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Abstract 

In this paper, the unique solvability of a semi-linear wave equation 
associated with a linear integral equation at the boundary is proved by      
a contracted procedure. 

1. Introduction 

We study the solution ( )txu ,  of the following semi-linear equation: 

( ) ( ) ( ) TtxtxfuuFutu txxtt <<<<=+µ− 0,10,,,  (1.1) 

associated with initial-boundary values given by 

( ) ,0,0 =tu  (1.2) 

( ) ( ) ( ),,1 tQtut x =µ−  (1.3) 

( ) ( ) ( ) ( ),0,,0, 10 xuxuxuxu t ==  (1.4) 

where ( ) ,2,,, 22 ≥λ+= −− qpuuuuKuuF t
q

t
p

t  K and λ are constants; 
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,0u  1u  and µ are given real functions satisfying conditions specified 

later, and ( )tQ  satisfies the following integral equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ −−−λ+=
t

t dssustktgtuttutKtQ
0

11 ,,1,1,1  (1.5) 

where g, k, 1K  and 1λ  are given functions. 

This problem is the mathematical model describing the shock of a 
rigid body and the viscoelastic bar (see [1], [5-8], [10], [11], [13]) 
considered by several authors. 

In [1], with ( ) ( ) ( ) ,,0,,, 2attxfuKuuuF tt ≡µ=λ+=  An and Trieu 

studied equation (1.1) in the domain [ ] [ ]Tl ,0,0 ×  when the initial data 

are homogeneous, namely ( ) ( ) 00,0, == xuxu t  and the boundary 

conditions are given by 

( ) ( )

( )



=

−=

,0,

,,0

tlu

tftEux  (1.6) 

where E is a constant. 

In [5], Long and Dinh considered problem (1.1)-(1.4) with ( ) ,01 ≡λ t  

( ) ,01 ≥= htK  ( ) ,1=µ t  wherein the unknown function ( )txu ,  and the 

unknown boundary value ( )tQ  satisfy the following integral equation: 

( ) ( ) ( ) ( ) ( )∫ −−−=
t

dssustktgthutQ
0

.,1,1  (1.7) 

We note that equation (1.7) is deduced from a Cauchy problem for an 
ordinary differential equation at the boundary .1=x  

In [10], Santos studied the asymptotic behavior of the solution of 
problem (1.1), (1.2), (1.4) in the case of ( ) ,0, =tuuF  ( ) 0, =txf  associated 

with a boundary condition of memory type at 1=x  as follows: 

( ) ( ) ( ) ( )∫ >=µ−+
t

x tdssusstgtu
0

.0,0,1,1  (1.8) 
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It is noted that the boundary conditions (1.7) and (1.8) are similar 
since their formal differences can be crossed out after solving the Volterra 
equation with respect to the variable ( )tu ,1  given by (1.8). 

In [6-8], Long et al. gave the unique existence, stability, regularity         
in time variable and asymptotic expansion for the solution of problem       
(1.1)-(1.5) when ( ) ., tt uKuuuF λ+=  

And for ( )tuuF ,  similar to what in the present problem, Ut [13] 

proved the unique solvability of the present problem. Furthermore, we 
also studied the stability of the weak solution with respect to some given 
parameters. 

In [11], Sengul investigated the solvability of equation (1.1) in                 
the case of ( ) ( ) ( )txfuuguutxF tt ,,,, −α+=  associated homogeneous 

boundary conditions and the initial conditions are the same to (1.4). 

Although there have been many publications related to the present 
problem, the contracted procedure has not been applied for the 
solvability, in our knowledge, as in [1], [5-8], [10] and [13], etc. 

In this paper, we apply a contracted procedure (see [3] and [12]) to 
obtain the unique solvability of problem (1.1)-(1.5), and it is believed that 
the essential proofs must be shorter and easier than what has been 
brought up. What we obtain here is considered as the generalization of 
those in An and Trieu [1], Long and Dinh [5], Santos [10], and Sengul 
[11], and of course a more comprehensive part of results in [13]. 

2. Preliminary Results and Notations 

First we introduce some preliminary results and notations used in 
this paper. Put ( ) ( ) .0,,0,1,0 >×Ω==Ω TTQT  We omit the definitions 

of usual function spaces: ( ) ( ) ( ).,, , ΩΩ=Ω pmppm WLLC  We denote pmW ,  

( ) ( ) ( ) ....,1,0,1,,, 2,,0, =∞≤≤Ω=Ω=Ω= mpWHWLW mmpppm  

The norm in 2L  is denoted by .⋅  We also denote by ⋅⋅,  the scalar 

product in 2L  or pair of dual scalar product of a continuous linear 
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functional with an element of a function space. We denote by X⋅  the 

norm of a Banach space X and by X ′  the dual space of X. We denote by 

( ),;,0 XTLp  ∞≤≤ p1  the Banach space of the real functions ( )Tu ,0:  

X→  measurable, such that 

( ) ( ) ∞<







= ∫

pT p
XXTL dttuu p

1

0;,0   for  ,1 ∞<≤ p  

and 

( ) ( ) XTtXTL tuu
<<

=∞
0;,0 esssup   for  .∞=p  

In addition, we denote by [ ]( )XTC ;,0  all of continuous functions 

( ) XTu →,0:  

with 

[ ]( ) ( ) ,max:
0;,0 ∞<=

≤≤ XTtXTC tuu  

and [ ]( )XTC ;,01  all of differential functions 

( ) XTu →,0:  

with 

[ ]( ) ( ( ) ( ) ) .max:
0;,01 ∞<′+=

≤≤ XXTtXTC tutuu  

Let ( ),tu  ( ) ( ),tutu t=′  ( ) ( ),tutu tt=′′  ( )tux  and ( )tuxx  denote ( ),, txu  

( ),, txt
u
∂
∂  ( ),,2

2
tx

t
u

∂

∂  ( )txx
u ,
∂
∂  and ( ),,2

2
tx

x
u

∂

∂  respectively. 

We put 

{ ( ) },00:1 =∈= vHvV  (2.1) 

( ) ∫ ∂
∂

∂
∂=

∂
∂

∂
∂=

1

0
.,, dxx

v
x
u

x
v

x
uvua  (2.2) 

Here V is a closed subspace of 1H  and on V, 1Hv  and ( )vvav V ,=  

are two equivalent norms. 



A CONTRACTED PROCEDURE FOR THE UNIQUE … 53 

Then we have the following lemma. 

Lemma 1. The embedding [ ]( )1,00CV   is compact and 

[ ]( ) ,1,00 VC vv ≤  (2.3) 

for all .Vv ∈  

We omit the detailed proof because of its certainty. 

Moreover, there are following results whose proofs are also omitted. 

Lemma 2. Suppose ( ),;,02 VTLu ∈  with ( ( )).;,0 12 Ω∈′ −HTLu  Then 

([ ] ( ))Ω∈ 2;,0 LTCu  

(after possibly being redefined on a set of measure zero). 

Lemma 3. Suppose ( ( )),;,0 22 Ω∈ HTLu  with ( ( )).;,0 22 Ω∈′ LTLu  
Then 

[ ]( )VTCu ;,0∈  

(after possibly being redefined on a set of measure zero). 

3. Unique Solvability 

First and foremost, we make some following essential assumptions: 

 ( )µA  ( ) ( ) ;0,,0 0
2 >µ≥µ∈µ tTH  

 ( )FA  ;2,;, ≥∈λ qpK R  

 ( )fA  ( );, 2
Tt QLff ∈  

 ( )1KA  ( ) ( ) ;0,,0 1
1

1 ≥∈ tKTHK  

 ( )1λA  ( ) ( ) ;0,,0 01
1

1 >λ≥λ∈λ tTH  

 ( )gA  ( );,01 THg ∈  

 ( )kA  ( );,01 THk ∈  

 ( )1,0A  ., 1
1

2
0 HuHVu ∈∈ ∩  



LE V. UT 54 

In this paper, we say that a function 

([ ] ) [ ]( )VTCLTCu ;,0;,0 21 ∩∈  

is a weak solution of problem (1.1)-(1.5) iff 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )











−−−′λ+=

=′=

=′++µ+′′

∫
t

xx

dssustktgtuttutKtQ

xuxuxuxu

vtfvtutuFvtQtvtutvtu

0
11

10

,,1,1,1

,0,,0,

,,,,1,,

 

for all .Vv ∈  And we can say that problem (1.1)-(1.5) is solvable in 

([ ] ) [ ]( )VTCLTC ;,0;,0 21 ∩  with respect to a weak sense. 

Then, we have the following theorem: 

Theorem 1. Let ( ),µA  ( ),FA  ( ),fA  ( ),1KA  ( ),1λA  ( ),gA  ( )kA  and 

( )1,0A  hold. Then, for ,0>T  the problem (1.1)-(1.5) has a unique weak 

solution ( )txu ,  satisfying 

([ ] ) [ ]( ).;,0;,0 21 VTCLTCu ∩∈  (3.1) 

Remark 1. To be honest, this result still holds when the nonlinearity 
of damping source ( )tuuF ,  is more general. However, besides the usage 
of different comprehensive method or the expected generalizations, we 
truly want to cover some open questions. For details, let us see the next 
remark. 

Proof. The proof consists of several steps as follows. 

Step 1. The solvability in ([ ] ).;,0 21 LTC  

Let the operator Ξ be defined as follows. Given a function ∈u  

([ ] ),;,0 21 LTC  set ( ) ( ) ( )( ) ( ) .0,,: TttftutuFt£ t ≤≤−=  From ( )FA  and 
( ),fA  we deduce that 

( )., 2
TQL££ ∈′  (3.2) 

Then, there is the following lemma whose proof is similar to what in [13]. 
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Lemma 4. With the advent of (3.2) and assumptions ( ),µA  ( ),1KA  

( ),1λA  ( ),gA  ( )kA  and ( ),1,0A  the linear initial-boundary value problem 

given by 
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )















−−−λ+=

==

=µ−

=

−=µ−

∫
t

t

t

x

Txxtt

dsswstktgtwttwtKtP

xuxwxuxw

tPtwt

tw

Qin£wtw

0
11

10

,1,1,1

,0,,0,
,,1

,0,0

,

 (3.3) 

has a unique weak solution ( )txw ,  such that 

( ) ( ) ( ).;,0,;,0,;,0 22 LTLwVTLwHVTLw ∞∞∞ ∈′′∈′∈ ∩  (3.4) 

By using the embedding ( ) [ ]( )TCTH ,0,0 12   and applying Lemma 
2 and Lemma 3, we deduce from (3.4) that 

([ ] ) [ ]( ).;,0;,0 21 VTCLTCw ∩∈  (3.5) 

And w satisfies 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )











−−−′λ+=

=′=

=++µ+′′

∫
t

xx

dsswstktgtwttwtKtP

xuxwxuxw

vt£vtPtvtwtvtw

0
11

10

,,1,1,1

,0,,0,

,0,1,,
 (3.6) 

for all .Vv ∈  

Define ([ ] ) ([ ] )2121 ;,0;,0: LTCLTC →Ξ  by setting 

 .wu =Ξ  (3.7) 

It is claimed that if 0>T  is small enough, then Ξ is a strict contraction. 

To prove this, choose ([ ] )21 ;,0~, LTCuu ∈  and define uwuw ~~, Ξ=Ξ=  as 
above. As a result, w verifies (3.6) for ( ) ,, fuuF£ t −=  and w~  satisfies a 
similar system to (3.6) for 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )





−−−′λ+=

−=

∫
t

t

dsswstktgtwttwtKtP

fuuF£

0
11 .,1~,1~,1~~

,~,~:~

 (3.8) 
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In addition, we have that 

( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )1~,~,~ vtPtPvtwtwtvtwtw xxx −+−µ+′′−′′  

( ) ( ) ) ,0,~ =−+ vt£t£  (3.9) 

for all .Vv ∈  

Now, in (3.9), replacing v by ww ′−′ ~  and then integrating with 
respect to t, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ −′+−µ′=
t t

xx dsswswsKdsswswstS
0 0

2
1

2 ,1~,1~  

( ) ( )[ ] ( ) ( ) ( )[ ]∫ ∫ 







ττ−ττ−′−′−

t s
dsdwwskswsw

0 0
,1~,1,1~,12  

( ) ( ) ( ) ( )∫ ′−′−+
t

dsswsws£s£
0

,~,~2  (3.10) 

in which 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]21
22 ,1~,1~~ twtwtKtwtwttwtwtS xx −+−µ+′−′=  

 ( ) ( ) ( )[ ]∫ ′−′λ+
t

dsswsws
0

2
1 .,1~,12  (3.11) 

From (2.3), (3.2), (3.10), (3.11) and assumptions ( ),µA  ( ),1KA  ( ),λA  

( ),kA  we deduce some following estimates: 

( ) ( ) ( ) ( ) ( )∫ ∫ µ′
µ

≤−µ′
t t

xx dssSsdsswsws
0 00

2 ,1~  (3.12) 

( ) ( ) ( )[ ] ( ) ( )∫ ∫ µ
′

≤−′
t t

dssSsKdsswswsK
0 0 0

12
1 ,,1~,1  (3.13) 

( ) ( )[ ] ( ) ( ) ( )[ ]∫ ∫ 







ττ−ττ−′−′−

t s
dsdwwskswsw

0 0
,1~,1,1~,12  

( )
( )

( )∫εµ
+

λ
ε≤

t

TL
dssSkTtS

0
2

,000
,2 2  (3.14) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫+−≤′−′−
t t t

dssSdss£s£dsswsws£s£
0 0 0

2 ,~~,~2  (3.15) 

for some .0>ε  

With the relevant choice of ε, namely ,0λ=ε  also using Gronwall’s 
inequality, we conclude from (3.10)-(3.15), that 

( ) ( ) ( ) ( )[ ],exp~2
0

2 tEdss£s£tS
t









−≤ ∫  (3.16) 

where 

( ) ( ) ( )
( )∫ 













λ
+′+µ′

µ
+=

t

TL
dskTsKstE

0
2

,00
1

0
.112 2  (3.17) 

Using assumptions ( ),µA  ( )1KA  and ( ),kA  we deduce from (3.17) that 

there exists a constant 00 >E  (independent of t) such that 

( )[ ] [ ].,0,exp2 0 TtEtE ∈∀≤  (3.18) 

From (3.18), the assumption ( )FA  and the following inequality 

( ) { }[ ] ,0,,,,max1 >α∀∈∀−+α≤− ααα Ryxyxyxyyxx  

we discover that (3.12) is equivalent to 

( )
([ ] )

[ ].,0,~2 2
;,00 21 TtuuTEtS
LTC

∈∀−≤  (3.19) 

Combining (3.11) and (3.19), it follows that 

( ) ( )
([ ] )

[ ].,0,~2~ 2
;,00

2
21 TtuuTEtwtw

LTC
∈∀−≤′−′  (3.20) 

Moreover, it is not difficult to affirm that 

( ) ( )
([ ] )

[ ].,0,~2~ 2
;,00

32
21 TtuuETtwtw

LTC
∈∀−≤−  (3.21) 

Hence, after maximizing the left hand sides of (3.20) and (3.21) with 
respect to t, we discover 

([ ] )
( )

([ ] )
.~12~ 2

;,0
2

0
2

;,0 2121 LTCLTC
uuTTEww −+≤−  (3.22) 
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Thus, 

([ ] ) ( ) ([ ] )2121 ;,0
2

0;,0
~12~

LTCLTC uuTTEuu −+≤Ξ−Ξ  (3.23) 

and then Ξ is a strict contraction, provided 0>T  is so small that 

( ) .112 2
0 <α=+TTE  

As a result, with the application of Banach’s fixed point theorem, we 

conclude that problem (1.1)-(1.5) is solvable in ([ ] )21 ;,0 LTC  with respect 

to a weak sense. 

In the case of 0>T  given, we select 01 >T  so small that 

( ) .112 2
110 <+TTE  

Then we are able to apply Banach’s fixed point theorem to find a weak 
solution u of problem (1.1)-(1.5) existing on the time interval [ ].,0 1T  Due 

to ( ),tu  ( ) ( )Ω∈′ 2Ltu  for a.e. ,0 1Tt ≤≤  we can continue redefining 1T  if 

necessary by assuming ( ),1Tu  ( ) ( ).2
1 Ω∈′ LTu  We can then repeat the 

argument above to extend our solution to the time interval [ ].2, 11 TT  

Continuing, after finitely many steps, we construct a weak solution 
existing on the full interval [ ].,0 T  

Step 2. The solvability in [ ]( ).;,0 VTC  

Repeating the technical arguments in Step 1 in which ([ ] )21 ;,0 LTC  

is replaced by [ ]( ),;,0 VTC  we also define the operator 

[ ]( ) [ ]( ).;,0;,0: VTCVTC →Ξ  

And we are going to show that Ξ is also strict contracted in [ ]( ).;,0 VTC  

Indeed, from (3.10)-(3.15), we compute that 

( ) ( ) ( ) 2
0

0
2 ,

t
S t E u s u s ds 

≤ − 
 ∫  (3.24) 



A CONTRACTED PROCEDURE FOR THE UNIQUE … 59 

where 0E  is a positive constant independent of t such that 

( ) ( )
( )2

2
0 1 0,0 0 0

12 exp 3 ,
t

L T
TE s K s k ds   ′ ′≥ + µ + +   µ λ   ∫  (3.25) 

for all [ ].,0 Tt ∈  

Combining (3.11) and (3.25) and using the embedding ,2LV   we 

discover 

( ) ( ) ( ) ( ) [ ]2 20
00

2 max , 0,V Vs T
E Tw t w t u s u s t T

≤ ≤
− ≤ − ∀ ∈

µ
 

[ ]( ) [ ]20
0, ;

0

2 , 0, .C T V
E T u u t T≤ − ∀ ∈
µ

 (3.26) 

After maximizing the left hand side of (3.26) with respect to t, we obtain 

[ ]( ) [ ]( )
2 20

0, ; 0, ;
0

2 .C T V C T V
E Tw w u u− ≤ −
µ

 (3.27) 

Consequently, we receive 

[ ]( ) [ ]( )
20

0, ; 0, ;0

2 ,C T V C T V
E Tu u u uΞ − Ξ ≤ −
µ

 (3.28) 

and Ξ is also contracted, provided 0>T  is so small that 

0
0

2 1.E T
<

µ
 

So, applying Banach’s fixed point theorem, we deduce that problem       
(1.1)-(1.5) is solvable in [ ]( )VTC ;,0  in a weak sense. Certainly, this still 

holds when 0>T  is arbitrarily given, a weak solution existing on the 
full interval [ ].,0 T  

Step 3. The uniqueness of the weak solution. 

To demonstrate uniqueness, suppose both u and u~  are two weak 
solutions of problem (1.1)-(1.5). Then we have ,uw =  uw ~~ =  in (3.24), 
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hence we discover 

( ) ( ) ( ) ( )2 20
00

2 .
t

V V
Eu t u t u s u s ds− ≤ −
µ ∫  (3.29) 

Because of Gronwall’s inequality, we deduce from (3.29), that .~uu ≡  

The above three steps show that the proof of the theorem is complete. 

Remark 2. In fact, for Galerkin approximation, if the damping source 

of related problems is ( ) ,2,,, 22 ≥λ+= −− qpuuuuKuuF t
q

t
p

t  then 

both parameters K and λ are mostly non-negative, in our knowledge. In 
the above theorem, the unique solvability of problem (1.1)-(1.5) really 
holds in the case of ., R∈λK  It is strongly enjoyable to affirm that the 
open problems in [13, Remark 2], [9], etc., have been completely solved. 
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