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Abstract 

We generalize the definition of an antiregular graph by subjecting 
antiregularity to the presence of a given set P of graph properties. In this 
paper, we study the cases where =P {vertex-connectivity} and 

=P {vertex-connectivity, thresholdness}. We discuss the construction of 

these classes, looking also for structural characteristics and some 
properties such as hamiltonicity and tree-universality. 

1. Introduction 

Antiregular graphs were first defined by Behzad and Chartrand [1] 
(who named them quasiperfect) as graphs having exactly two vertices 
with equal degree values. Merris [13] defines them by considering 1K  (for 

)1−n  and the graphs G whose vertex degrees attain 1−n  different 
values. For each ,1>n  there are exactly two mutually complementary 
antiregular graphs, one connected and the other disconnected. These 
graphs have a number of interesting properties, from which we initially 
distinguish that they are split graphs ([7, 12, 14]) and also threshold 
graphs ([14]), all to be defined later in the text. 
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Let then P be a set of graph properties associated to a graph class to 
which we extend the definition of antiregularity, that is, we are 
interested in graphs having the maximum number of different degrees 
among these verifying P. For a given P, we will call these graphs              
P-antiregular (P-AR) graphs. With this consideration, for a Merris 
antiregular graph, we have =P {i-vertex-connectivity}, for { }.1,0∈i  In 

this paper, our concern will be the cases where =P {vertex-connectivity} 

and =P {vertex-connectivity, thresholdness}, where thresholdness stands 

for “the property of being threshold”. 

The notation is that of [10] with the exception of that given by stated 
definitions. We will be working with simple, undirected graphs 

( ),, EVG =  where we consider the order nV =  and the size .mE =  

Single vertices will be denoted by x, y or z and single edges by u, v, w or, 
if convenient, as vertex pairs. The minimum degree of a vertex in a graph 
G will be denoted as ( ).min Gd  By notational convenience, we speak of a 

clique rK  and also of its complete graph ( ),, rrr WK=K  where rW  

.2,rC=  Frequently, we will drop the index of ,rK  when there is no doubt 

about its cardinality. In the definition of a graph, a vertex set referred to 
as I will be an independent one, unless otherwise specified. Eventually, 
an edge ( ),, yx  where ,Ax ∈  ,By ∈  ,, VBA ⊂  ,∅=∩ BA  will be 

described as a ( )BA,  edge. 

Our study will consider the following definitions and the theorem: 

Definition 1.1. An integer number sequence with even sum is 
graphic if its elements correspond to the degrees of a graph. It is also 
called a degree sequence. 

There are several equivalent theorems giving criteria for a number 
sequence to be graphic, beginning with that of Erdös and Gallai, as 
discussed by Sierksma and Hoogeven [15]. We will use a result from 
Berge, which is expressed as Theorem 1.1 below. 

Definition 1.2. A graph ( )EVG ,=  is P-antiregular (P-AR) if, given 

a set P of G properties, it has a set ( ) { }ξ= ii ddGD ...,,1  (where )Pξ=ξ  



P-ANTIREGULAR GRAPHS 135

of different degree values such that its cardinality ( ) ( )GDGP =ξ  is 
maximum among the graphs following P. We also call a P-AR sequence a 
graphic sequence generating a P-AR graph. 

As stated earlier, when talking about a graph we will say it is            
{κ-connected}-AR or {κ-connected, threshold}-AR, where ( )Gκ=κ  is the 

vertex-connectivity (or, from now on, simply connectivity). After the 
content of P is specified, we will eventually refer to P-AR as AR. For the 
Merris graphs studied in [13], we will then have ( ) { ,2,1 −−= nnGD  

}1,2...,  for the 1-connected graph and ( ) { }0,1...,,3,2 −−= nnGD  for 

its complement, thus ( ) .1−=ξ nGP  The degree  2n  is repeated for the 
connected graphs. 

A theorem by Whitney [10] states, for a graph G, that ( ) ≤κ G  

( ),min Gd  which implies that, for a κ-connected graph G, 

( ) ( ).GnGP κ−≤ξ  (1) 

Remark 1.1. It follows immediately from their definition that AR 
graphs have to verify the equality in (1). 

Theorem 1.1 (Berge [2], [15]). Let ( )nidi ≤≤= 1,d  be a non-

increasing integer sequence with even sum and let ( )dB  be a matrix of 

order n with a null main diagonal, the first other id  elements of each line 

having unitary values. Let { }iδ=δ  be the sequence of i-th column sums in 

( ).dB  Then d is graphic if and only if 

∑ ∑
= =

δ≤=∀
k

i

k

i
iidnk

1 1
.:...,,1  (2) 

Definition 1.3. A split graph ( )EKIG ,,=  is a graph whose vertex 

set can be bipartitioned between an independent set I and a clique K. 
This partition is also called a split partition. 

Foldes and Hammer [6] give another characterization of these graphs: 
A graph G is split if and only if G does not have an induced subgraph 
isomorphic to ,4C  5C  or .2 2K  
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We can define a partial order on the n-partition set of a given integer 
2m, which contains the graphic sequences for a graph with n vertices and 
m edges. This set can be given a lattice structure ([14]), where the first 
graphic sequences in the associated partial order are called threshold 
sequences, and the graphs associated with them, threshold graphs. Every 
threshold graph is split ([9]) but the converse is not true. Every threshold 
sequence is unigraphic, that is, it has a unique graph associated with it. 
Merris [14] points out that his {1-connected}-AR graphs are threshold and 
characterizes these graphs with the aid of Ferrer’s diagram, which for a 
graph G is equivalent to Berge’s matrix ( ).GB  As we are already dealing 
with this matrix, we present such a characterization based on it, as 
follows: 

Let d be a graphic sequence and ( )dB  its Berge matrix; then let ( )dU  
( )( )dL  be the upper (lower) triangle of ( ).dB  Let ( ) ( )dd U{=α  rows, non-

null positions} and ( ) ( )dd L{=β  columns, non-null positions}. 

Lemma 1.2 (Merris [14]). A sequence d such that ( ) ( )dd β=α  is a 

threshold sequence and a graph G corresponding to d is a threshold 
graph. 

Example 1.1. The sequences (7, 6, 5, 4, 4, 3, 2, 1) and (8, 7, 6, 5, 4, 4, 
3, 2, 1) are threshold. It is easy to observe on their Berge matrices the 
symmetry implied by Lemma 1.2. 

Some other characterizations are ([9], [11]): 

1. A split graph ( )EKIG ,,=  is threshold if and only if the sets of 

neighbors ),(xN  Ix ∈  (and therefore ),),( KyyN ∈  are totally ordered 
by inclusion. 

2. A graph G is threshold if and only if G does not have an induced 
subgraph isomorphous to ,4P  4C  or .2 2K  

Remark 1.2. This last characterization implies that split graphs not 
containing induced subgraphs isomorphous to 4P  are also threshold 
graphs. 

Remark 1.3. All graphs referred in the text will have their vertices 
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indexed from a higher-degree to a lesser-degree one, following the non-
increasing order of their degree sequences. 

2. The {1-connected}-AR Graphs 

Let us consider the connected Merris AR graphs ([13]), which we call 
here {1-connected}-AR graphs. First of all, they satisfy (2) by strict 
equality. On the other hand, the {1-connected}-AR graphs have minimum 
size among all connected AR graphs, since a {κ-connected}-AR graph with 

1>κ  would have at least the same number of edges as the corresponding 
graph with .1=κ  

In order to simplify the use of the Berge matrix, we partition its index 
sets I and J (resp., rows and columns) as follows: 

{ } { },,, 2121 JJJIII ==  (3a) 

where 

 { }2...,,111 nJI ==   and   { }nnJI ...,,1222 +==  (3b) 

thus obtaining a 22 ×  partition matrix (Figure 2.1): 

 
Figure 2.1. A partitioning of the Berge matrix. 

The square Submatrix 11B  has order  2n  and corresponds to a 

complete subgraph, according to Remark 1.3; both 12B  and 21B  contain 

a sequence of   1...,,2n  non-null elements (see Figure 2.2 below). 12B  

contains the ( )IK ,  edges seen from K, while 21B  contains the same 

edges, seen from I; 22B  is null. Let us then call opposite diagonal the 
second main diagonal of a square matrix: we can observe that, for a 
{1-connected}-AR graph, the last element in each row is on the opposite 
diagonal of B. Since we are dealing with degree sequences, we can then 
calculate the size of a {1-connected}-AR graph by summing the number of 

11B  elements to twice the 12B  (or )21B  sequence sum and dividing the 
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result by two, 

( ) .1221222
1







 





 +









+





 −









= nnnnnr  (4) 

There will be only one {1-connected}-AR graph for each order, as already 
observed in [13], where the repeated degree value will be  ,2n  occupying 
the positions  2n  and   12 +n  in the sequence. 

Example (Figure 2.2). With 8=n  and ,9=n  we will have the 
sequences (7, 6, 5, 4, 4, 3, 2, 1) and (8, 7, 6, 5, 4, 4, 3, 2, 1), where the value 
  42 =n  is repeated. The corresponding Berge matrices are shown in 
Figure 2.2, where we indicate the partitioning already expressed by 
Figure 2.1. 

 
Figure 2.2. Examples of partitioning of Berge matrices. 

In what follows, it will be interesting to observe how the size of         
{κ-connected}-AR graphs behaves with respect to ( ),nr  as we study their 
construction conditions by starting with the {1-connected}-AR Berge 
matrix. We will call size-minimum the graphs with the least number of 
edges in their respective classes; this value can be equal to or greater 
than ( ).nr  

3. Some Possible Constructions of {2-connected}-AR Graphs 

Here we discuss the construction of {2-connected}-AR graphs through 
some examples. This practical approach has the advantage of showing, in 
simpler structures, some properties which will later be discussed from a 
theoretical point of view for greater values of connectivity. 
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From (1), we have ( ) ,2−≤ξ nGP  as the minimum degree is 2. The 
degree sequences of 2-connected-AR graphs can have two types of 
repetitions, either containing three equal values or two different degree 
pairs. Let us examine some cases of graphic sequences, for 10=n  (Table 
3.1): 

Table 3.1. Graphic sequences generating 2-connected graphs 

Sequence Column sum vector δ Pξ  AR Size-min. 

=1d (9, 8, 7, 6, 5, 4, 3, 3, 3, 2) (9, 9, 8, 5, 4, 5, 4, 3, 2, 1) 8 yes yes 

=2d (9, 8, 7, 6, 5, 5, 4, 2, 2, 2) (9, 9, 6, 6, 5, 5, 4, 3, 2, 1) 7 no yes 

=3d (9, 8, 7, 6, 5, 4, 4, 3, 2, 2) (9, 9, 7, 6, 4, 5, 4, 3, 2, 1) 8 yes yes 

=4d (9, 8, 7, 6, 5, 5, 4, 3, 3, 2) (9, 9, 8, 7, 6, 5, 4, 3, 2, 1) 8 yes no 

Throughout this paragraph, we will refer to the Berge matrices of 
Table 3.1 sequences. Compared with a {1-connected}-AR sequence, 
Sequence 1d  shows an increase of one unit in the two lesser degrees 
(underlined italics), which is compensated for by a decrease of one unit in 
the two first degrees of 21B  (underlined), thus it is AR. According to 

Definition 1.2, Sequence 2d  is not AR, as it has ,7=ξP  while 1d  has 

8=ξP  (see Lemma 4.4 below). Sequence 3d  is AR. 

These three sequences correspond to graphs having ( ) 2510 =r  edges, 
so (4) will be valid for 2-connected graphs, as long as we have enough 
space to open a null position on the opposite diagonal to compensate for 
the second non-null element in the last line, which is necessary to grant 
the 2-connectivity. In what follows, we will see (Theorem 4.1) that this is 
possible from 6=n  on. For instance, uK −4  is size-minimum and        

{2-connected}-AR, but ( ) ( ).44 ruKm >−  

Sequence 4d  generates a graph having 26 edges so, unlike the            
1-connected case, we can have non-size-minimum {2-connected}-AR 
graphs. Here, 4d  corresponds to 3d  with one added edge. 
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4. Some Structural Issues and Properties 

Theorem 4.1. The minimum order of a {κ-connected}-AR graph G 
with ( )nrm =  is 

( ) ( ).12min −κκ+κ=κn  (5) 

Proof. The degree sequence of a {κ-connected}-AR graph has its        
last element equal to κ. To obtain such a sequence from that of a                      
{1-connected}-AR graph keeping the non-increasing degree order and 
having ( ),nrm =  we have to exchange ( )IK ,  edges between higher and 
lower-degree vertices of I. Then we have to add 1−κ  non-null elements 
to the last row of the Berge matrix, 2−κ  ones to the preceding row, 1...,  
element to the ( )2+κ−n th row. That way, we will obtain κ vertices with 
degree κ, from the ( )1+κ−n th to the nth one and we will need to nullify 

at least ( )∑ −
=

−κκ=
1
1 21k

i  positions on 21B  opposite diagonal, in order to 

compensate for these inclusions and thus validate (4). Then for the size of 
a {κ-connected}-AR graph to verify (4), its order should be at least the 
double of the 21B  order, which is the second member of (5). 

Theorem 4.2. The {κ-connected}-AR graphs G with ( )nrm =  and 
( )κ≥ minnn  are split graphs. 

Proof. Let G be a {1-connected}-AR graph. It is therefore a split 
graph, with size ( ).nrm =  Starting with G, to keep size and to obtain a 
given connectivity ,0κ  we have to exchange ( )IK ,  edges adjacent to a 
set of higher-degree I vertices with the set of the 10 −κ  lower degree I 
vertices, as in the proof of Theorem 4.1. Since this process deals only with 
( )IK ,  edges and we started with a split graph, the {κ-connected}-AR 
graph obtained is also split, provided there are enough edges to be 
exchanged as stated by Theorem 4.1. 

Remark 4.1. The edge set of a split graph is the sum of two disjoint 
edge sets, one from a complete and other from a bipartite graph. For such 
a graph, this implies that the difference between the degree sum and the 
double of the number of  2nK  edges (which we call here the external 

clique degree) is equal to the degree sum on I. 
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Example 4.1. Sequences 3d  and 4d  from Table 3.1 above. According 

to (4), 3d  generates size-minimum graphs. The degree sum on I for a 
corresponding graph is equal to the external clique degree, and thus we 
have split partitions, in accordance with Theorem 4.2. But 4d  is not size-
minimum, as we can find an excess of 2 degree units in I degree sum: this 
corresponds to one edge between two vertices in I, which in this case is 
not an independent set. Thus 4d  does not generate split graphs. 

Figure 4.1 shows examples of graphs generated by these sequences. 
The contour around the upper vertices means they induce a complete 
subgraph. 

 

Figure 4.1. Graphs generated by 3d  and .4d  

Remark 4.2. The {κ-connected}-AR graphs with 1>κ  are not 
threshold. The last row in the Berge matrix should have at least κ non-
null elements (compensated for by zeroes on the opposite diagonal, as 
already discussed), while its last column will have but one non-null 
element, which breaks the symmetry implied by Lemma 1.2. For 
instance, in the case of ,2=κ  we would have to increase by one unit the 
second element in the degree sequence in order to restore the symmetry. 
But this creates a new degree repetition, and the new graph will no 
longer be {κ-connected}-AR. 

Theorem 4.3. For a {κ-connected}-AR graph G with ( )  2min nGd <  

and ( ),nrm =  we have 

( ) ( ),min GdG =κ  (5) 

where ( )Gκ  is the connectivity and ( )Gdmin  is the minimum degree of G. 

Proof. From Theorem 4.2, G is split. The subgraph  2nK  has 
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connectivity   .12 −n  A vertex of I is connected to the remaining graph 

through the edges it shares with one or more K vertices. Let x be a 
minimum degree vertex in G. The thesis condition guarantees that .Ix ∈  
If we remove from G the neighborhood ( ) ,KxN ⊆  whose cardinality is 

( ),min Gd  then x will become trivial. Since x has minimum degree, ( )xN  
is a minimum cardinality vertex cutset. 

Lemma 4.4. The {κ-connected}-AR graphs ( )EKIG ,,=  with =m  
( )nr  do not have repetition of the  2n  degree. 

Proof. The Berge matrix of a {1-connected}-AR graph contains a 
repetition of  .2n  For G to be κ-connected, the last row of the Berge 

matrix must have κ non-null entries, which can be obtained through the 
construction utilized in the proof of Theorem 4.1. But the zeroes referred 
to in that proof have to be created at the end of the first ( ) 211 B−κκ  rows, 
in order to eliminate the original  2n  repetition and to avoid building a 
new one, which would lower the value of .Pξ  

Example 4.2 (Figure 4.2). For 2=κ  and ,11=n  we show the 
Submatrix 21B  with the addition of a neighbor row and one or two 
columns. The creation of a zero in the first 12B  row (matrix farthest to 
the right) gives us a sequence generating {2-connected}-AR graphs with 

( ),nrm =  while the strategies shown by the second and the third 
matrices do not arrive at this result. The repetitions are in italics. 

 

Figure 4.2. Repetition of  .2n  

Theorem 4.5. The {κ-connected}-AR graphs ( )EKIG ,,=  with =m  

( )nr  are not Hamiltonian. 
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Proof. If n is even, a vertex y of minimum degree in K has degree 
,2n  and thus has exactly one neighbor in I. The bipartite spanning 

subgraph ( ),,, EKIG ′=′  with ( ){ }KyIxyxE ∈∈|=′ ,,  is balanced 

([8, p. 262]), so every Hamiltonian cycle in G will also be in .G′  But G′  
will have a vertex of degree one, and thus cannot be Hamiltonian. 

If n is odd,     ,122 =− nn  then K has one vertex more than I. The 

vertex z of lesser degree in K has degree  ,2n  thus its neighborhood will 

be ( ) ,KyN =  as it belongs to a complete subgraph with this degree. Then 

zG −  is {κ-connected}-AR of even order with ( )11 −= nrm  and, as we 

have shown earlier, it is not Hamiltonian. G thus cannot be Hamiltonian, 
because by putting back z and its adjacent edges we will not create any 
new connection with I. 

As the connectivity grows, there are progressively more size-
minimum AR graphs with ( )nrm >  which can possibly be Hamiltonian, 
although the most commonly known sufficient conditions (such as the 
Bondy-Chvátal theorem [3], [4]) cannot guarantee it. 

Example 4.3. With 3-connected graphs ( )3−=ξ n  and ( )κ< minnn  
,12=  we can have the following situations: 

• the graph is not split; 

• the graph is not AR; 

• the graph has a size ( ).nrm >  

Table 4.1, below, shows some examples of sequences generating         
{3-connected}-AR graphs, from 10=n  to 13=n  for comparison. There, 
ECD stands for External Clique Degree and DSI for Degree Sum in I. 
The column ECD shows the number of edges between K and I. As already 
discussed, the equality of entries between ECD and DSI columns, for a 
given sequence, implies the corresponding graph(s) is (are) split. We can 
also observe that for minnn <  (in the case at hand, for ),12<n  we always 

have ( ).nrm >  
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Table 4.1. Some examples of {3-connected}-AR sequences 

Example Order ξ Sequence ECD DSI Split m r(n) 

1 10 7 (9, 8, 7, 6, 5, 4, 4, 3, 3, 3) 15 17 no 26 25 

2  7 (9, 9, 8, 7, 6, 5, 4, 4, 3, 3) 19 19 yes 29 25 

3 11 8 (10, 9, 8, 7, 6, 5, 4, 4, 3, 3, 3) 15 17 no 31 30 

4  8 (10, 10, 9, 8, 7, 6, 5, 5, 4, 3, 3) 20 20 yes 35 30 

5 12 9 (11, 10, 9, 8, 7, 6, 5, 4, 3, 3, 3, 3) 21 21 yes 36 36 

6 13 10 (12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 3, 3, 3) 21 21 yes 42 42 

Remark 4.3. The examples of 10- and 11-vertex AR sequences 
corresponding to split graphs of size greater than minimum (Examples 2 
and 4 in Table 4.1), generate Hamiltonian graphs. Using the already 
defined indexing, we can build graphs presenting respectively the 
Hamiltonian cycles (5, 10, 2, 9, 3, 8, 1, 7, 4, 6, 5) and (6, 11, 2, 10, 3, 9, 4, 
8, 5, 7, 1, 6). As we can observe, these sequences use a repetition in 
Submatrix 12B  to balance the non-null values in Submatrix .21B  

5. About the {κ-connected, threshold}-AR Graphs 

Remark 4.2 suggests the definition of a new class of P-AR graphs: the 
{κ-connected, threshold}-AR graphs. The symmetry constraint on the 
Berge matrix is a very practical instrument for the construction of 
threshold graphs. We will use it to build some sequences and graphs from 
this class and to study some of its characteristics. 

To begin with, we cannot expect these graphs to verify (4), since the 
first movement made to recover the symmetry we lose when building       
{κ-connected}-AR graphs with 1>κ  will be the introduction of new non-
null elements in the last 1−κ  columns of the Berge matrix. This way, 
we have new edges in the graph between vertices with maximum and 
minimum degrees; and in addition, the equilibrium we obtained meets 
the Berge criterion by strict equality. Then, for instance, for {2-connected, 
threshold}-AR graphs, we have ,3−=ξ nP  because the degree 2−n  
disappears from the sequence. 

We could consider compensating for this loss of adherence to (4) by 
creating holes in the opposite diagonal as we have already done, but here 
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it will not be possible to avoid a decay in Pξ  value: at least one degree 
value would disappear in the process, as we would have to create the 
holes symmetrically in order to keep the thresholdness. For {2-connected, 
threshold}-AR graphs, we have thus a minimum size of ( ) 1+nr  and, for 

greater values of κ, we can apply reasonings similar to those already 
presented. 

We can build {2-connected, threshold}-AR graphs with size greater 
than minimum through the addition of edges, as long as we do not make 
any degree disappear. See the lines 2 (compared with 1) and 4 (compared 
with 3) in Table 5.1 below. 

Example 5.1 (Table 5.1). 

Table 5.1. Some {2-connected, threshold}-AR sequences 

Example n Sequence ξ m AR Size-min. 

1 8 (7, 7, 5, 4, 4, 3, 2, 2) 5 17 yes yes 

2 . (7, 7, 6, 4, 4, 3, 3, 2) 5 18 yes no 

3 9 (8, 8, 6, 5, 4, 4, 3, 2, 2) 6 21 yes yes 

4 . (8, 8, 7, 5, 4, 4, 3, 3, 2) 6 22 yes no 

We can immediately generalize this view for a given κ. Starting      
once more with a connected Merris graph, which is {1-connected, 
threshold}-AR, we have to add 1...,,2,1 −κ  non-null elements, both to 

the first and to the last 1−κ  rows of its Berge matrix. There is no 
minimum order to consider, because we cannot obtain AR graphs by 
creating holes in the opposite diagonal as was discussed above. For 
instance, the sequence (11, 11, 11, 8, 7, 6, 6, 5, 4, 3, 3, 3) is {3-connected, 
threshold}-AR. It generates the graph depicted in Figure 5.1 below. 

In the figure, for the sake of clarity, the 18 ( )IK ,  edges adjacent to 
the vertices of degree 11 were not represented. To keep track of that, we 
nullified the degree of those vertices and we subtracted 5 from the lower-
degree K vertices and 3 from the degrees of the I vertices. The null 
degrees were not indicated in the figure. 
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Figure 5.1. A {3-connected, threshold}-AR graph. 

The unigraphic character of this sequence thus becomes evident, as is 
the total ordering of the neighborhoods of both K and I vertices by 
inclusion. 

Here we have 5−=ξ nP  and a (minimum) number of 39 edges. We 
can observe that the structural characteristics related to the vertices of 
minimum degree in  2nK  and in the whole graph, which allowed us to 

propose Theorems 4.3 and 4.5, are also found here. As a consequence, the 
{κ-connected, threshold}-AR size-minimum graphs follow these theorems, 
thus they have their connectivity strictly equal to their minimum degree 
and are not Hamiltonian. Finally, it is already known that every 
threshold graph is split. 

6. Tree-universality 

A problem that has been studied for some time is how to find graphs 
containing isomorphs for every tree of the same order as (spanning) 
subgraphs. Chung and Graham [5] look for bounds on the minimum size 
for tree-universal graphs, while Merris [13] proves the tree-universality 
of {1-connected}-AR graphs. 

Definition 6.1. A graph G with n vertices is universal for trees (or 
tree-universal) if every tree on n vertices is isomorphic to a subgraph of G. 

We present the Merris theorem ([13]), translated into our notation. 

Theorem 6.1 (Merris). The {1-connected}-AR graphs are universal for 
trees. 
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Proof. The proof is by induction, using sum, join and complement 
operations to build the reasoning on two graph families, the                      
{1-connected}-AR graphs and their disconnected complements. 

In order to investigate the occurrence of this property in the broader 
classes defined here, we make use of a straightforward conclusion: 

Remark 6.1. If a graph ( )EVG ,=  is tree-universal, then every 

graph ( )EVH ′= ,  such that EE ⊃′  is also tree-universal. 

This property allows us to look for graphs whose edge set contains 
that of the {1-connected}-AR graph with the same order. 

We can find {κ-connected}-AR graphs, not minimum-sized, whose 
edge sets have this property. For instance, Sequences 2 and 4 from Table 
3.1 generate tree-universal graphs, as their elements dominate the 
corresponding ones in the {1-connected}-AR sequence of same order. For 
the same reason, the family of {κ-connected, threshold}-AR graphs is also 
tree-universal. 

7. Conclusions 

In the discussion we have defined the class of P-antiregular graphs, 
subjecting the antiregularity to a set P of properties verified by the 
graphs, thus extending the original class to admit new structures not 
conforming to the original definition. When connectivity is specified as 
the sole property to be considered, we are able to build {κ-connected}-AR 
graphs by using the matrix defined by Berge, in the context of his 
theorem for characterizing graphic sequences. We have considered order 
and size limits for these graphs and presented some discussion on their 
hamiltonicity. The same was done when considering thresholdness as 
well, which allowed us to define the family of {κ-connected, threshold}-AR 
graphs. A brief discussion concerning the tree-universality of these 
families is also presented. We believe that these extended classes of 
graphs have interesting research possibilities, especially if P is considered 
to contain other properties. 
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