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Abstract 

In this paper we introduce a new smooth estimator of the conditional 
quantile function in the censorship model. We show that this estimator 
converges uniformly almost surely and suitably normalized is 
asymptotically normal. Some simulations have been drawn to lend 
further support to our theoretical results for the convergence as well as 
for the normality for the finite samples. 

1. Introduction 

It is well-known, from the robustness literature, that the mean is 
sensible to outliers (see Hampel et al. [18]); it may be sensible to use the 
median, which is a particular case of the quantile, rather than the mean 
to forecast future since the median is highly resistant against outliers. 
The nonparametric estimation of conditional quantile has received a 
great interest since 1969, when Roussas [27] showed the convergence and 
asymptotic normality of kernel estimates under Markov assumptions. For 
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independent and identically distributed (iid) random variables (rv), Stone 
[32] showed the weak consistency of kernel estimates. The uniform 
consistency was studied by Schlee [29] for strong mixing case. Samanta 
[28] proved the asymptotic normality in the iid case. Many other authors 
considered this problem; without pretending to the exhaustiviteness, we 
quote Bhattacharya and Gangopadhyay [3], Jones and Hall [20], Mehra et 
al. [25], Chaudhuri [5], Fan et al. [13], Welsh [38] and Xiang [40]. Honda 
[19] dealt with the α-mixing case and proved the uniform convergence 
and asymptotic normality of an estimate of the conditional quantile using 
polynomial fitting method. Berlinet et al. [2] showed the asymptotic 
normality of convergent estimates of conditional quantile by considering 
the particular case of stationary α-mixing process. Gannoun et al. [14] 
gave a smooth nonparametric conditional median predictor, based on 
double kernel methods and established its asymptotic normality and 
proposed an extension to the conditional quantile. 

In censoring case, Beran [1] introduced a nonparametric estimate of 
the conditional survival function and proved some consistency results 
which were later exposed and extended by Dabrowska [8, 9] in the iid 
case and Lecoutre and Ould-Saïd [24] studied the consistency in the 
strong mixing case. Dabrowska [10] established a Bahadur representation 
of kernel quantile estimator and Xiang [39] obtained the deficiency of 
sample quantile estimator with respect to a kernel estimator using 
coverage probability. Leconte et al. [23] built two classes of estimators of 
the conditional distribution function and the quantile function and 
showed under some conditions that the two classes are equal. Some 
simulations have been driven to show that one is better than other in the 
sense of the mean square error. Further results, including bootstrap 
approximations, have been gotten by Van Keilegom and Veraverbeke [35, 
36]. Recently, Gannoun et al. [15] studied the asymptotic properties of an 
estimator of the conditional quantile using polynomial. Other large 
samples properties of the conditional distribution have been studied 
extensively in the literature (see, e.g., González Manteiga and Cadarso 
Suárez [16], Stute [33] and Van Keilegom and Veraverbeke [34, 37]). Here 
we provide consistent and asymptotically normal conditional quantile 
estimate under the condition C and ( )XT ,  are independent as in the 
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recent paper of Ould-Saïd [26] (see also Carbonnez et al. [4] and Kohler et 
al. [22]), who established a strong uniform convergence rate of a kernel 
conditional quantile estimator under censorship model. 

Consider a sequence of iid random variables ...,, 21 TT  with common 
unknown absolutely continuous distribution function (df) F. In many 
situations, we observe only censored lifetimes of items under study.        
That is, assuming that { }1; ≥iCi  is a sequence of iid censoring rv                   

with common unknown df G, we observe only the n pairs {( ),, iiY δ  

},...,,2,1 ni =  with iii CTY ∧=  and { }ii CTi ≤=δ I  (where AI  denotes 

the indicator function of the set A). We will suppose that T and C are 
independent to ensure the identifiability of the model. 

Let X be a real-valued rv and ( ).. |F  be the conditional df of T given 

,xX =  that is, 

( ) [ { } ]xXxtF tT =|=| ≤IE  (1) 

which can be written as ( ) ( )
( ) ,,: 1
x

xtFxtF =|  where  is the marginal 

density of X with respect to Lebesgue measure. 

We observe ( ){ }....,,2,1,,, niXY iii =δ  Now, for any df L, let =τL  

( ){ }1,sup <yLy  be its right endpoint. 

Let ( ).1,0∈p  Then the conditional quantile is defined by 

( ) ( ){ }.:inf pxtFtxp ≥|=ξ  (2) 

We consider the estimation of the parameter ( )xpξ  which satisfies 

( ( ) ) .pxxF p =|ξ  (3) 

In this paper we propose a new smooth estimator of the conditional 
quantile. Simulation study comes to show the well behavior and check the 
efficiency of our estimator. The remainder of the paper is as follows. In 
Section 2 we define a new kernel conditional quantile estimator in the 
censorship model with some notations. In Section 3 we present the 
assumptions which allow us to get asymptotic results and we give the 
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main results. Some applications and examples are given in Section 4. 
Simulation results are presented in Section 5. Finally, the proofs of the 
main results are relegated to Section 6 with some auxiliary results and 
their proofs. 

2. Definition of the Estimator 

Throughout this paper we assume that 

,GF τ<τ  (4) 

C and ( )XT ,  are independent. (5) 

Remark 1. In view of (4) and as we need to prove some uniform 
results which imply a sufficient rate of convergence of nG  (see Lemma 2), 

we have to consider a set of values of iY  which do not include Gτ  

(because a uniform rate for nG  is obtained only for ( ),,min GFt ττ=τ<  

see Deheuvels and Einmahl [11, formula 4.28]). 

Condition (5) is plausible whenever the censoring is independent of 
the modality of the patients. This condition is slightly stronger than the 
one usually used, that is: T and C are independent conditionally given X 
(see, e.g., Dabrowska [8, 9, 10]). However, condition (5) is very useful to 
give an unbiased estimator of ( )xtF ,1  (when the weights are uniform) 

which intervenes in our methodology of construction of the estimate of 
( )xtF |  (see below). 

It is clear that an estimator of (2) will be obtained by estimating the 
conditional distribution function (1), thus it suffices to estimate ( )xtF ,1  

and ( ).x  The density ( )x  is not affected by the censoring and therefore 

can be estimated consistently by the well-known kernel estimator. 
Furthermore, an unbiased estimator of ( ) ( { })xXtTxtF ≤≤= ,1 , IE  is given 

by an average mean ( )
( ) { }∑

=
≤≤

δ
=

n

i
xXtY

i

i
n iiYGnxtF

1
,,1 .1,ˆ I  

Indeed, using the properties of the conditional expectation and (5), we 
get 
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[ ( )]
( ) { }







 δ
= ≤≤ xXtYn YG

xtF 11 ,
1

1
,1 ,ˆ IEE  

( ) { } 















|

δ
= ≤≤ 11,

1

1 ,11 TX
YG xXtYIEE  

{ }

( )
[ { } ]








|= ≤

≤≤
11

1

, ,11
11 TX

YG CT
xXtT IE

I
E  

[ { }] ( ).,1, 11 xtFxXtT == ≤≤IE  

Now, instead using the uniform weight 
n
1  for all { }iii XY ,, δ  we use the 

Nadaraya-Watson weight 

( )
∑ =







 −







 −

=
n

i n
i

n
i

ni

h
XxK

h
XxK

xW

1

,  

( ) ,

1

x
h

XxKnh
n

n
i

n






 −

=  (6) 

where K is a probability density function (so called kernel function), 
hhn :=  is a sequence of positive real numbers which goes to zero as n 

goes to infinity (so called bandwidth) and ( ).n  is the well-known kernel 

estimator of ( )..  

Constructing an appropriate estimator is then obtained by adapting 
the weight (6), in order to put more emphasis on large values of the 
interest variable T which are more censored than small values. 

Ould-Saïd [26] considered the following weights 

( )
( ) ( )

,1
, xYGh

XxKnhxW
ni

ii
ni

δ






 −

=  

and he established a strong uniform convergence of the corresponding 
kernel conditional quantile estimator; but this estimator is not derivable 
then we cannot establish its asymptotic normality. 
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Let us define a smooth estimate of (1) (by substituting the step 
function { }.I  by a smooth df )).(H  by 

( ) ( ) .~

1

1

∑
∑

=

=







 −







 −







 −δ

=|
n

i
i

n

i
ii

i

i

n

h
XxK

h
YtHh

XxK
YGxtF  (7) 

Recall that (7) can be rewritten as: 

( )
( )
( ) ,

,~
~ ,1

x
xtF

xtF
n

n
n =|  (8) 

where 

( )
( )∑

=






 −







 −δ

=
n

i

ii

i

i
n h

YtHh
XxK

YGnhxtF
1

,1
1,~  

and 

( ) ∑
=







 −

=
n

i

i
n h

XxKnhx
1

.1  

In practice G is usually be unknown, hence it is impossible to use the 
estimator (7). Then we replace G by the Kaplan-Meier estimate nG  given 
by 

( )
{ }

( )

( )








≥

<







+−
δ−

−
=− ∏ =

≤

.if,0

,if,1
111 1

n

n
n

i
i

n
Yt

YtintG
tiYI

 

Therefore the feasible estimator of the conditional df ( ).. |F  is given by 

( ) ( ) ( )
( ) ,

,
: ,1

1

1

x
xtF

h
XxK

h
YtHh

XxK
YGxtF

n

n
n

i n
i

n

i
ii

in

i

n =






 −







 −







 −δ

=|

∑
∑

=

=
 (9) 

where 

( )
( )∑

=






 −







 −δ

=
n

i

ii

in

i
n h

YtHh
XxK

YGnhxtF
1

,1 .1,  

Then a natural estimator of ( ).pξ  is given by 

( ) ( ){ }pxtFtx nnp ≥|=ξ ;inf,  (10) 
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which satisfies 
( ( ) ) ., pxxF npn =|ξ  (11) 

We define the first partial derivative with respect to second component of 
( )xtF n ,,1  and ( ),,~

,1 xtF n  respectively, by 

( )
( )

( )∑
=







 −′






 −δ

=′=
∂

∂ n

i

ii

in

i
n

n
h
YtHh

XxK
YGnh

txFt
xtF

1
2,1

,1 1,
,

 

and 

( )
( )

( )
,1,~,~

1
2,1

,1 ∑
=







 −′






 −δ

=′=
∂

∂ n

i

ii

i

i
n

n
h
YtHh

XxK
YGnh

txFt
xtF

 

where H ′  is the derivative of H. 

The conditional density estimators are given by 

( )
( )
( )x

xtF
xtf

n

n
n

,,1′=|  

and 

( )
( )
( ) .

,~
~ ,1

x
xtF

xtf
n

n
n

′
=|  

In order to study the behavior of the random variable ( ( ) ( )),, xx npp ξ−ξ  

we make use of the properties in (3) and (11) and Taylor expansion, we 
get 

( ( ) ) ( ( ) ) ( ( ) ( )) ( ( ) ),,,, xxfxxxxFxxF npnppnpp |ξξ−ξ=|ξ−|ξ ∗  (12) 

where ( )xnp
∗ξ ,  lies between ( )xpξ  and ( )., xnpξ  It is clear that equation 

(12) shows that from the behavior of ( ( ( ) ) ( ( ) )),, xxFxxF npp |ξ−|ξ  it is 

easy to obtain asymptotic results for the sequence ( ( ) ( ))., xx npp ξ−ξ  If 

( ( ) ) 0, ≠|ξ∗ xxf np  was not satisfied, then we should have increased the 

order of Taylor expansion. 

3. Assumptions and Main Results 

Our assumptions are gathered together for easy references. 
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Let ( ){ } Ω>∈=Ω ,00 xx R  be a compact set such that 0Ω⊂Ω  and 

let C  be a compact set included in ] [., Fτ∞−  

A1. The kernel K satisfies: 

  (i) K is strictly positive valued, bounded, with compact support and 

there exist constants ∗M  and ∗m  such that ,0 ∞<< ∗M  ,0 ∞<< ∗m  

( ) ∗= MuKsup  and ( ) ,inf ∗= muK  

 (ii) K is Hölderian of  order γ for some ,0>γ  

(iii) ( ) ( )∫ ∫ ∞+<=
R R

duuKuduuuK ,0  and ( )∫ ∞<
R

,2 duuKu  

 (iv) ( )∫ ∞+<κ=
R

.2 duuK  

A2. The bandwidth h satisfies: 

 (i) ( ),loglog 2hon
n =  

(ii) .05 →nh  

A3. The conditional distribution function ( )xtF |  has positive first 

derivative with respect to t, for all ,Ω∈x  denoted ( )xtf |  and satisfies: 

  (i) The Lipschitz condition of order 1 with respect to t and x, such 
that 

( ) ( ) ,,,, 2
21

2
21 Ω∈∀∈∀ xxtt R  

( ) ( ) ( ),21212211 ttxxCxtFxtF −+−≤|−|  

 (ii) ( )∫ ∞+<|
R

,dtxtft  for all Ω∈x  (that is, the conditional 

density ( ).. |f  has a finite first moment), 

(iii) There exists a constant 01 >γ  such that ( ) 1γ>| xtf  for all 
Ω∈x  and .C∈t  

A4. The distribution function H has a first derivative H ′  which is 
positive and bounded such that: 
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 (i) There exist two constants ∞<< M0  and ,0 ∞<< m  ( )tH ′Rsup  
M=  and ( ) ,inf mtH =′R  

(ii) ( )∫ =′
R

1dttH  and ( )∫ ∞+<′
R

.dttHt  

A5. The marginal density ( ).  satisfies the Lipschitz condition and 
there exists 00 >γ  such that ( ) 0γ>x  for all .Ω∈x  

A6. The distribution function of the censored rv, G has bounded first 
derivative g. 

Comments on the assumptions. 

Assumptions A1(i), (ii) and (iii) are quite usual in kernel estimation. 
Condition A1(iv) intervenes in the variance terms of (9) and (10). 
Assumption A2(i) is needed in the study of the behavior of the differences 

( )nn FF ,1,1
~−  and ( ( ) ( )),..~.. |−| nn ff  and in the proof of the convergence to 

zero of the bias term of ( )..,~
nF  in Lemma 3. Assumption A3(i) is put for 

technical convenience. Assumption A4(i) will be used in the proof of the 
asymptotic normality. Assumption A5 intervenes in the convergence of the 
kernel density estimator .n  A3(ii) and A6 are additional assumptions to 
get the asymptotic variance term. 

Our first result deals with the uniform almost sure convergence with 
rate of the conditional df estimator (9) and is stated in Proposition 1. The 
uniform almost sure convergence of the conditional quantile estimator 
(10) and its rate will be given in Theorem 1. Next, in Proposition 2, we 
state the asymptotic normality of the estimator (9) suitably normalized, 
then it suffices to prove the asymptotic normality of ( ( ( ) ) −|ξ xxF pnn ,  

( ( ) ))xxF pn |ξ  and the convergence in probability of the sequence 

( ( ) )xxf npn |ξ∗ ,  to obtain the asymptotic normality of the estimator of the 

conditional quantile ,pξ  by Slutsky’s theorem. 

Proposition 1. Under assumptions A1(i)-(iii), A2(i), A3(i), A4 and 
A5, and for n large enough, we have 

( ) ( ) 
















=|−|
∈Ω∈

hnh
nOxtFxtFn

tx
,loglogmaxsupsup

C
  a.s. (13) 
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Theorem 1. Under assumptions A1(i)-(iii), A2(i), A3(i), (iii), A4 and 
A5, if the conditional density satisfies ( ( ) ) ,0inf >|ξ

Ω∈
xxf px

 then for n large 

enough, we have 

( ) ( ) 





















=ξ−ξ

Ω∈
hnh

nOxx pnp
x

,loglogmaxsup
21

,   a.s. (14) 

Remark 2. The uniform positiveness assumption on the conditional 
density (in Theorem 1) implies the uniform unicity of the conditional 
quantile, that is, 

,:,0,0 R→Ωη∀>β∃>ε∀ p  

( ) ( ) ( ( ) ) ( ( ) ) .supsup β≥|η−|ξ⇒ε≥η−ξ
Ω∈Ω∈

xxFxxFxx pp
x

pp
x

 (15) 

On the other hand, assuming the sole (15) guarantees the consistency of 
the conditional quantile but permits us to obtain a rate of convergence. 

Remark 3. If we choose 
51loglog






= nh

nOh  which is the optimal 

bandwidth in density estimation, then for each fixed ( )1,0∈p  and for n 
large enough, we have 

( ) ( ) .loglogsup
51

, 




=ξ−ξ

Ω∈ nh
nOxx pnp

x
 

Under the following mild modifications upon assumptions: 

A2′. (i) ( ),loglog 3hon
n =  

A3′. (i) the df ( ).. |F  satisfies the Lipschitz condition of order 2 with 
respect to t and x, 

A4′. (ii) ( )∫ ∞+<′
R

,2 dttHt  

we get the following rate 














 2,loglogmax hnh

nO  a.s. If we choose 

,loglog 51





= nh

nOh  then we have ( ) ( ) ,loglogsup
52

, 




=ξ−ξ

Ω∈ nh
nOxx pnp

x
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which is the rate expected by Mehra et al. [25] and the same rate 
obtained by Xiang [40] and Ould-Saïd [26]. Here we point out that in 
Gannoun et al. [15], there is neither uniform result nor rate of 
convergence. Recall that in this case assumption A2(ii) must be reinforced 
to get the asymptotic normality. 

Remark 4. A generalization of the results to higher dimensions for 

the covariates, that is, ,sX R∈  by adapting the assumptions A1-A2, is 
straightforward and, for example, (14) becomes: 

( ) ( ) 
















=ξ−ξ
Ω∈

h
nh

nOxx spnp
x

,loglogmaxsup ,   a.s. 

Remark 5. In the proof of Proposition 1 (and therefore Theorem 1), 
we use Hoeffding’s inequality which is a pointwise exponential inequality 
and we use a standard idea about covering a compact set by a finite 
number of intervals to get the uniformity. Another interesting idea is to 
use Vapnik-Cervonenkis theory by using Pollard’s inequality (see 
Devroye et al. [12, Theorem 29.1]) together with bounds on the covering 
number which gives the uniformity straightforwardly. However, the 
choice of the kernels in the last case must satisfy K1 condition of Giné 
and Guillou [17] which is more restrictive than the Hölderian functions. 

In this case, one finds a rate of convergence of the order ,log 21

2 







nh
n  which 

is less good than our result. 

The following results deal with the asymptotic normality. 

Proposition 2. Under assumptions A1-A6 and for any 0Ω∈x  such 

that ( ) ,0>x  we have 

( ) ( ) ( )( ) ( ( ))xtxtFxtFnh n ,,0 221 σ→|−| N
D    as   ,∞→n  (16) 

where D→  denotes the convergence in distribution, and 

( ) ( ) ( ( ) ( ))
( ) ( )

.1,2
tGx

xtFtGxtFxt |−|κ
=σ  

Theorem 2. Let ( )1,0∈p  such that ( ( ) ).xxFp p |ξ=  Then under 
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assumptions A1-A6, for any 0Ω∈x  such that ( ( )) ,0, ≠ξΣ xx p  we have 

( ( ))
( ( ) ( )) ( )1,0

,
,

21

2 N
D
→ξ−ξ















ξΣ
xx

xx
nh

npp
p

   as   ,∞→n  (17) 

where 

( ( ))
( ( ( )))

( ( ) ) ( ) ( ( ))
.

1
, 2

2
xGxxxf

xGpp
xx

pp

p
p

ξ|ξ

ξ−κ
=ξΣ  

4. Applications 

4.1. Applications to prediction 

It is well-known, from the robustness theory, that the median is more 
robust than the mean, therefore the conditional median, ( ) ( ),21 xx ξ=µ  is 

a good alternative to the conditional mean as a predictor for a variable       
Y given .xX =  Note that the estimation of ( )xµ  is given by ( ) =µ xn  

( ).
,2

1 x
n

ξ  Using this consideration and Section 3, we want to predict the 

non-observed rv 1+nY  (which corresponds to some modality of our 
problem), from available data ....,,1 nXX  Given a new value ,1+nX  we 
can predict the corresponding response 1+nY  by 

( ) ( ).1,2
111 +++ ξ=µ= nnnnn XXY  

Applying the above theorem, we have the following corollary 

Corollary 1. 

( ( ))
( ( ) ( )) ( )1,0

,
1211,21

21

1211
2 ND→ξ−ξ















ξΣ
++

++
nnn

nn
XX

XX
nh  

as  .∞→n  

4.2. Confidence intervals 

Using a plug-in method by replacing ,  ,G  f and 21ξ  by their 

estimates ,n  ,nG  nf  and ,,21 nξ  respectively, permits us to obtain a 
convergent estimate nΣ  of Σ , then we get from Corollary 1 



PREDICTION VIA THE CONDITIONAL QUANTILE … 157 

Corollary 2. 

( ( ))
( ( ) ( )) ( )1,0

,
21,21

21

,21
2 ND→ξ−ξ















ξΣ
xx

xx
nh

n
nn

   as   .∞→n  (18) 

From this corollary, we get for each fixed ( ),1,0∈η  the following 
approximate ( )%1 η−  confidence interval 

( )
( ( ))

,
, ,21

21,21 nh
xx

tx nn
n

ξΣ
×±ξ η−  

where 21 η−t  denotes the 21 η−  quantile of the standard normal 
distribution. 

5. Simulation Studies 

We have conducted a numerical study to examine the performance of 
our estimator. The first subsection deals with the consistency of the 
conditional quantile estimator ( )xnp,ξ  given in (10), whereas the second 

looks at how good the asymptotic normality is when we deal with a finite 
sample. 

5.1. Consistency 

The aim of the following simulations is to examine the performance of 
our estimator ( )xnp,ξ  in some particular model. In our simulation, we 

consider the following model: ,iii XT σε+=  ,...,,1 ni =  where iX  and 

iε  are two independent iid sequences distributed as ( )1,0N  and σ is a 
positive constant. The censoring times { }niCi ...,,1; =  are generated 
independently from ( ).1,0N  Then we compute our estimator with the 
observed data ( ),,, iii YX δ  where iii CTY ∧=  and { }.ii CTi ≤=δ I  

We choose a gaussian kernel and it is well-known that, in 
nonparametric estimation, optimality (in the MSE sense) is not seriously 
swayed by the choice of the kernel K but is affected by the choice of the 
bandwidth h. The bandwidth h is chosen according to the assumption A2, 

that is, ,loglog 4
1






= n

nCh  with an appropriate choice of the constant C. 
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Furthermore, we choose H as the normal distribution function. We take 
several values of n and in each case, the conditional quantile estimator, 
along a grid of 160 equispaced points in [ ]2,2−  has been calculated. We 
take several values of n and draw two curves corresponding to the 
conditional quantile estimator ( )xnp,ξ  for [ ]2,2−∈x  and the theoretical 

conditional quantile ( )xpξ  for 45.0=σ  and for the two values 21=p  

and .41=p  

The curves show that our estimator performs well in particular when 
n increases. 

 

Figure 1. 100,50;21 === nnp  and 500, respectively. 

 

Figure 2. 100,50;41 === nnp  and ,500=n  respectively. 

5.2. Asymptotic normality 

We now consider the problem of asymptotic normality. We show how 
good the normality is when dealing with samples of finite size which is 
the case in practice. The data arise from the same distribution as 
previously for a given size n, we estimate the conditional quantile 
function as before and calculate the normalized deviation between         
this estimate and the theoretical conditional quantile for 0=x  and 
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;21=p  ( )
( ( ( ))

( ( ) ) ( ) ( ( ))
( ( ) ( ))xx

xGxxxf

xGpp
nhx pnp

pnnpn

pn
np ξ−ξ















ξ|ξ

ξ−κ
=ξ

−

,

21

2,
1

 

which becomes ( )
( )

( ) ( ) ( )
( ) .0

0000

02
112

1

0
,2

1

21

2, 









−ξ

















|






 −κ

=ξ

−

x
Gf

G
nh

nnnn

n
np  

We draw, using this scheme, B independent n-samples. The 
bandwidth h is chosen according to assumption A2. In order to estimate 
the density function of ( )xn,21ξ  (by the kernel method), we make the 

classical bandwidth choice (see, e.g., Silverman [31, p. 40]) ,51−=′ Cnh  
where the constant C is appropriately chosen. 

 

Figure 3. .200,100 == Bn  

 

Figure 4. .200,300 == Bn  

We see that the normality of the rv ( ).,21 nξ  is better as n increases, 

which clearly appears in the Q.Q. plot. 

5.3. Confidence curves 

We construct approximate ( )%1 η−  confidence curves obtained from 
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Corollary 2, that is, 

( )
( ( ))

.,21
21,21 nh

xx
tx nnn

n
ξΣ

×±ξ η−  

We draw in Figure 5, for several values of n, two curves corresponding          
to the approximate ( )%21 η−  lower and upper confidence curves for 

,21=p  [ ],2,2−∈x  45.0=σ  and %.5=η  The bandwidth h is chosen 
as in Subsection 5.1. 

 
Figure 5. 100,50;21 === NNp and ,500=n  respectively. 

It is clear, from Figure 5, that the confidence interval becomes more 
precise as the sample size increases. 

6. Auxiliary Results and Proofs 

The proof of our main results is split up into several lemmas. The first 
lemma deals with the behavior of the difference between [ ( )]xtF n ,~

,1E  

and ( ).,1 xtF  

Lemma 1. Under assumptions A1(iii), A3(i), A4 and A5, then for n 
large enough, we have 

[ ( )] ( ) ( )hOxtFxtF n
xx

=−
∈Ω∈

,,~supsup 1,1E
C

  a.s. (19) 

Proof. 

( ( ))
( ) 














 −







 −δ

= h
YtHh

XxK
YGhxtF n

11

1

1
,1

1,~ EE  

( )
.1

1
1

1

11
















|






 −δ







 −

= Xh
YtH

YGh
XxKh EE  
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Moreover we have by integration by parts and changing variables, 

 
( ) ( ) 








|








|






 −δ

=







|






 −δ

11
1

1

1
1

1

1

1 XTh
YtH

YG
Xh

YtH
YG

EEE  





 |






 −

= 1
1 Xh

TtHE  

( )∫ |




 −= dyXyfh

ytH 1  

( ) ( )∫ |−′= dzXzhtFzH 1  

( ) ( ) ( )[ ] ( )∫ |+|−|−′= ,1 xtFdzxtFXzhtFzH  

by the first part of assumption A4. 

Thus, we have 

[ ( )] ( ) ( ) ( )[ ] 



 |−|−′






 −

= ∫ dzxtFXzhtFzHh
XxKhxtF n 1

1
,1

1,~ EE  

( )












 −|

+ h
XxKh

xtF 1E  

.: 21 II +=  

Making use of the first part of assumption A5, the second term 2I  tends 
to ( )xtF ,1  as n goes to infinity. 

By assumptions A3(i) and A4(i), we have 

( ) ( ) ( )∫ |−|−′≤
R

dzxtFXzhtFzH 11I  

( )∫ +′≤
R

dzzhhzHC  

( )∫ ′+≤
R

.dzzHzChCh  (20) 

Making use of A4(ii) and A1(iii), it is clear that ( ),1 hO=I  this completes 
the proof of Lemma 1. 
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Remark 6. The last argument shows that 

( ) 01
1 →|−



 |






 − xyFXh

YyHE    as   .∞→n  (21) 

The second lemma deals with the behavior of the difference between 

nF ,1  and .~
,1 nF  

Lemma 2. Under assumptions A1(i) and A2(i), then for n large 
enough, we have 

( ) ( ) ( )hOxtFtxF nn
tx

=−
∈Ω∈

,~,supsup ,1,1
C

  a.s. (22) 

Proof. 

( ) ( )xtFxtF nn ,~, ,1,1 −  

( ) ( )∑
=

−





 −







 −

δ≤
n

i iin

ii
i YGYGh

YtHh
XxKnh

1

111  

( ) ( )
( ) ( ) ∑

=∈

∗
δ−

ττ
≤

n

i
in

tFFn ntGtG
GG

M
h

1
.1sup1

C
 

Since ( ) ,0>τFG  in conjunction with the SLLN and the LIL on the 
censoring law (see formula 4.28 in Deheuvels and Einmahl [11]), we have 

( ) ( )
( )

21

2,1,1
loglog1,~,supsup 







τ
≤−

∗

∈Ω∈ n
n

hG
cMxtFtxF

F
nn

tx C
  a.s., 

where c is a positive constant. Assumption A2(i) concludes the proof. 

Lemma 3. Under assumptions A1(i) and (ii), A2(i), then we have 

( ) [ ( )] 0,~,~supsup ,1,1 →−
∈Ω∈

xtFxtF nn
tx

E
C

  a.s.   as   .∞→n  

Furthermore, for all n large enough, 

( ) [ ( )] 







=−

∈Ω∈ nh
nOxtFxtF nn

tx

loglog,~,~supsup ,1,1 E
C

  a.s. (23) 
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Proof. As Ω and C  are compact sets, then they can be covered by 
finite numbers ns  and nd  of intervals centered at kx  and jt  of length 

λh  and ,µh  respectively, such that 
γ
+γ≥λ 3  and .4≥µ  Since Ω and C  

are bounded, there exist two constants 1A  and 2A  such that λ−≤ hAsn 1  

and .2
µ−≤ hAdn  

Now put 

( ) ksk xxxk n −= = ...,,2,1minarg  

and 

( ) .minarg ...,,2,1 jdj tttj n −= =  

Thus we have the following decomposition 

( ) [ ( )]xtFxtF nn ,~,~
,1,1 E−  

( ) ( ( ) )

1

,~,~supsup ,1,1

I

C
xknn

tx
xtFxtF −≤

∈Ω∈
 

( ) ( ( ) ( ) )

2

,~,~supsup ,1,1

I

C
xktjnn

tx
xtFxtF −+

∈Ω∈
 

( ( ) ( ) ) [ ( ( ) ( ) )]

3

,~,~supsup ,1,1

I

C
xktjnxktjn

tx
xtFxtF E−+

∈Ω∈
 

[ ( ( ) ( ) )] [ ( ( ) )]

4

,~,~supsup ,1,1

I

C
xknxktjn

tx
xtFxtF EE −+

∈Ω∈
 

[ ( ( ) )] [ ( )] .,~,~supsup

5

,1,1

I

C
xtFxtF nxkn

tx
EE −+

∈Ω∈
 

Concerning 1I  and .5I  By A1(ii) and the fact that is bounded, we have 

( ) ( ( ) ) ( )
( ).,~,~supsup 1

,1,1
+γ−γλ

∈Ω∈ τ
≤− h

G
cxtFxtF

F
xknn

tx C
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By assumption A2(ii) on h and the condition upon λ, we get 

( ) ( ( ) ) ( ).1,~,~supsuploglog ,1,1 oxtFxtFn
nh

xknn
tx

=−
∈Ω∈ C

 (24) 

Concerning 2I  and .4I  In the same way and by the fact that K is 

bounded and A4 (which implies that H is Lipschitzian), we have 

( ( ) ) ( ( ) ( ) ) ( )
.,~,~supsup 2

,1,1
−µ

∈Ω∈ τ
≤− h

G
cxtFxtF

F
xktjnxkn

tx C
 

The condition upon µ implies that 

( ( ) ) ( ( ) ( ) ) ( ).1,~,~supsuploglog ,1,1 oxtFxtFn
nh

xktjnxkn
tx

=−
∈Ω∈ C

 (25) 

Concerning ,3I  for all ,0>ε  we have 

 ( ( ) ( ) ) [ ( ( ) ( ) )] 





 ε>−

∈Ω∈
xktjnxktjn

tx
xtFxtF ,~,~supsup ,1,1 EP

C
 

( ( ) ( ) ) [ ( ( ) ( ) )] 





 ε>−=

== xktjnxktjndjsk
xtFxtF

nn
,~,~maxmax ,1,1...,,2,1...,,2,1

EP  

{ ( ( ) ( ) ) [ ( ( ) ( ) )] }.,~,~
,1,1 ε>−≤ xktjnxktjnnn xtFxtFds EP  (26) 

Now, we have 

[ ( ( ) ( ) ) [ ( ( ) ( ) )]] 0,~,~
,1,1 =− xktjnxktjn xtFxtF EE  

and 

( ( ) ( ) ) [ ( ( ) ( ) )] ( )
.2,~,~

,1,1
F

xktjnxktjn Gnh
MxtFxtF
τ

≤−
∗

E  

Hoeffding’s inequality (cf. Shorack and Wellner [30, p. 855]) yields 

{ ( ( ) ( ) ) [ ( ( ) ( ) )] } { },exp,~,~ 222
,1,1 hcnxtFxtF xktjnxktjn ε−≤ε>− EP  

where c is a universal constant. Then (26) becomes 



PREDICTION VIA THE CONDITIONAL QUANTILE … 165 

 ( ( ) ( ) ) [ ( ( ) ( ) )] 





 ε>−

∈Ω∈
xktjnxktjn

tx
xtFxtF ,~,~supsup ,1,1 EP

C
 

( ) { }222
21 exp hnchAA ε−≤ µ+λ−  

( ) ( ) ,log
21

222 nhncnnhAA ε−µ+λµ+λ−=  (27) 

where c is a positive constant depending only on ∗M  and ( ).FG τ  

A2(i) implies that ,log
22

∞+→n
hn  which yields that the last term of 

(27) is the general term of a convergent series; then by Borel-Cantelli’s 
Lemma, the first term of (26) goes to zero almost surely. Otherwise, if we 

replace ε by ,loglog
0 nh

nε  for some 00 >ε  in all steps of lemma, then we 

have 

( ( ) ( ) ) [ ( ( ) ( ) )] ( )1,~,~supsuploglog ,1,1 oxtFxtFn
nh

xktjnxktjn
tx

=−
∈Ω∈

E
C

  a.s. 

in conjunction with (24) and (25) we complete the proof of the lemma. 

Lemma 4. Under assumptions A1(iii), A2(i) and A4(i), we have 

( ( )) 0,~var ,1 →′ xtF n    as   .∞→n  

Proof. Recall that 

( )
( )∑

=






 −′






 −δ

=′
n

i

ii

i

i
n h

YtHh
XxK

YGnh
xtF

1
2,1 ,1,~  

then 

( ( ))
( ) 














 −′






 −δ

=′
h
YtHh

XxK
YGnh

xtF n
11

1

1
4,1 var1,~var  

( ) 
















 −′






 −δ

= h
YtHh

XxK
YGnh

1212

1
2

1
4

1 E  

( )

2
11

1

1
4

1






















 −′






 −δ

− h
YtHh

XxK
YGnh

E  
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( ) 















|

δ






 −′






 −

= 1
1

11212
4

1 X
YGh

YtHh
XxK

nh
EE  

( )

2

1
1

111
4

1
























|

δ






 −′






 −

− X
YGh

YtHh
XxK

nh
EE  

.: 21 JJ −=  

By assumptions A1(iii) and A4(i), we have 

 
( ) 











 −

τ
≤ h

XxK
G

M
nh

J
F

12
2

2

41
1 E  

( )
( ) .11

32

2

3 





+κ

τ
≤

nh
Ox

G
M

nh F
 

Then by A2(i), 01 →J  as .∞+→n  

For the same arguments as before, we have 

 
( )

2
1

2

2

42
1



















 −

τ
≤ h

XxK
G

M
nh

J
F

E  

( )
( ) 






+

τ
= 2

2
2

2

2
11

nh
Ox

G
M

nh F
 

and 2J  tends again to zero as n goes to infinity. This completes the proof 

of Lemma 3. 

Remark 7. Under the assumptions of Lemma 3, and making use of 
Tchebychev’s inequality, we have 

( ) ( ),,,~
1,1 xtFxtF n ′→′   in probability,  as  ∞→n  

and thus if we add assumption A5, then 

( )
( )
( ) ( ),

,~
~ ,1 xtfx

xtF
xtf

n

n
n |→

′
=|   in probability,  as  .∞→n  (28) 
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The following lemma deals with the convergence of the conditional 
probability density estimator ( )xtfn |  to ( ).xtf |  

Lemma 5. Under assumptions A1(iii), A2(i), A4 and A5, we have 

( ) ( ),xtfxtfn |→|   in probability,  as  .∞→n  (29) 

Proof. We have 

( ) ( )xtfxtfn |−|  

( ( ) ( )) ( ( ) ( )),~~ xtfxtfxtfxtf nnn |−|+|−|=  

( ) ( )xtfxtf nn |−|
~  

( ) ( ( ) ( ))xtFxtFx nn
n

,~,1
,1,1 ′−′=  

( ) ( ) ( )∑
=









−






 −′






 −

δ=
n

i iin

ii
i

n YGYGh
YtHh

XxK
nhx

1
2

1111  

( ) ( ) ( )
( ) ( ) ∑

=∈

∗
δ−

ττ
≤

n

i
in

tFFnn ntGtG
GG
MM

hx
1

2 .1sup11
C

 

Since ( ) ( ) 0inf >γ≥≥ xx nxn  and ( ) ,0>τFG  in conjunction with the 

SLLN and the LIL on the censoring law, we have 

( ) ( )
( )

21

22
loglog1~








τ
≤|−|

∗

n
n

hG
McMxtfxtf
F

nn   a.s., 

where c is a positive constant. Assumption A2(i) gives us that 

( ) ( ) 0~
→|−| xtfxtf nn   a.s.   as  .∞→n  

The proof can be concluded by Remark 6. 

Proof of Proposition 1. In view of (9), we have 

( ) ( )xtFxtFn
tx

|−|
∈Ω∈ C

supsup  
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( ) ( ) ( ) ( )


 −

−−γ
≤

∈Ω∈Ω∈
txFtxFxx n

txnx
,,supsupsup

1
1,1

C
 

 ( ) ( ) ( ) .supsupsup


−|+

Ω∈∈Ω∈
xxxtF n

xtx C
 (30) 

The kernel estimator ( )xn  is almost surely bounded away from 0 on Ω 
because of the second part of assumption A5. 

Now, under assumptions A5 and A1(i)-(iii), we have 

( )( ) ( ) 0sup →−
Ω∈

xx nn
x

E    as  .∞→n  

Using Taylor’s expansion up to the first order to ( ),.  for n large enough, 
we have 

( )( ) ( ) ( ).sup hOxxn
x

=−
Ω∈

E  (31) 

Furthermore, under A1(i), (ii), (iii) and A2(i), an analogous proof as in 

Lemma 3 (by taking ( ) 











 −

−





 −

=∆ h
XxKnhh

XxKnhx ii
i

11 E  and by 

replacing ε by ,loglog 21
0 





ε nh

n  for some )00 >ε  yields to 

( )( ) ( ) 












=−

Ω∈

21loglogsup nh
nOxx nn

x
E   a.s. (32) 

Then the proposition can be obtained straightforwardly from (30)-(32), 
Lemmas 1, 2 and 3. 

Proof of Theorem 1. Let .Ω∈x  As ( )xF |.  and ( )xFn |.  are 
continuous, we have ( ( ) ) ( ( ) ) ., pxxFxxF npnp =|ξ=|ξ  Then 

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )xxFxxFxxFxxF npnnppnp |ξ−|ξ=|ξ−|ξ ,,,  

 ( ) ( ) .sup xtFxtFn
t

|−|≤
∈C

 (33) 

Then the consistency of ( )xpn,ξ  follows immediately from Proposition 1 

and continuity of ( ).. xF |  Now, a Taylor expansion of ( )xF |.  in a 
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neighborhood of ( ),xpξ  implies that 

( ( ) ) ( ( ) ) ( ( ) ( )) ( ( ) ),,, xxfxxxxFxxF ppnppnp |ξξ−ξ=|ξ−|ξ ∗  

where ( )xp
∗ξ  is between ( )xpξ  and ( )., xpnξ  Then, by (33), we have 

( ) ( ) ( ( ) ) ( ) ( ) .supsupsup , xtFxtFxxfxx n
tx

ppnp
t

|−|≤|ξξ−ξ
∈Ω∈

∗

Ω∈ C
 

Then the result is a consequence of Proposition 1 and the assumption of 
( ( ) ).. |ξpf  being uniformly bounded away from zero. 

In order to prove Proposition 2, we use the following decomposition 
and the lemmas below: 

 ( ) ( )xtFxtFn |−|~  

( )
( )

( ) ( ( )) ( ) ( ) ( )( )[ ]
( ) 










 −|−−
= x

xxxtFxtFxtF
x

x
n

nnnn

n

EE ,~,~
,1,1  

 ( ) [ ( ) ( ( )) ( ) ( ) ( )( )[ ]].~,1
1 xxxtFxtFxtFx nn

n
EE −|−|−−  

Note that 

( ) ( ) ( )( ) ( )
( ) (( ) ( )) ( ) ( ),,, 212121 xtCnhxtAnhx
xxtFxtFnh nn

n
n +=|−|  (34) 

where 

( )
( ) ( ( )) ( ) ( ) ( )( )[ ]

( ) ,
,~,~

, ,1,1
x

xxxtFxtFxtF
xtA nnnn

n
EE −|−−

=  

( ) ( ) ( ( )) ( ) ( ) ( )( )[ ]
( )x

xxxtFxtFxtFxtB
n

nn
n

EE −|−|−
=

~,, 1  

and 

( ) ( ( ) ( )) ( ).,~, xtBxtFxtFxtC nnnn −|−|=  

The next lemmas show the asymptotic normality of ( ) ( )yxAnh n ,21  and 
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the convergence in probability of ( ) ( )yxCnh n ,21  to zero. We begin to 
show the second part: 

Lemma 6. Under assumptions A1(i)-(iii), A2, A3(i), A4 and A5, we 
have 

( ) ( ) ,0,21 →yxCnh n   in probability,  as  .∞→n  

Proof. Let us use the following decomposition: 

 ( ) ( ) ( )
( ) [( ( ) ( ))xtFxtFx

nhyxCnh nn
n

n ,~,, ,1,1
21

21 −=  

( ( ) ( ( ))) ( ) ( ) ( )( )].,~, ,11 xxxtFxtFxtF nn −|+−− E  

On the one hand, making use of Lemmas 1 and 2 we have that each 
term in brackets goes to zero in probability as n goes to infinity. 

On the other hand, 

( )
( )

( ) ( )
( ) ( )

( ) ( )
( )

,~
~

~
~

,1

212121

xtF
xtfnh

xtfx
xtfnh

x
nh

n

n

nn

n
n |′

|
=

|

|
=  
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( )
( )∑

=

δ
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=′
n

i i

iii
n YGh

YtHh
XxK

nh
xtF

1
2,1 .1,~  

By assumptions A1(i) and A4(i), we obtain that  

( ) ∑
=

∗
δ≥′

n

i
in nh

mmxtF
1

2,1 .1,~  

Therefore 

( )
( )

( ) ( ) .
1

~

1

21521

∑ =

∗
δ

|
≤ n

i i

n
n

n

xtf
mm

nh
x

nh  

By A2(ii), Lemma 3 and in conjunction with the SLLN the right hand side 
of the last inequality goes to zero in probability as n goes to infinity, 
which completes the proof of Lemma 6. 
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Lemma 7. Under assumptions A1(iii), A3, A4, A5 and A6, we have 

( )[ ] ( )( )2,,Var xtxtAnh n σ→   as  .∞→n  

Proof. Clearly, we have 

( )xtAn ,  

( ) ( ) ( )∑
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We can write the second term of the right hand side of (35) as: 

( ) ( )
( )

2
1

1

11
2
1

























|−






 −δ







 − xtFh

YtH
YGh

XxK
xh

E  

( )
[ ( ( )) ( ) ( )( )] .,~ 2

,12 xxtFxtF
x

h
nn E E |−=  

Using Lemma 1, we can conclude that the second term of (35) tends to 
zero as n goes to infinity. Now let us turn to the first term of (35), we have 

( ) ( )
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Using the definition of the conditional variance, we have 

( )
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1
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.: 21 VV +=  

Using Lemma 1, we have 

( )2
2 hO=V   as  .∞+→n  

Let us now examine the term ,1V  

( ) ( )
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1
1

1

1
1

12

1
2

1
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 −δ
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The first term of the last equality can be developed as follows: 
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( ) 
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|
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 −

= 11
1

2
112

1 XT
YGh

YtHEEJ  
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 −

= 1
1

112 X
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( )∫ |





 −=

R
dyXyf

yGh
ytH 1

2 1  

( )
( )

( )∫ |−
−

=
R

.1
1

2 XhztdF
hztG

zH  

By Taylor’s expansion, we have 

( )
( )

( )∫ |−=
R 1

2
1

1 XhztdF
tG

zHJ  

( )
( ) ( ) ( ) ( )∫ +|−′+ ∗

R
112 oXhztdFtGzzH

tG
h  

,: 21 JJ ′+′=  (36) 

where ∗t  is between t and .hzt −  

Under assumption A6, the second term of (36) can be bounded by 

( )
( )

( )∫ |−
τ

≤′ ∈

R
R ,sup

12

2
2 dzXhztzf

G
xgh

F

xJ  

then under assumption A3(ii), we get that ( ).2
2 hO=′J  

On the other hand, by integrating by parts, we have 

( )
( ) ( ) ( )∫ |−′=′

R
dzXhztFzHzH

tG 11 21J  

( )
( ) ( ) ( ) ( )( )∫ |−|−′=

R
dzxtFXhztFzHzH

tG 121  

 
( )

( ) ( ) ( )∫ |′+
R

.21 dzxtFzHzH
tG
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Remark that ( ) ( ) ( ) ( )∫ |=|′
R

xtFdzxtFzHzH2  and using the same idea 

as in (20), we get 

( ) ( ) ( ) ( )( ) ( )∫ =|−|−′
R

hOdzxtFXhztFzHzH 12   as  ∞+→n  

and 

( )
( )

( ) ( )
( )∫ |

→|−
R tG

xtFXhztdF
tG

zH 1
2 1   as  .+∞→n  

Therefore 

( )
( ) ( ) ( )∫ |′=

R
dzxtFzHzH

tG
21

1V  

( ) ( )
( )

2

1
1

1

12
















|






 −δ

−++ Xh
YtH

YG
hOhO E  

( )
( ) ( ) ( )∫ |′=

R
dzxtFzHzH

tG
21  

( )
( )

.
2

1
1

1

1
















|






 −δ

−+ Xh
YtH

YG
hO E  

Then we get 

( )( )xtAnh nn ,Varlim ∞→  

( ) ( )
( ) ( ) ( ) ( ) 
















+|′






 −

= ∫∞→ R
E hOdzxtFzHzH

tGh
XxK

xhn
211lim 12

2  

 
( ) ( ) 



























|






 −δ







 −

−
∞→

2

1
1

1

112
2
1lim Xh

YtH
YGh

XxK
xhn

EE  

( )
( )
( )

( )( ) 







|−

|κ= 2xtF
tG
xtF

x  

( )( ) ., 2xtσ=  
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Let ( ) ( )
( ( ))

.,, 212 xnh
xtNxtZ i

ni =  Remark that 

( ) ( ) ( )∑
=

=
n

i
nin yxZyxAnh

1

21 ,,,  

so to prove the asymptotic normality of ( ) ( ),,21 xtAnh n  it suffices to show 

that ( )∑ =
n
i ni xtZ1 ,  satisfies the Lindberg-Feller condition, which is given 

in the following lemma. 

Lemma 8. Under assumptions A1(i) and (iii), A2(i), A3, A4, A5 and 
A6 for all ,0>ε  we have 

( ) ( )
( ) ( )∑ ∫

= 













∑ε> =

→
n

i xtZxtZ
YXnin

i nini
iidxtZ

1 ,Var,
,

2

1
22 0, P   as  .∞→n  

Proof. By Lemma 7, we have clearly 

( ) ( )( )2
1

,,Var xtxtZ
n

i
ni σ→













∑
=

  as  ,∞→n  

therefore for n large enough, 

( ) ( ) ( ) ( )( ) .,2,,Var, 22
2

1

22









σε>⊂

























ε> ∑

=

xtxtZxtZxtZ ni

n

i
nini  

On the one hand, using the fact that 
( )

( ) 2≤|−
δ







 − xtF

tGh
YtH ii  and 

condition A1(i), we have 

( ) ( )
nh

xtNyxZ i
ni

,,
2

2 =  

( ) ( )
( )

2

2
2

















|−

δ






 −







 −

< xtF
tGh

YtHh
XxK

xnh
iin  

( ) ( )
( ) 
















|−

δ






 −







 −

+ xtF
tGh

YtHh
XxK

xnh
iin2

2
2 E  
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 −

+





 −

≤ h
XxKh

XxKnh
nn 228 E  

( )
.16

2 xnh
M ∗

≤  

On the other hand, the second part of assumption A2(i) implies that 
∞+→nh  as ,∞+→n  therefore 

( ) 0,2 →xtZni   as  ,∞→n  

then for n large enough, we have 

( ) ( )( ) .,2, 22
2 xtxtZni σε≤  

Finally, this shows clearly, that for n large enough, the set 

( ) ( )

























ε> ∑

=

n

i
nini xtZxtZ

1

22 ,Var,  

is empty, then this completes the proof of Lemma 8 and therefore 
Proposition 2. 

Proof of Theorem 2. Using a Taylor expansion, we have 

( ) ( )
( ( ) ) ( ( ) )

( ( ) )
,

,

,
,

xxf

xxFxxF
xx

npn

pnnpn
pnp

|ξ

|ξ−|ξ
=ξ−ξ  

where ( )xnp,ξ  lies between ( )xpξ  and ( )., xnpξ  

The continuity of ( ),. xf |  Theorem 1 and Lemma 5 implies the 

convergence in probability of the above denominator to ( ( ) ).xxf p |ξ  

Proposition 2 is used to finish the proof. 
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