory, pp. 25-36, Birkhäuser, Boston, 1994.
- [13] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23(98) (1973), 483-492.

Department of Liberal Arts and Science Chodang University 419 Sungnamri Muangun 534-701 Chonnam, Korea e-mail: jkyoo@chodang.ac.kr

Man by but is out