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Abstract

In this paper we introduce a new smooth estimator of the conditional
quantile function in the censorship model. We show that this estimator
converges uniformly almost surely and suitably normalized is
asymptotically normal. Some simulations have been drawn to lend
further support to our theoretical results for the convergence as well as
for the normality for the finite samples.

1. Introduction

It is well-known, from the robustness literature, that the mean is

sensible to outliers (see Hampel et al. [18]); it may be sensible to use the

median, which is a particular case of the quantile, rather than the mean

to forecast future since the median is highly resistant against outliers.

The nonparametric estimation of conditional quantile has received a

great interest since 1969, when Roussas [27] showed the convergence and

asymptotic normality of kernel estimates under Markov assumptions. For

2000 Mathematics Subject Classification: 62G20.

Keywords and phrases: censored data, conditional distribution function, conditional

quantile, Kaplan-Meier estimator, kernel estimator.

Received September 20, 2007



146 ELIAS OULD-SAID and OURIDA SADKI

independent and identically distributed (iid) random variables (rv), Stone
[32] showed the weak consistency of kernel estimates. The uniform
consistency was studied by Schlee [29] for strong mixing case. Samanta
[28] proved the asymptotic normality in the iid case. Many other authors
considered this problem; without pretending to the exhaustiviteness, we
quote Bhattacharya and Gangopadhyay [3], Jones and Hall [20], Mehra et
al. [25], Chaudhuri [5], Fan et al. [13], Welsh [38] and Xiang [40]. Honda
[19] dealt with the a-mixing case and proved the uniform convergence
and asymptotic normality of an estimate of the conditional quantile using
polynomial fitting method. Berlinet et al. [2] showed the asymptotic
normality of convergent estimates of conditional quantile by considering
the particular case of stationary a-mixing process. Gannoun et al. [14]
gave a smooth nonparametric conditional median predictor, based on
double kernel methods and established its asymptotic normality and

proposed an extension to the conditional quantile.

In censoring case, Beran [1] introduced a nonparametric estimate of
the conditional survival function and proved some consistency results
which were later exposed and extended by Dabrowska [8, 9] in the 1d
case and Lecoutre and Ould-Said [24] studied the consistency in the
strong mixing case. Dabrowska [10] established a Bahadur representation
of kernel quantile estimator and Xiang [39] obtained the deficiency of
sample quantile estimator with respect to a kernel estimator using
coverage probability. Leconte et al. [23] built two classes of estimators of
the conditional distribution function and the quantile function and
showed under some conditions that the two classes are equal. Some
simulations have been driven to show that one is better than other in the
sense of the mean square error. Further results, including bootstrap
approximations, have been gotten by Van Keilegom and Veraverbeke [35,
36]. Recently, Gannoun et al. [15] studied the asymptotic properties of an
estimator of the conditional quantile using polynomial. Other large
samples properties of the conditional distribution have been studied
extensively in the literature (see, e.g., Gonzalez Manteiga and Cadarso
Sudrez [16], Stute [33] and Van Keilegom and Veraverbeke [34, 37]). Here
we provide consistent and asymptotically normal conditional quantile

estimate under the condition C and (7T, X) are independent as in the
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recent paper of Ould-Said [26] (see also Carbonnez et al. [4] and Kohler et
al. [22]), who established a strong uniform convergence rate of a kernel
conditional quantile estimator under censorship model.

Consider a sequence of iid random variables 77, 75, ... with common
unknown absolutely continuous distribution function (df) F. In many
situations, we observe only censored lifetimes of items under study.
That is, assuming that {C;; i >1} is a sequence of iid censoring rv
with common unknown df G, we observe only the n pairs {(Y;, §;),
i=1,2,..,n}, with Y; =T, AC; and §; = Liz<c,y (where 14 denotes
the indicator function of the set A). We will suppose that T and C are
independent to ensure the identifiability of the model.

Let X be a real-valued rv and F(.|.) be the conditional df of T given
X = x, that1s,

Ft|x) = B[l | X = x] @)

Fi(t, x)
(x)

density of X with respect to Lebesgue measure.

which can be written as F(t|x) = , where ¢ is the marginal

We observe {(Y;, §;, X;), i =1, 2, ..., n}. Now, for any df L, let 17 =
sup{y, L(y) < 1} be its right endpoint.

Let p € (0, 1). Then the conditional quantile is defined by
Eplx) = inf{t : F(t|x) > p}. (2)

We consider the estimation of the parameter &,(x) which satisfies

F(Ep(x)|x) = p. ®)

In this paper we propose a new smooth estimator of the conditional
quantile. Simulation study comes to show the well behavior and check the
efficiency of our estimator. The remainder of the paper is as follows. In
Section 2 we define a new kernel conditional quantile estimator in the
censorship model with some notations. In Section 3 we present the

assumptions which allow us to get asymptotic results and we give the
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main results. Some applications and examples are given in Section 4.
Simulation results are presented in Section 5. Finally, the proofs of the
main results are relegated to Section 6 with some auxiliary results and

their proofs.
2. Definition of the Estimator

Throughout this paper we assume that
T <1G, (4)
C and (T, X) are independent. (5)

Remark 1. In view of (4) and as we need to prove some uniform
results which imply a sufficient rate of convergence of G,, (see Lemma 2),
we have to consider a set of values of Y; which do not include 145
(because a uniform rate for G,, is obtained only for ¢ < © = min(tg, 1q),

see Deheuvels and Einmahl [11, formula 4.28]).

Condition (5) is plausible whenever the censoring is independent of
the modality of the patients. This condition is slightly stronger than the
one usually used, that is: T and C are independent conditionally given X
(see, e.g., Dabrowska [8, 9, 10]). However, condition (5) is very useful to
give an unbiased estimator of Fj(t, x) (when the weights are uniform)

which intervenes in our methodology of construction of the estimate of
F(t|x) (see below).

It is clear that an estimator of (2) will be obtained by estimating the
conditional distribution function (1), thus it suffices to estimate F(¢, x)

and /(x). The density /(x) is not affected by the censoring and therefore

can be estimated consistently by the well-known kernel estimator.

Furthermore, an unbiased estimator of F(¢, x) = E([jp<; x<y)) is given

A 13§
by an average mean Fj (¢, x) = = ) =Tty <; x.<x)-

Indeed, using the properties of the conditional expectation and (5), we

get
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. 5
B[Fy, (¢t x)] = E_E(;l) H{Ylst,Xlsx}}

Sl
=E E =1-1 X, 1
{G(Yl) v, <t, X <) | X1 1ﬂ

_]I{T <t, Xy <x}
= E_%Tll)x B[l <cyy 1 X1, Tl]}

= E[H{Tlﬁt,Xlﬁx}] = Fl(t’ x)

Now, instead using the uniform weight L for all {Y;, 8;, X;} we use the
n

Nadaraya-Watson weight

X _Xi
{5,
VVz,n(x) = n x— X
Zi:l K( hn )
1 X — Xi
B U (x) ’

where K is a probability density function (so called kernel function),

h, = h is a sequence of positive real numbers which goes to zero as n
goes to infinity (so called bandwidth) and 7, (.) is the well-known kernel

estimator of /(.).

Constructing an appropriate estimator is then obtained by adapting
the weight (6), in order to put more emphasis on large values of the

interest variable T which are more censored than small values.
Ould-Said [26] considered the following weights

3
G(Y;)ln(x)

1 x - X;
Win(o) = o K52

and he established a strong uniform convergence of the corresponding
kernel conditional quantile estimator; but this estimator is not derivable
then we cannot establish its asymptotic normality.
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Let us define a smooth estimate of (1) (by substituting the step
function Iy by a smooth df H(.)) by

Z?zl 6&2%) K(x —hXi jH(t —hYzj

Fy(t|x) = % (1)
1
Zi:l K( h ]
Recall that (7) can be rewritten as:
- F, ,(t, x)
Fn(t|x):én—(x), ®
n
where
~ B L t — Yl
fnlt ) =5 Z; so <
and

() = %an“x(x X]

In practice G is usually be unknown, hence it is impossible to use the
estimator (7). Then we replace G by the Kaplan-Meier estimate G,, given

by

Iyy.
n 1-39; i<t}
1-G, () = Hll(l‘n—inj A< Y,

0, if ¢ > Y(n)

Therefore the feasible estimator of the conditional df F(.|.) is given by

2 g
= K H
Fo(t]x) = i=1G,(Y;) h h _ Fl’n(t,x), ©

T CE I

n

where

Fy ot x) = L Z — (Y) [x —hXi)H(t —th j

Then a natural estimator of &,(.) is given by

Ep,n(x) = inflt; F,(t|x) = pj (10)



PREDICTION VIA THE CONDITIONAL QUANTILE ... 151

which satisfies
Fn(‘t:p,n(x)‘x)z p. (1]-)
We define the first partial derivative with respect to second component of

F ,(t, x) and Fl,n(t’ x), respectively, by

WL’;—EL’”_FM( - 2ZG(Y) ( hXin(t_th)

and

UL . h2ZG(Y) K5 (5

where H' is the derivative of H.

The conditional density estimators are given by

and

)= )

In order to study the behavior of the random variable (,(x) - &, ,(x)),

we make use of the properties in (3) and (11) and Taylor expansion, we
get

F(&p(x”x) - F(&.sp,n(x”x) = (&p(x) - &p,n(x))f(gju,n(x)‘x)’ (12)

where &), ,(x) lies between &,(x) and &, ,(x). It is clear that equation
(12) shows that from the behavior of (F(&,(x)[x) - F(&, ,(x)[x)), it is

easy to obtain asymptotic results for the sequence (&,(x)—-¢&, ,(x)). If

f(€p. n(x)x) # O was not satisfied, then we should have increased the

order of Taylor expansion.
3. Assumptions and Main Results

Our assumptions are gathered together for easy references.
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Let Qp = {x € R//(x) > 0}, Q be a compact set such that Q < Q; and
let C be a compact set included in |-, t5|.
Al. The kernel K satisfies:

(1) K 1s strictly positive valued, bounded, with compact support and

there exist constants M~ and m” such that 0 < M* <, 0 < m" < o,

sup K(u) = M* and inf K(u) = m",

(i1) K is Holderian of order y for some y > 0,

(iii) IR uK(w)du = 0, jR| u|K(u)du < +o and IR WK (u)du < o,

K < +00.

@) | . K?(u)du

A2. The bandwidth A satisfies:

() | EE — o(n?),

(i) nh® — 0.
A3. The conditional distribution function F(¢|x) has positive first

derivative with respect to ¢, for all x € Q, denoted f(¢|x) and satisfies:

(1) The Lipschitz condition of order 1 with respect to ¢ and x, such
that

V(t, ts) € R2, V(xy, x9) € Q2,
| F(ty |21) = Fltg|xg)| < C(| 2y —xg |+ ] — 22 ]),
(ii) IR|t|f(t|x)dt < 4o, for all x € Q (that is, the conditional
density f(.|.) has a finite first moment),

(ill) There exists a constant y; > 0 such that f(¢|x) > y; for all
xeQandteCl.

A4. The distribution function H has a first derivative H' which is
positive and bounded such that:
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(i) There exist two constants 0 < M < o and 0 < m < o, supp H'(f)
= M and infy H'(¢) = m,

) | L H(®dt =1 and | LHHO)dt < +oo.

A5. The marginal density ¢(.) satisfies the Lipschitz condition and
there exists yo > 0 such that /(x) > y, for all x € Q.

AG6. The distribution function of the censored rv, G has bounded first
derivative g.

Comments on the assumptions.

Assumptions A1(1), (1) and (1) are quite usual in kernel estimation.
Condition Al(iv) intervenes in the variance terms of (9) and (10).
Assumption A2(1) is needed in the study of the behavior of the differences

(Fy,p - FN'ln) and (f,(.|.) = 7,(.|.), and in the proof of the convergence to

zero of the bias term of FN',L(, .) in Lemma 3. Assumption A3(i) is put for

technical convenience. Assumption A4(i) will be used in the proof of the
asymptotic normality. Assumption A5 intervenes in the convergence of the
kernel density estimator (,. A3(i1)) and A6 are additional assumptions to

get the asymptotic variance term.

Our first result deals with the uniform almost sure convergence with
rate of the conditional df estimator (9) and is stated in Proposition 1. The
uniform almost sure convergence of the conditional quantile estimator
(10) and its rate will be given in Theorem 1. Next, in Proposition 2, we
state the asymptotic normality of the estimator (9) suitably normalized,
then it suffices to prove the asymptotic normality of (F,(&,, ,(x)|x) -

F,(&p(x)|x)) and the convergence in probability of the sequence
fn (e‘;;n(x) |x) to obtain the asymptotic normality of the estimator of the
conditional quantile &, by Slutsky’s theorem.

Proposition 1. Under assumptions Al1(1)-(i1), A2(1), A3@G), A4 and
A5, and for n large enough, we have

supsup| F,(t|x) - F(t|x)| = O(max{,fbglﬂ, h}J a.s. (13)
xeQ teC nh
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Theorem 1. Under assumptions Al1(1)-(i1), A2(1), A3@), (1), A4 and
A5, if the conditional density satisfies ingf2 f(gp(x)[x) > O, then for n large
Xe

enough, we have
1/2
sup| &, p(x) - E,(x)| = O(max{(logl%) , hH a.s. (14)
xeQ n

Remark 2. The uniform positiveness assumption on the conditional
density (in Theorem 1) implies the uniform unicity of the conditional

quantile, that is,

Ve >0, 3B >0, vnp:Q—HR,
sugl Ep(x) —mp)[2e = sugl FEpx)lx) - F(np(x)lx)[ 2 B (15)

On the other hand, assuming the sole (15) guarantees the consistency of

the conditional quantile but permits us to obtain a rate of convergence.

log log n
nh

bandwidth in density estimation, then for each fixed p € (0, 1) and for n

1/5
Remark 3. If we choose h = O( j which 1s the optimal

large enough, we have

_ loglogn 1/5
Jsclelgl ép,n(x)_ ép(x)l - O(Tj :

Under the following mild modifications upon assumptions:

A2'. (i) Jlogl# = o(h®),

A3'. (i) the df F(.|.) satisfies the Lipschitz condition of order 2 with

respect to ¢t and x,

A4'. (i) jR| t|2H'(t)dt < +oo,

we get the following rate O(max{wflogr}#, h2}] a.s. If we choose

_ of loglogn 1/5 ) ) (10glogn)2/5
h = O( — ) , then we have i1€18| Epn(x)—Ep(x)| =0 - 2 ,
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which is the rate expected by Mehra et al. [25] and the same rate
obtained by Xiang [40] and Ould-Said [26]. Here we point out that in
Gannoun et al. [15], there is neither uniform result nor rate of
convergence. Recall that in this case assumption A2(ii) must be reinforced
to get the asymptotic normality.

Remark 4. A generalization of the results to higher dimensions for
the covariates, that is, X € R®, by adapting the assumptions A1-A2, is

straightforward and, for example, (14) becomes:

sup| & n(x) - &, ()] = o[max{w/loglﬂ, h}j
xeQ) nhs

Remark 5. In the proof of Proposition 1 (and therefore Theorem 1),
we use Hoeffding’s inequality which is a pointwise exponential inequality
and we use a standard idea about covering a compact set by a finite
number of intervals to get the uniformity. Another interesting idea is to
use Vapnik-Cervonenkis theory by wusing Pollard’s inequality (see
Devroye et al. [12, Theorem 29.1]) together with bounds on the covering
number which gives the uniformity straightforwardly. However, the
choice of the kernels in the last case must satisfy K1 condition of Giné
and Guillou [17] which is more restrictive than the Hélderian functions.

In this case, one finds a rate of convergence of the order (log ; j , which
nh

is less good than our result.
The following results deal with the asymptotic normality.

Proposition 2. Under assumptions A1-A6 and for any x € Qg such

that ((x) > 0, we have
(nhY2(F,(t|x) - F(t|x)) 5 N0, o2(t, ) as n — o, (16)

D e g
where = denotes the convergence in distribution, and

KF(t]x)(1 - GO F(t|x))

02 X) = —
¢ =) 1(x)G ()

Theorem 2. Let p € (0,1) such that p = F(§,(x)|x). Then under
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assumptions A1-A6, for any x € Qg such that X(x, &,(x)) # 0, we have

1/2
{#g(x))} (EJP(x) - EJp,n(x)) _D> N(O, 1) as n — o, am
> 2P

where
xp(l - pG (&, (x)))

22(x, &, (x)) = G '

4. Applications

4.1. Applications to prediction

It i1s well-known, from the robustness theory, that the median is more
robust than the mean, therefore the conditional median, p(x) = &1/2 (x), 1s

a good alternative to the conditional mean as a predictor for a variable
Y given X = x. Note that the estimation of p(x) is given by p,(x) =

€1 (x). Using this consideration and Section 3, we want to predict the
—,n
3

non-observed rv Y, .; (which corresponds to some modality of our
problem), from available data Xj, ..., X,,. Given a new value X, ;, we
can predict the corresponding response Y,,.; by

Y = Hn(Xn+1) = &l n(Xn+1 )
5

Applying the above theorem, we have the following corollary
Corollary 1.
1/2

nh EonXni) — Eyj2(Xnin)) 3 N0, 1)

2 (X ps1» E1j2(X 1))

as n — oo,
4.2. Confidence intervals
Using a plug-in method by replacing ¢, G, f and €1/2 by their

estimates ¢,, G,, f, and &1/2,n, respectively, permits us to obtain a

convergent estimate X, of X, then we get from Corollary 1
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Corollary 2.

12
(Wh(x))J (E»l/z,n(x)— &1/2(36)) 3 N(@0,1) as n —> oo (18)
n\%; G1/2.n

From this corollary, we get for each fixed n € (0, 1), the following

approximate (1 — n)% confidence interval

Za(x, &1/2 n ()
xX)ti_ X —=
§1/2,n( )+t n/2 Jnh
where t;_,/5 denotes the 1-n/2 quantile of the standard normal

distribution.

5. Simulation Studies

We have conducted a numerical study to examine the performance of
our estimator. The first subsection deals with the consistency of the
conditional quantile estimator &, ,(x) given in (10), whereas the second

looks at how good the asymptotic normality is when we deal with a finite
sample.

5.1. Consistency

The aim of the following simulations is to examine the performance of
our estimator &, ,(x) in some particular model. In our simulation, we
consider the following model: T; = X; + og;, i =1, .., n, where X; and
g; are two independent iid sequences distributed as N(0, 1) and o is a
positive constant. The censoring times {C;; i =1, ..., n} are generated
independently from N(0, 1). Then we compute our estimator with the

observed data (X;, Y;, §;), where Y; = T; A C; and §; = Lim<c;)-

We choose a gaussian kernel and it is well-known that, in
nonparametric estimation, optimality (in the MSE sense) is not seriously
swayed by the choice of the kernel K but is affected by the choice of the
bandwidth A. The bandwidth 4 is chosen according to the assumption A2,

1
that is, h = C(bgl%)zl, with an appropriate choice of the constant C.
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Furthermore, we choose H as the normal distribution function. We take
several values of n and in each case, the conditional quantile estimator,

along a grid of 160 equispaced points in [-2, 2] has been calculated. We

take several values of n and draw two curves corresponding to the

conditional quantile estimator &, ,(x) for x € [-2, 2] and the theoretical
conditional quantile &,(x) for o = 0.45 and for the two values p =1/2

and p =1/4.

The curves show that our estimator performs well in particular when

n increases.

Figure 1. p = 1/2; n = 50, n = 100 and 500, respectively.

Figure 2. p = 1/4; n = 50, n = 100 and n =500, respectively.

5.2. Asymptotic normality

We now consider the problem of asymptotic normality. We show how
good the normality is when dealing with samples of finite size which is
the case in practice. The data arise from the same distribution as
previously for a given size n, we estimate the conditional quantile
function as before and calculate the normalized deviation between
this estimate and the theoretical conditional quantile for x = 0 and
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kp(1 = pGy (& (x))
fi (€ ()| 2) £, ()G (8 p ()

_ 12
K%(l—%gn(o)j .

— x)—0].
£2(010)¢,,(0)G, (0) [gé’ n ]

-1/2
p = 1/2; Ep,n(x) = m{ J (ép,n(x) - é;p(x))

which becomes &, ,,(0) = Vnh

We draw, using this scheme, B independent n-samples. The

bandwidth A is chosen according to assumption A2. In order to estimate

the density function of El/Q,n(x) (by the kernel method), we make the

classical bandwidth choice (see, e.g., Silverman [31, p. 40]) A’ = Cn™ Y3,

where the constant C is appropriately chosen.

Figure 3. n = 100, B = 200.

Figure 4. n = 300, B = 200.

We see that the normality of the rv El/Z,n(') is better as n increases,
which clearly appears in the Q.Q. plot.

5.3. Confidence curves

We construct approximate (1 —n)% confidence curves obtained from



160 ELIAS OULD-SAID and OURIDA SADKI

Corollary 2, that is,

2 Zn n& n

We draw in Figure 5, for several values of n, two curves corresponding

to the approximate (1 —n/2)% lower and upper confidence curves for

p=1/2, x € [-2,2], 6 =0.45 and n = 5%. The bandwidth % is chosen

as in Subsection 5.1.

Figure 5. p =1/2; N = 50, N = 100 and n = 500, respectively.

It is clear, from Figure 5, that the confidence interval becomes more

precise as the sample size increases.
6. Auxiliary Results and Proofs

The proof of our main results is split up into several lemmas. The first

lemma deals with the behavior of the difference between E[ﬁl,n(t, x)]
and F(¢, x).

Lemma 1. Under assumptions Al(iii), A3(1), A4 and A5, then for n

large enough, we have

sup sug| E[ﬁlyn(t, x)] - Fi(t, x)| = O(h) a.s. (19)
xeQ xe
Proof.
ad _ l 61 X — Xl t— Yl
B(F (0. x) = © E{g(yl) K( . )H( . ﬂ

LR 8t x ]
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Moreover we have by integration by parts and changing variables,

g (7] =g A7
-5 x

- [ B2 %0y

- J' H'(2)F(t - 2h | X )dz

_ J‘ H'()[F(t - zh | X,) - F(t|x)]dz + F(t|x),

by the first part of assumption A4.
Thus, we have
= 1 X — Xl ,
BIF (0, %)) = 3 B K| “5 5L | [ H@F(@ - 2] X)) - Fe|0)]dz

) =)

= Il + Iz.

Making use of the first part of assumption A5, the second term 75 tends

to Fi(t, x) as n goes to infinity.
By assumptions A3(1) and A4(i), we have

7, s'[ H'(2)| F(t - zh| X,) - F(t|x)|dz
R
< CJ H'(z)| h + zh |dz
R

< Ch+ ChJ | 2 | H'(2)dz. 20)
R

Making use of A4(ii) and A1(iii), it is clear that Z; = O(h), this completes

the proof of Lemma 1.
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Remark 6. The last argument shows that

E[H(y Y1J|X1} ~F(y|x) >0 as n — o @1)
The second lemma deals with the behavior of the difference between
Fl,n and ﬁl,n'

Lemma 2. Under assumptions Al(1) and A2(@), then for n large
enough, we have

sup sup|F1 L, 8) - F1 2@ x)| = O(h) a.s. (22)

xeQ teC

Proof.

| Fyn(t, %)= By 2, ) |
<o (555

sup| Gy (t) - G(t>|—26

‘ 11
Gn(Yi)

1 m*

SR G, (p)Gp) 1

Since G(tp) > 0, in conjunction with the SLLN and the LIL on the

censoring law (see formula 4.28 in Deheuvels and Einmahl [11]), we have

* 1/2
sup sup| F p(x, t) - F1 2 x)| < _62]‘4 %(bg log nj a.s.,
xeQ teC (TF) n

where c 1s a positive constant. Assumption A2(1) concludes the proof.
Lemma 3. Under assumptions A1(1) and (i1), A2(@1), then we have

sup sup| Fl At x) - E[Fl & %) >0 as. as n—> w
xeQ) teC

Furthermore, for all n large enough,

sup sup| Fl A, x)— [F‘Ln(t, x)]| = O(ﬂloglﬂ] a.s. (23)
xeQ teC nh
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Proof. As Q and ¢ are compact sets, then they can be covered by

finite numbers s, and d, of intervals centered at x; and ¢; of length

h* and h*, respectively, such that A > y+3 and p > 4. Since Q and C

are bounded, there exist two constants A; and Ay such that s, < Alh_k
and d, < Agh™".

Now put

k(x) = arg minkzl,z,‘..,snl X=X |

and

jt)=argminj_y 5 g [t—t;].
Thus we have the following decomposition
| By, (0, )~ BLF 5t )]

< sup supl Byt %) = Fy (¢, xpe) |
xeQ teC

I

+ sup sup| Fl n(t x) Fl n(t](t xk(x))l
xeQ teC

Iy

+ Sug Stupl Fl n(t](t)r xl’(x)) E[Fl n(t](t)’ xk(x))]l
xe

I3

+ sup sup| B[Fy , (tj(r) *px))] — B, o (t %k(x))] |
xeQ teC

Iy

+ sup sup)| E[F) ,(t, xp(x)] - BLF (¢, 2)]].

Is

Concerning Z; and Z5. By Al(ii) and the fact that is bounded, we have

p=(r+1).

F ot ot
itelgstgpl Fy oty ) = By (2, 2p0) | < G(TF)



164 ELIAS OULD-SAID and OURIDA SADKI

By assumption A2(ii) on A and the condition upon A, we get

nh
Vloglog 71 et §gg| B (b, %)= By (8, xpe) | = 0(1). (24)

Concerning Z, and Z4. In the same way and by the fact that K is
bounded and A4 (which implies that H is Lipschitzian), we have

F o Fo (i, <& pn2
ilelgstlelpl Fy (s X)) = B2 () Xn(e) | Gler)

The condition upon p implies that

nh
\/—10g log n oo fggl Byt ) = B () Xp(e)) | = o). (25)

Concerning 73, for all € > 0, we have

P{Sug stupl Fl n(t](t xk(x)) E[Fl n(t](t)’ Xk x)) | > 8}

= P{k:fgax . | B () %r) = BIFL @0y %)) | > 8}

< 8,0, P{| By (0 Xnie) — B 0 (o) Xne))]| > &) (26)
Now, we have
E[F () Xr(x) — B n (i) Xaie)ll = 0
and

~ ~ oM™
F t 7 ) X - ]E F t 1 Py X S N
| B, n i) *r(x) = BUA, 2 (E50)s %r(x)] | G )
Hoeffding’s inequality (cf. Shorack and Wellner [30, p. 855]) yields
P{| By () %rx) — BLF 5t %)) > &} < exp{-—eZen®h?},

where c 1s a universal constant. Then (26) becomes
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P{sug iupl By (50, %a(x) = BLFL 5 (500 20| > 8}

< Ay Agh 0 expl—ce?n2n?)

2h2

_ AlAQ(nh) (A+p) phu- ce?n /logn, @7

where c is a positive constant depending only on M* and 5(1 F)-

2 2

A2(1) implies that — +0o, which yields that the last term of

1 ogn
(27) is the general term of a convergent series; then by Borel-Cantelli’s
Lemma, the first term of (26) goes to zero almost surely. Otherwise, if we

replace € by 801/10’%#, for some g > 0 in all steps of lemma, then we

have

nh
\'log log n ilelg S;lel(l?l F (i) Xr(x)) = E[Fl n(i() Xpx))l| = o1) as.

in conjunction with (24) and (25) we complete the proof of the lemma.
Lemma 4. Under assumptions A1(iii), A2(1) and A4(1), we have

Var(ﬁ'l”n(t, x)) >0 as n—

Proof. Recall that

P ot x) = ZZG(Y) ( hXi)H'(t_thj,

then

var(i‘l’,n(t, x)) = n}114 Var[(—;?;.l) K(x _th jH’(t _hyl H
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1l 2(x—X1j ,z(t—Ylj 5 ]
=— B K| ——|E H" — | = X
e TN

e A

= Jl - JQ.

By assumptions A1(iii) and A4(i), we have

Jy < 1 M* E{KQ(x_Xlﬂ
nh* G%(xp) h

2
< L )+ o(ij.
nh® G2(1p) nh?

Then by A2@1), J; > 0 as n > +oo.

For the same arguments as before, we have

b eib kel

2
LMy, O(LJ
nh? G%(tp) nh?

and Jy tends again to zero as n goes to infinity. This completes the proof

of Lemma 3.

Remark 7. Under the assumptions of Lemma 3, and making use of

Tchebychev’s inequality, we have
F‘f’n(t, x) = F{(¢, x), in probability, as n — o
and thus if we add assumption A5, then

~ F t, x
fu(t]x) = % — f(t|x), in probability, as n — oo. (28)
n
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The following lemma deals with the convergence of the conditional
probability density estimator f,(¢]x) to f(¢|x).

Lemma 5. Under assumptions Al(iii), A2(), A4 and A5, we have
fu(t|x) > f(t|x), in probability, as n — o. (29)
Proof. We have
fa(t]x) = f(t]x)
= (fat12) = Fat12)) + (Falt | x) = (¢ ])),

FAGEIRYAGES]

m| (F o (t, x) = F{ (¢, )|

ﬁs‘K(x I et e) ‘

1 1 MM 1N
< — — sup| G,(t)-G@Et)|= > §;.
(n(®) B2 Gy (cp)G(ip) op! Gl =GO, ; l

S S S
(%) nh?

Since ¢,(x) > inf, ¢,(x) >y > 0 and G(tp) > 0, in conjunction with the

SLLN and the LIL on the censoring law, we have

~ * 1/2
| fo 1) = Tt )| < MM L(logl‘)g”) as.,

G*(rp) 1” "
where c is a positive constant. Assumption A2(1) gives us that
|fn(t|x)—}?n(t|x)|—>0 a.s. as n — o

The proof can be concluded by Remark 6.
Proof of Proposition 1. In view of (9), we have

supsup| F,(t|x) - F(t|x)|
xeQ teC
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1
= supsup| F} ,(x, t) - Fi(x, t
Y_Squeﬂlén(x)_é(x)l{er teC| l’n( ) 1( )|

+ sup sup| F(t|x)|sup| £, (x) - ¢(x) |} (30)
xeQ teC xeQ

The kernel estimator /,(x) is almost surely bounded away from 0 on Q

because of the second part of assumption A5.
Now, under assumptions A5 and A1(1)-(ii1), we have

sup| E(¢,(x)) - (,(x)| > 0 as n — .
xeQ

Using Taylor’s expansion up to the first order to /(.), for n large enough,

we have
sup| E(Z,,(x)) - ((x)| = O(h). (31)
xeQ)
Furthermore, under A1(i), (i1), (ii1) and A2(i), an analogous proof as in
. _ _ L X — Xi B L X — Xi
Lemma 3 (by taking A;(x) = = K(—h j E[nh K( A ﬂ and by
1/2
replacing ¢ by so(bgri#) , for some ¢; > 0) yields to
1/2
sup| E(¢,(x)) - £, (x)| = O((logl#) J a.s. (32)
xeQ n

Then the proposition can be obtained straightforwardly from (30)-(32),
Lemmas 1, 2 and 3.

Proof of Theorem 1. Let x € Q. As F(.|x) and F,(.|x) are
continuous, we have F(§,(x)|x) = F,(&, ,(x)|x) = p. Then

< sup| F,(t|x)— F(¢|x)]. (33)
teC

Then the consistency of &, ,(x) follows immediately from Proposition 1

and continuity of F(.|x). Now, a Taylor expansion of F(.|x) In a
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neighborhood of &, (x), implies that
F(&p, n(x)2%) = FEp(x)[%) = (&p, n (%) = &) f(E ()] ),

where &),(x) is between &,(x) and &, ,(x). Then, by (33), we have
sup| &, () = &5 (%) || f(E,(x)|x) | < sup sup| F,,(¢]x) - F(¢]x)|.
teQ xeQ teC

Then the result is a consequence of Proposition 1 and the assumption of

f(€,()].) being uniformly bounded away from zero.

In order to prove Proposition 2, we use the following decomposition
and the lemmas below:

Fy(t]x) - F(t|x)

_ f(x) ﬁl,n(tf x) - E(ﬁl,n(t’ x))_ F(t|x) [Zn(x)_ E(gn(x))]
On(x) On(x)

- e ) - B 1) - F(10) 1) - 5, @)

Note that
(a2 (F, ¢ ]2) - Fe)0) = f(—fx)) (072 Ay (2, x)) + (R/2C, (1, %), (34)
where
F‘l,n(t’ x) - E(Fl,n(t’ x)) - F(t | x) [Zn(x) - ]E(fn(x))]
An(t7 x) = E(x) ,
B, (t x) = Fi(t, x)- E(F’n(t\x)) —(F§t|x)[£(x) ~E((,(x))]
A l,(x

and

Cn(t’ x) = (Fn(”x)_ ﬁn(”x))_ Bn(t’ x)

The next lemmas show the asymptotic normality of (nh)l/ 24,(x, y) and
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the convergence in probability of (nh)l/ 2C,(x, y) to zero. We begin to

show the second part:

Lemma 6. Under assumptions A1(1)-(i11), A2, A3(@1), A4 and A5, we
have

(nh)1/2Cn(x, y) — 0, in probability, as n — o.
Proof. Let us use the following decomposition:

o2 ~
(V2 Cp (. ) = %[(Fl,n(t, x)~ B (e, x))

~ (Fy(t, %) = B(Ey (6, ) + F(t]2) (Ux) = £,(x))]

On the one hand, making use of Lemmas 1 and 2 we have that each
term in brackets goes to zero in probability as n goes to infinity.
On the other hand,
(nh>1/2 _ aW)PEe1x) _ @) h )
) @) F )

where

Flntx)_ Z E ) '[t_hnjc_;?;i)'

=1

By assumptions A1(i) and A4(i), we obtain that

1 n
r z;f)i.

Fl n(t x)>

Therefore
<nh>1/2 (nh®)2 F(t1%)
Co(x) 17 o
mm ;Ziﬂsl

By A2(i1), Lemma 3 and in conjunction with the SLLN the right hand side

of the last inequality goes to zero in probability as n goes to infinity,

which completes the proof of Lemma 6.



PREDICTION VIA THE CONDITIONAL QUANTILE ... 171

Lemma 7. Under assumptions A1(11), A3, A4, A5 and A6, we have
nhVar[A, (¢, x)] > (o(t, x))> as n — .

Proof. Clearly, we have

A,(t, x)

- #UZH o Rl e |
o S o)

1 n
= m; N;(t, x),

where
Ni(t, x) = K(x hXij{K(t _hYlj Gi’;i) _F() x)}
B E{K(x _th j (H(t _th) c_;E(S;L) - Ftl x)ﬂ
Then

nhVar(A, (¢, x))

- hl%(x) Var(N, (¢, x))

— L BN, )

T R (x)

e L C O

) hﬂl(x) HK(X _th j ((—;?;1) H (t _hylj ~ F(t] x)m2. (35)
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We can write the second term of the right hand side of (35) as:

1 x—X1 81 t_Yl ~ N 2
he%HK( h )(5<Y1>H( i) )m
h ~
- g BFunl )~ FUB(

Using Lemma 1, we can conclude that the second term of (35) tends to

zero as n goes to infinity. Now let us turn to the first term of (35), we have
1 ~x,\( & ‘-, 2]

——E KQ(X 1)(_1 H( 1)—F(t|x)j
2 (x) h N\G(y) \ |

SR P

Using the definition of the conditional variance, we have
5 t-, 2
Bl | =2 H( 1)—F(tx) | X,
G(Yy) h
5 t-Y, 5 LY, ?
= Var| —1 H( 1)|X1 + | Bl =2 H( 1)|X1 ~- F(t|x)
G1) h G(1) h

= Vl + V2.

[\l

|X1”.

Using Lemma 1, we have

Vy = O(h?) as n — +o.

Let us now examine the term Vj,

2
_ 0 2(t-Y) _ 3 t-Y,
Vl_EL_;Q(Yl)H( h le} {E((_}(Yl)H( h )'XIH

= jl +j2.

The first term of the last equality can be developed as follows:
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[ t-Y,) &
7, = EE(HZ( . 1)52(1Y1)T1J|X1}
_ [ 9 t—T:
- ]E_H (—h 1j5(1T1)|X1}

- [ Hz(t‘—yjmfmxl)dy

= 2 e V4 .
_JRH (z )G( - )dF(t hz| X;)

By Taylor’s expansion, we have

dF(t - hz| X;)

_ 2 1
Iy = jR PO 5,

h NI %
20 ) zH(z)G'(t*)dF(t — hz| X;) + o(1)

= J1+J5, (36)
where t* is between t and ¢ — hz.

Under assumption A6, the second term of (36) can be bounded by

7 < h2 supxeR|g(x)|I 2f(t - hz| X, )dz,
G*(tp) R

then under assumption A3(ii), we get that J5 = O(h2).

On the other hand, by integrating by parts, we have

'—L "(z z — hz z
=56 ijH( VH(2)F(t - hz| X, )d

-s0ls j 2H'(z)H(z2) (F(t - hz | X, ) - F(¢|x))dz

sl I OH'(z)H(2) F(t | x)dz.
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Remark that IR 2H(z)H'(z)F(t|x)dz = F(¢t|x) and using the same idea
as in (20), we get

I 2HH()(F(t - he| X)) - Ft|x)dz = O(h) as n — +or

and

Ft]x)
G(t)

9 1
IR H2(2) =0 dF(t - hz| X;) >

as n — +oo.

Therefore

vy = j 2H'(2)H(2) F(t | x)dz

2
9 8 t-Y,
+O(h )+O(h)—{]E{5(;1)H( ; 1)|X1H

j 2H'(2)H(2) F(¢ | x)dz

-on-[{afiy 7))

G(t)

T G)i=

Then we get

lim,,_,,, nhVar(4, (¢, x))

~ lim L E{Kz(x ‘hxlj(G()j oH (z)H(z)F(t|x)dz+O(h)ﬂ

e L C DY)

- 5| ) (107

= (s(t, x))°.
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Ni(t, x)

—1 "2 Remark that
(nht? ()

Let Z,;(¢, x) =

() A (5, ) = D Zyil, ),
=1

so to prove the asymptotic normality of (nh)l/ 2 A, (¢, x), it suffices to show
that Z?:l Z,;(t, x) satisfies the Lindberg-Feller condition, which is given
in the following lemma.

Lemma 8. Under assumptions A1(1) and (111), A2(1), A3, A4, A5 and
A6 for all ¢ > 0, we have

Z2~t,deP’ vy >0 as n — .
ZI Z2 tx)>82Var S Zyt, x)j} m( ) (X;,%;)

Proof. By Lemma 7, we have clearly

Var(zn: Z,:(t, x)] - (o(t, x)? as n — o,

i=1

therefore for n large enough,

{Z,Qu-(t, x) > gZVar[Zn: Z,:(t, x)} c {Zﬁi(t, x) > %(G(t, x))Z}.

=1
H(t - Yij S(it) _F(t|x)

On the one hand, using the fact that < 2 and

condition A1(i), we have

NE(t, x)
nh

i M5 g )]

7£6ww%ﬁ%%ﬁﬂ&w gl

Z%(x, y) =
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Al (o)

16M”
 nh(?(x)

On the other hand, the second part of assumption A2(i) implies that

nh — +o as n — +oo, therefore
Z2(t,x) > 0 as n — o,
then for n large enough, we have
2 82 2
Zyi(t, x) < 7(cs(lt, x))°.

Finally, this shows clearly, that for n large enough, the set

{Z,Zu-(t, x) > szVal{Zn: Z,;(t, x)}
i=1

is empty, then this completes the proof of Lemma 8 and therefore

Proposition 2.

Proof of Theorem 2. Using a Taylor expansion, we have

Fn(ap,n(xﬂx) - Fn(ap(xﬂx)
fn(Ep,n(x)| %)

ép,n(x) - ép(x) =

where &7, ,(x) lies between &, (x) and &, ,(x).

The continuity of f(.|x), Theorem 1 and Lemma 5 implies the
convergence in probability of the above denominator to f(&,(x)|x).

Proposition 2 is used to finish the proof.
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