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Abstract 

In this paper, we define a continuous mapping on intuitionistic fuzzy 
metric space introduced by Park et al. [7] and obtain some similar 
results as in metric space. 

1. Introduction 

The theory of fuzzy sets was introduced by Zadeh [10] in 1965. We 
have introduced the concept of intuitionistic fuzzy metric space ([5-8]). 
Park et al. [7] have defined the intuitionistic fuzzy metric space which is 
a little revised from Park [3]. According to this paper, Park et al. [5, 6, 8] 
have established some results in the intuitionistic fuzzy metric space. 
Furthermore, Park et al. [7] proved some other results of maps on 
intuitionistic fuzzy metric spaces. In this paper, we modify the concept of 
intuitionistic fuzzy metric space introduced by Park et al. [7] and define a 
continuous mapping on this space. Also, we prove that compactness 
implies IF-boundedness and completeness, and prove that if a sequence of 
continuous mappings converges to some mapping, then some mapping is 
continuous in intuitionistic fuzzy metric space (cf. [2]). 
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2. Preliminaries 

We give some definitions, properties and notations of the 
intuitionistic fuzzy metric space as follows (Schweizer and Sklar [9], 
Grabiec [1] and Park et al. [7]): 

Definition 2.1 [9]. An operation [ ] [ ] [ ]1,01,01,0: →×∗  is continuous 

t-norm if ∗ satisfies the following conditions: 

(a) ∗ is commutative and associative, 

(b) ∗ is continuous, 

(c) aa =∗1  for all [ ],1,0∈a  

(d) dcba ∗≤∗  whenever ca ≤  and [ ]( ).1,0,,, ∈≤ dcbadb  

Definition 2.2 [9]. An operation [ ] [ ] [ ]1,01,01,0: →×  is continuous 

t-conorm if  satisfies the following conditions: 

(a)  is commutative and associative, 

(b)  is continuous, 

(c) aa =0  for all [ ],1,0∈a  

(d) dcba  ≥  whenever ca ≤  and [ ]( ).1,0,,, ∈≤ dcbadb  

Remark 2.3 [3]. The following conditions are satisfied: 

(a) For any ( )1,0, 21 ∈rr  with ,21 rr >  there exist ( )1,0, 43 ∈rr  such 

that 231 rrr ≥∗  and .124 rrr ≤  

(b) For any ( ),1,05 ∈r  there exist ( )1,0, 76 ∈rr  such that 566 rrr ≥∗  

and .577 rrr ≤  

Definition 2.4 [7]. The 5-tuple ( ),,,, ∗NMX  is said to be an 

intuitionistic fuzzy metric space if X is an arbitrary set, ∗ is a continuous 
t-norm,  is a continuous t-conorm and M  and N  are fuzzy sets on 

( )∞× ,02X  satisfying the following conditions; for all ,,, Xzyx ∈  such 

that 
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(a) ( ) ,0,, >tyxM  

(b) ( ) ,1,, yxtyxM =⇔=  

(c) ( ) ( ),,,,, txyMtyxM =  

(d) ( ) ( ) ( ),,,,,,, stzxMszyMtyxM +≤∗  

(e) ( ) ( ) ( ]1,0,0:,, →∞⋅yxM  is continuous, 

(f) ( ) ,0,, >tyxN  

(g) ( ) ,0,, yxtyxN =⇔=  

(h) ( ) ( ),,,,, txyNtyxN =  

(i) ( ) ( ) ( ),,,,,,, stzxNszyNtyxN +≥  

(j) ( ) ( ) ( ]1,0,0:,, →∞⋅yxN  is continuous. 

Then ( )NM ,  is called an intuitionistic fuzzy metric on X. The functions 

( )tyxM ,,  and ( )tyxN ,,  denote the degree of nearness and the degree of 
non-nearness between x and y with respect to t, respectively. 

Remark 2.5 [6]. In an intuitionistic fuzzy metric space 
( ),,,,, ∗NMX  ( )⋅,, yxM  is nondecreasing and ( )⋅,, yxN  is 

nonincreasing for all ., Xyx ∈  

Example 2.6. Let ( )dX ,  be a metric space. Denote { },,min baba =∗  
{ }baba ,max=  for all [ ]1,0, ∈ba  and let dM  and dN  be fuzzy sets 

on ( )∞× ,02X  defined as follows: 

( ) ( ) ( ) ( )
( ) .,
,,,,,,, yxdt

yxdtyxNyxdt
ttyxM dd +

=
+

=  

Then ( )dd NM ,  is called intuitionistic fuzzy metric induced by a metric d 

the standard intuitionistic fuzzy metric. Also, ( ),,,, ∗dd NMX  is an 
intuitionistic fuzzy metric space. 

Throughout this paper, N denotes the set of natural numbers and X 
denotes an intuitionistic fuzzy metric space ( ),,,, ∗NMX  and Y stands 
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for ( ),,,, ∗NMY  with the following properties: 

( ) ( ) 0,,lim,1,,lim 2121 ==
∞→∞→

txxNtxxM
tt

   for all ,, 21 Xxx ∈  

( ) ( ) 0,,lim,1,,lim 2121 ==
∞→∞→

tyyNtyyM
tt

   for all ., 21 Yyy ∈  

Definition 2.7 [3]. Let X be an intuitionistic fuzzy metric space and 
let ( ),1,0∈r  0>t  and .Xx ∈  Then the set ( ) { :,, XytrxB ∈=  

( ) ( ) }rtyxNrtyxM <−> ,,,1,,  is called the open ball with center x 
and radius r with respect to t. 

Remark 2.8 [3]. Every open ball ( )trxB ,,  is an open set. 

Definition 2.9 [3]. Let X be an intuitionistic fuzzy metric space. Then 
a subset C of X is said to be IF-bounded if there exist 0>t  and ( )1,0∈r  
such that ( ) rtyxM −> 1,,  and ( ) rtyxN <,,  for all ., Cyx ∈  

Remark 2.10 [3]. Let X be an intuitionistic fuzzy metric space 
induced by a metric d on X. Then XA ⊂  is IF-bounded iff it is bounded. 

Definition 2.11 [5]. Let X be an intuitionistic fuzzy metric space. 
Then 

(a) a sequence { }nx  in X is called Cauchy sequence iff for each 
( )1,0∈ε  and each ,1>t  there exists N∈0n  such that ( )txxM mn ,,  

,1 ε−>  ( ) ε<txxN mn ,,  for all ;, 0nnm ≥  

(b) a sequence { }nx  in X is convergent to x in X iff ( )txxM nn ,,lim ∞→  
,1=  ( ) 0,,lim =∞→ txxN nn  for each ;0>t  

(c) X is said to be complete if every Cauchy sequence is convergent in 
X. 

(d) X is called compact if every sequence contains a convergent 
subsequence in X. 

3. Some Results 

In this section, we prove that compactness implies IF-boundedness 
and completeness. Also, we define a continuous mapping on intuitionistic 
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fuzzy metric space, and prove that if a sequence of continuous mappings 
converges to some mapping, then some mapping is continuous in 
intuitionistic fuzzy metric space. Our research is an extension of 
Kreyszig’s result [2]. 

Theorem 3.1. A compact subset C of intuitionistic fuzzy metric space 
X is IF-bounded and complete. 

Proof. Fixed 0>t  and ( ).1,0∈r  Consider an open cover { ( ) :,, trxB  

}Cx ∈  of C. Since C is compact, there exist Cxxx n ∈...,,, 21  such that 

( ).,,1 trxBC i
n
i=⊆ ∪  Let ., Cyx ∈  Then ( )trxBx i ,,∈  and ( )trxBy j ,,∈  

for some i, j. Thus we have ( ) ( ) ( )txyMrtxxNrtxxM jii ,,,,,,1,, <−>  

r−> 1  and ( ) .,, rtxyN j <  Let { ( ) }njitxxM ji ≤≤=α ,1:,,min1  

and { ( ) }.,1:,,max2 njitxxN ji ≤≤=α  Then .0, 21 >αα  

Now, we have 

( ) ( ) ( ) ( )tyxMtxxMtxxMtyxM jjii ,,,,,,3,, ∗∗≥  

( ) ( )rr −∗α∗−≥ 11 1  

,1 1s−>  

( ) ( ) ( ) ( )tyxNtxxNtxxNtyxN jjii ,,,,,,3,, ≤  

rr  2α≤  

,2s<  

for some 112121 1,,,,1,0 α<−<< srssss  and .22 s<α  Taking =s  

{ }21,max ss  and ,3 tt ′=  ( ) styxM −>′ 1,,  and ( ) styxN <′,,  for all 

., Cyx ∈  Hence, C is IF-bounded. 

Since XC ⊂  is compact, let { }nx  be a Cauchy sequence in C and 

{ } { }nn xx i ⊂  that converges to x. Also, let 0>t  and ( ).1,0∈ε  Choose 

( )1,0∈r  such that ( ) ( ) ε−≥−∗− 111 rr  and .ε≤rr   Since { }nx  is 

Cauchy sequence, there exists N∈0n  such that 
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rtxxNrtxxM nmnm <




−>







2,,,12,,  

for all ., 0nnm ≥  Also, since ,xx in →  there is a positive integer pn  

such that ,0nnp >  

.2,,,12,, rtxxNrtxxM pp nn <




−>





  

Thus, if ,0nn ≥  then 

 ( ) 




∗





≥ 2,,2,,,, txxMtxxMtxxM pp nnnn  

( ) ( )rr −∗−> 11  

,1 ε−≥  

( ) 










≤ 2,,2,,,, txxNtxxNtxxN pp nnnn   

rr <  

.ε≤  

Hence for arbitrary ( ),1,0∈ε  

( ) 1,,lim =∞→ txxM nn  

and 

( ) .0,,lim =∞→ txxN nn  

Therefore, .xxn →  That is, C is complete. 

Definition 3.2. Let ( ) XNMX =∗ ,,,,  and ( ) YNMY =∗ ,,,,  

be intuitionistic fuzzy metric spaces. Then a mapping YXT →:  is 
continuous at a point Xx ∈0  if for every ,0>r  there is 0>s  with 

rs <  such that 

( ) ( ) rtTxTxNrtTxTxM <−> ,,,1,, 00  
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for all x satisfying 

( ) ( ) ,,,,1,, 00 stxxNstxxM <−>  

where ( ) ( ) srr −>−∗− 111  and .srr <  

T is said to be continuous if it is continuous at every point of X. 

Theorem 3.3. Let X  and Y  be intuitionistic fuzzy metric spaces. 
Then a mapping T of X into Y is continuous at a point Xx ∈0  iff 

0xxn →  implies .0TxTxn →  

Proof. Assume T to be continuous at .0x  For a given ( ),1,0∈r  we 

choose ( )1,0∈s  with rs <  such that ( ) ( ) srr −>−∗− 111  and rr   

.s<  Then by Definition 3.2 ( ) stxxM −> 1,, 0  and ( ) stxxN <,, 0  imply 

( ) rtTxTxM −> 1,, 0  and ( ) .,, 0 rtTxTxN <  Let .0xxn →  Then we have 

( ) stxxM n −> 1,, 0  and ( ) .,, 0 stxxN n <  

Hence for all ,0nn >  

 ( ) 




∗





≥ 2,,2,,,, 00

tTxTxMtTxTxMtTxTxM nn  

( ) ( )rr −∗−> 11  

s−> 1  

,1 r−>  

( ) 










≤ 2,,2,,,, 00

tTxTxNtTxTxNtTxTxN nn   

rr <  

s<  

.r<  

Thus .0TxTxn →  

Conversely, we assume that 0xxn →  implies 0TxTxn →  and prove 
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that T is continuous at .0x  Suppose that this is false. Then there is    

0>r  such that for every 0>s  with ,rs <  there is 0xx ≠  satisfying 

( ) stxxM −> 1,, 0  and ( ) ,,, 0 stxxN <  but ( ) rtTxTxM −≤ 1,, 0  and 

( ) .,, 0 rtTxTxN ≥  In particular, for ,1
ns =  there is nx  satisfying  

( ) ntxxM n
11,, 0 −>  and ( ) ,1,, 0 ntxxN n <  but ( ) rtTxTxM n −≤ 1,, 0  

and ( ) .,, 0 rtTxTxN n ≥  Therefore ,0xxn →  but nTx  does not converge 

to .0Tx  This contradicts 0TxTxn →  and proves this theorem. 

Theorem 3.4 (Continuous mapping). Let X and Y be intuitionistic 
fuzzy metric spaces and let { } YXTn →:  be a sequence of continuous 

mappings. If sequence { }nT  converges to ,: YXT →  then T is a 

continuous mapping. 

Proof. Let { }nT  be a sequence of continuous mappings. Then for all 

{ } Xxn ⊂  with ,0xxn →  

( ) ( ) stxTxTNstxTxTM nnnnnn <−> ,,,1,, 00    for ( ).1,0∈s  

We choose ( )1,0∈r  such that ( ) ( ) ( ) rsss −>−∗−∗− 1111  and sss   

.r<  Since { }nT  converges to T, for given 0>t  and ( ),1,0∈r  there 

exists N∈0n  such that 

,3,,,13,, stTxxTNstTxxTM nnnnnn <




−>





  

stTxxTNstTxxTM nn <




−>







3,,,13,, 0000  

for all 0nn ≥  and for all { } Xxn ⊂  with .0xxn →  Also, since nT  is a 

continuous mapping for all ,N∈n  

stxTxTNstxTxTM nnnnnn <




−>







3,,,13,, 00  

for all { } Xxn ⊂  with .0xxn →  
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Now, 

( )tTxTxM n ,, 0  






∗





∗





≥ 3,,3,,3,, 000

tTxxTMtxTxTMtxTTxM nnnnnnn  

( ) ( ) ( )sss −∗−∗−> 111  

,1 r−>  

( )tTxTxN n ,, 0  


















≤ 3,,3,,3,, 000

tTxxTNtxTxTNtxTTxN nnnnnnn   

sss <  

.r<  

Hence T is continuous for all { } Xxn ⊂  such that .0xxn →  
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