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Abstract

In this paper, we define a continuous mapping on intuitionistic fuzzy
metric space introduced by Park et al. [7] and obtain some similar

results as in metric space.
1. Introduction

The theory of fuzzy sets was introduced by Zadeh [10] in 1965. We
have introduced the concept of intuitionistic fuzzy metric space ([5-8]).
Park et al. [7] have defined the intuitionistic fuzzy metric space which is
a little revised from Park [3]. According to this paper, Park et al. [5, 6, 8]
have established some results in the intuitionistic fuzzy metric space.
Furthermore, Park et al. [7] proved some other results of maps on
intuitionistic fuzzy metric spaces. In this paper, we modify the concept of
intuitionistic fuzzy metric space introduced by Park et al. [7] and define a
continuous mapping on this space. Also, we prove that compactness
implies IF-boundedness and completeness, and prove that if a sequence of
continuous mappings converges to some mapping, then some mapping is

continuous in intuitionistic fuzzy metric space (cf. [2]).
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2. Preliminaries

We give some definitions, properties and notations of the
intuitionistic fuzzy metric space as follows (Schweizer and Sklar [9],
Grabiec [1] and Park et al. [7]):

Definition 2.1 [9]. An operation *: [0, 1]x [0, 1] — [0, 1] is continuous

t-norm if * satisfies the following conditions:

(a) * 1s commutative and associative,

(b) * is continuous,

(c)a*1=a forall a €0, 1],

(d) a*b < c*d whenever a <c and b <d (a, b, ¢, d € [0, 1]).

Definition 2.2 [9]. An operation < : [0, 1]x [0, 1] — [0, 1] is continuous
t-conorm if © satisfies the following conditions:

(a) ¢ 1s commutative and associative,

(b) ¢ 1s continuous,

©ac0

a for all a € [0, 1],
(d) aob>cod whenever a <c and b<d (a, b, ¢, d €0, 1]).

Remark 2.3 [3]. The following conditions are satisfied:

(a) For any r, ry € (0, 1) with r; > ry, there exist r3, ry € (0, 1) such

that p *r3 2 and ry Oy <1y

(b) For any r5 € (0, 1), there exist rg, 77 € (0, 1) such that rg * rg > 15

and r; ¢ 1y <15,

Definition 2.4 [7]. The 5-tuple (X, M, N, %, ¢) is said to be an
intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous

t-norm, ¢ 1s a continuous f-conorm and M and N are fuzzy sets on
X2 x (0, ) satisfying the following conditions; for all x, y, z € X, such
that
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(2) M(x, y,t) >0,
b) M(x, y,t) =1 x =y,
(©) M(x, y,t) = M(y, x, 1),
(d) M(x, y, t)* M(y, z, s) < M(x, z, t +s),
(e) M(x, y,-): (0, ©) — (0, 1] is continuous,
® N(x, y,t) >0,
(® N(x, y,1) =0 x =y,
(h) N(x, y,1) = N(y, x, 1),
(i) N(x, y,t)© N(y, z, s) > N(x, z, t + s),
G) N(x, y, ) : (0, ©) - (0, 1] is continuous.
Then (M, N) is called an intuitionistic fuzzy metric on X. The functions

M(x, y, t) and N(x, v, t) denote the degree of nearness and the degree of
non-nearness between x and y with respect to ¢, respectively.

Remark 2.5 [6]. In an intuitionistic fuzzy metric space
(X, M, N, *,0), M(x,y -) 1is nondecreasing and N(x,y,:) 1is

nonincreasing for all x, y € X.

Example 2.6. Let (X, d) be a metric space. Denote a * b = min{a, b},
a ¢ b = max{a, b} for all a, b € [0, 1] and let M; and N, be fuzzy sets

on X2 x (0, ») defined as follows:

Ny, y. 1) = A& )

My(x, y, t) = m

t
t+dx, y)’

Then (M, Ng) is called intuitionistic fuzzy metric induced by a metric d
the standard intuitionistic fuzzy metric. Also, (X, My, Ng4, *, ©) is an
intuitionistic fuzzy metric space.

Throughout this paper, N denotes the set of natural numbers and X

denotes an intuitionistic fuzzy metric space (X, M, N, *, ¢) and Y stands
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for (Y, M, N, * ©) with the following properties:

lim M(x;, x9,t) =1, lim N(xq, x9,t) =0 forall x;, x9 € X,
t—w t—
lim M(yl, Y9, t) =1, lim ]v(yl, Y9, t) =0 forall y;, yy €Y.
t—0 t—o0

Definition 2.7 [3]. Let X be an intuitionistic fuzzy metric space and
let 7€(0,1), t>0 and x € X. Then the set B(x,r,t)={ye X:

M(x, y,t)>1-r, N(x, y,t) < r} is called the open ball with center x

and radius r with respect to ¢.

Remark 2.8 [3]. Every open ball B(x, r, ¢) is an open set.

Definition 2.9 [3]. Let X be an intuitionistic fuzzy metric space. Then
a subset C of X is said to be IF-bounded if there exist ¢t > 0 and r € (0, 1)

such that M(x, y,t) >1-r and N(x, y,t) <r forall x, y € C.

Remark 2.10 [3]. Let X be an intuitionistic fuzzy metric space
induced by a metric d on X. Then A < X is IF-bounded iff it 1s bounded.

Definition 2.11 [5]. Let X be an intuitionistic fuzzy metric space.
Then

(a) a sequence {x,} in X is called Cauchy sequence iff for each
€ € (0,1) and each t > 1, there exists ny € N such that M(x,, x,,, t)

>1-¢, N(x,, x,,t) < ¢ forall m, n > ng;

(b) a sequence {x,,} in X is convergent to x in X iff lim,,_,,, M(x,, x, t)

=1, lim,_,, N(x,, x, ¢) = 0 for each ¢ > 0;

(c) X is said to be complete if every Cauchy sequence is convergent in
X

(d) X 1s called compact if every sequence contains a convergent

subsequence in X.

3. Some Results

In this section, we prove that compactness implies IF-boundedness

and completeness. Also, we define a continuous mapping on intuitionistic
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fuzzy metric space, and prove that if a sequence of continuous mappings
converges to some mapping, then some mapping is continuous in
intuitionistic fuzzy metric space. Our research is an extension of

Kreyszig’s result [2].

Theorem 3.1. A compact subset C of intuitionistic fuzzy metric space
X is IF-bounded and complete.

Proof. Fixed ¢t > 0 and r € (0, 1). Consider an open cover {B(x, r, t) :

x € C} of C. Since C is compact, there exist x;, x9, ..., x, € C such that
C c U7 B(x;, r, t). Let x, y € C. Then x € B(x;, r, t) and y € B(xj, r, t)
for some i, j. Thus we have M(x, x;, t) >1-r, N(x, x;, t) < r, M(y, xj, t)
>1-r and N(y, xj,t)<r. Let oy =min{M(x;, xj,t):1<1i, j <n}
and ay = max{N(x;, x;,t) : 1 <4, j < n}. Then oy, ag > 0.

Now, we have

M(x, y, 3t) > M(x, x;, t)* M(x;, x;j, t)* M(x;, y, t)
>(1-r)xoy x(1-7)

>1-s,

A

IN

roag or
< 89,

for some 0 < sy, 89 <1, 8,89, 7,1 -8 <aq and ag < sg. Taking s =
max{s;, sy} and 3t =¢, M(x, y,t')>1-s and N(x, y,t')<s for all
x, y € C. Hence, Cis IF-bounded.

Since C < X is compact, let {x,} be a Cauchy sequence in C and
{xn;} © {x,} that converges to x. Also, let ¢ > 0 and & € (0, 1). Choose
r €(0,1) such that 1-r)*(1-r)>21-¢ and r o r <& Since {x,} is

Cauchy sequence, there exists ny € N such that
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t t
M(xm,xn,§)>1—r, N(xm,xn,§j<r

for all m, n > ng. Also, since x, — x, there is a positive integer n
n; P

such that n, > ng,

t t
M(xnp,x, §)>1—r, N(xnp,x, §)<r.

Thus, if n > ng, then

M(x,, x, t) > M(xn, X, » %) * M(xnp, x, %)

>1-r)x1-r)

>1-¢,

N(x,, x, t) < N(xn, Xn,» %) o N(xnp, X, %)

<ror

< e
Hence for arbitrary ¢ e (0, 1),

lim, ,, M(x,, x,t)=1
and

lim,_,, N(x,, x, ¢) = 0.
Therefore, x, — x. That is, C is complete.

Definition 3.2. Let (X, M, N, * o)=X and (Y, M, N, * o)=Y

be intuitionistic fuzzy metric spaces. Then a mapping 7 : X —» Y is

continuous at a point xg € X if for every r > 0, there is s > 0 with

s < r such that

M(Tx, Txo, t)>1-r, N(Tx, Txg, t) <r
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for all x satisfying
M(x, x9,t) >1-s, Nlx, xq,t)<s,
where 1-r)*(1-r)>1-sandror<s.
T is said to be continuous if it is continuous at every point of X.

Theorem 3.3. Let X and Y be intuitionistic fuzzy metric spaces.
Then a mapping T of X into Y is continuous at a point xg € X iff

x, — xo implies Tx,, — Txg.

Proof. Assume T to be continuous at xy. For a given r € (0, 1), we
choose s € (0,1) with s <r such that 1-r)*(1-r)>1-s and ror
< s. Then by Definition 3.2 M(x, x¢, t) >1—s and N(x, xg, t) < s imply

M(Tx, Txy, t) > 1—r and N(Tx, Txy, t) < r. Let x,, — x(. Then we have
M(x,, x¢,t) >1—s and N(x,, x, t) < s.

Hence for all n > ng,
M(Tx,, Txo, t) > M(Txn, Tx, %) * M(Tx, Txg, %)

>A-r)x(1-r)
>1-5s
>1-r,

N(Tx,, Txg, t) < N(Txn, Tx, %) o N(Tx, Txo, %)

<ror

<8
<T.

Thus Tx,, — Tx.

Conversely, we assume that x,, — x; implies Tx, — Txy and prove
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that 7T is continuous at xy. Suppose that this is false. Then there is

r > 0 such that for every s > 0 with s < r, there is x # x( satisfying

M(x, x9,t) >1—-s and N(x, xg, ¢) <s, but M(Tx, Txo,t)<1-r and

N(Tx, Txy, t) > r. In particular, for s = l, there is x, satisfying
n

M(x,, xg, t) > 1 —% and N(x,, xg, t) < %, but M(Tx,, Txg, t)<1-r

and N(Tx,,, Txg, t) > r. Therefore x, — xg, but Tx, does not converge

to Txg. This contradicts Tx, — Txy and proves this theorem.

Theorem 3.4 (Continuous mapping). Let X and Y be intuitionistic

fuzzy metric spaces and let {T,}: X — Y be a sequence of continuous
mappings. If sequence {T,} converges to T :X — Y, then T is a

continuous mapping.

Proof. Let {T),} be a sequence of continuous mappings. Then for all

{x,} ¢ X with x, > xg,
M(T,x,, Tyxo, t)>1-s, N(T,x,, Tyxg,t)<s forse(0,1)

We choose r € (0, 1) such that (1 -s)*(1-s)*(1-s)>1-rands<¢s<¢s
<r. Since {T,} converges to T, for given ¢t >0 and r € (0, 1), there

exists ny € N such that

M(Tnxn,Txn,%j>l—s, N(Tnxn,Txn,%)<s,

M(Tnxo,Tx0,§)>1—s, N(TnxO,Txo,%j<s

for all n > ng and for all {x,,} ¢ X with x, — xy. Also, since T, is a

continuous mapping for all n € N,

M(Tnxn, T.xo, &

3)>1—s, N(Tnxn,Tnx0,£)<s

3

for all {x,} ¢ X with x,, - xg.
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Now,

M(Txn, Txo, t)
> ]\_/I(Txn, T,%,, %) * M(Tnxn, T,x0, %) * M(Tnxo, Txg, é)

>(1-s)*(1-s)*(1-5)
>1-r,

N(Txn, Txo, t)

< N(Txn, T,%,, é) o N(Tnxn, T,%x0, é) <& N(Tnxo, Txg, %)
<§08$s
<.

Hence T'is continuous for all {x,,} ¢ X such that x, — x,.
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