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Abstract

By an unramified map we shall mean a local homeomorphism of locally

connected topological spaces that is a cosheaf space in the sense of Funk

[Cahiers de Top. et Géom. Diff. Catégoriques 36(1) (1995), 53-93].

Cosheaf spaces have a topological characterization that is almost

identical to Fox’s notion of a complete spread [R. H. Fox, Covering

spaces with singularities, Algebraic Geometry and Topology: A

Symposium in Honor of S. Lefschetz, R. H. Fox et al., editors, pp. 243-

257, Princeton Univ. Press, Princeton, 1957]. Unramified maps are a

generalization of covering spaces. We show that an arbitrary unramified

map over a locally connected space has unique path and homotopy

lifting. We also show that the pullback of an unramified map along any

map of locally connected spaces is again an unramified map. These two

results imply that the category of unramified maps is a homotopy

invariant of locally path-connected spaces. A covering space of a locally

connected space is an unramified map, but over a locally path-connected

and semi-locally simply connected space we establish the converse, i.e.,
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we show that an unramified map is a covering space. We provide an

example of a connected unramified map over a connected, locally path-

connected space that is not a covering space.

0. Introduction

It is well-known that sheaves correspond by an adjointness to sheaf

spaces [24]. A sheaf space may be topologically characterized as a local

homeomorphism. It is perhaps less well-known that cosheaves correspond

by an adjointness to cosheaf locales [17]. In this paper we shall focus our

attention on the category of cosheaf spaces, which is equivalent to a full

subcategory of cosheaves (called the spatial cosheaves in [17]). Cosheaf

spaces also have a topological characterization (Proposition 2.1), which is

nearly the same as a slightly more general notion due to R. H. Fox [16]

called a complete spread. Fox had introduced complete spreads as a

topological framework by which to explain ramification phenomena such

as branching or folding. In Section 2 we review cosheaf spaces and

complete spreads for topological spaces, and how they are related.

We shall refer to a map into a locally connected space that is both a

sheaf space and cosheaf space as an unramified map. For instance, a

covering space is an unramified map in this sense (the fact that a

covering space is a cosheaf space is explained in [17]). One aim of this

paper is to address the question of the converse: when is an unramified

map a covering space? This cannot hold in general because a coproduct of

covering spaces may not be a covering space, but it is always an

unramified map. In Section 3, we provide a positive answer to the

converse by showing that over a locally path-connected and semi-locally

simply connected space, an unramified map is a covering space. We do

this by first showing that over a locally connected space, unramified maps

have unique path and homotopy lifting (Theorem 3.1). On the other hand,

Example 3.1 describes an unramified map over a locally path-connected

space that is not homeomorphic to a small coproduct of covering spaces.

It would be of interest to improve our knowledge of the category of

unramified maps (over a locally connected space). For instance, we may

immediately deduce from known facts about cosheaf and sheaf spaces
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that unramified maps are closed under finite limits and small coproducts,

which are created in the including  category of sheaf spaces. We show

that the category of unramified maps is a homotopy invariant of locally

path-connected spaces (Definition 5.2 and Theorem 5.1). This aspect of

unramified maps depends on their stability under pullback, which we

establish, and on the fact that they have the homotopy lifting property.

Consequently, if two locally path-connected spaces are homotopy

equivalent, then their respective categories of unramified maps are

equivalent.

Unramified maps, as we have defined them, are connected with topos

theory [6, 20, 24]. Though we occasionally comment on this connection

(Remarks 3.1 and 4.1 for instance), a familiarity with topos theory is not

required to understand our main results. For the interested reader, we

include here a brief explanation of unramified maps in the context of

toposes. Over a locale, a cosheaf locale and a localic complete spread are

equivalent concepts. These localic complete spreads have been generalized

to geometric morphisms under the same name complete spread [11, 13].

Complete spread geometric morphisms are related to Lawvere’s topos

distributions [21, 22], to the symmetric topos [9, 10], and to distribution

algebras, introduced in [15]. An unramified map is thus a special case of

an object X of a locally connected topos E with the property that the

induced geometric morphism EE →X  is a complete spread. Such

complete spread objects and their connection with the fundamental group

of a topos have been studied in [13]. Those results and the result we

establish here for topological spaces (Corollary 3.1) suggest that under

reasonably general hypothesis (of the ‘locally simply connected’ kind),

complete spread objects of a locally connected topos are locally constant.

At times we use category theory concepts to express our explanations.

These concepts such as functor adjoint functor, pseudo-functor, natural

transformation, equivalent categories, limit, colimit, and 2-category are

explained in [6, 7, 23]. A finite limit is a limit of finitely many objects and

morphisms. A pullback is an instance of a finite limit. A small coproduct

is a coproduct that is indexed by a set.
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1. Review of Fibrations and Covering Spaces

The path components of an open subset of a locally path-connected

space are open (and conversely). Furthermore, a locally path-connected

space is locally connected, and the path components of an open subset

coincide with its connected components. A locally path-connected space is

connected if and only if it is path-connected. If the codomain space of a

local homeomorphism is locally connected space, then so is the domain

space, and likewise for local path-connectedness.

Throughout, I shall denote the unit interval [ ].1,0  In [3], a

continuous map XY →ϕ :  is said to have the homotopy lifting property

(HLP) with respect to a space Z if in the following diagram of topological

spaces, given any two maps If
XZ →  and YZ

g
→  such that ,0 g⋅ϕ=⋅ fd

there is a unique map Ih
YZ →  such that fhI =⋅ϕ  and .0 g=⋅ hd

IX  denotes the exponential space of paths in X IX(  carries the compact-

open topology). The maps 0d  send a path p to ( ).0p  For instance, HLP

with respect to { }0  means unique path-lifting. The image of a map that

has unique path-lifting must be equal to a union of path-components of

the codomain space. The following is easily established:

Proposition 1.1. A map has the HLP with respect to I if and only if it

has the HLP with respect to { }0  and homotopy lifting with respect to I

(without uniqueness).
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If ϕ has the HLP with respect to every topological space, then ϕ is

said to be a fibration. Equivalently, ϕ is a fibration if the above square is

a pullback in the category of topological spaces. We shall use the

following terminology:

Definition 1.1. A discrete fibration is a fibration that is also a local

homeomorphism.

We next turn to covering spaces. Following [27], an open set BU ⊆

is evenly covered by a map BY →π :  if ( )U1−π  has an open partition

such that the restriction of π to each member of the partition is a

homeomorphism with U. Then π is a covering space if B has a cover of

open sets each of which is evenly covered by π. Implicitly, a covering

space is an onto map; however, throughout we shall assume only that the

image of a covering space of a space B is equal to a (possibly empty)

union of connected components of B.

It is well-known that a covering space of a locally path-connected

space is a fibration [8, 27]. Since a covering space is a local

homeomorphism, in our terminology a covering space of a locally path-

connected space is a discrete fibration. We recall that a space X is said to

be semi-locally simply connected if X has a cover { }αU  of open

neighbourhoods such that each αU  has the property that any two paths

in αU  with common endpoints are homotopic in X by a homotopy that

fixes the endpoints. (This is equivalent to saying that the image groupoid

of the induced functor of fundamental groupoids ( ) ( )XU 11 π→π α  is

equivalent to a trivial groupoid-a trivial groupoid is just a set.) It follows

immediately from [27, Chap. 2, Section 4, Theorem 10] that over a locally

path-connected and semi-locally simply connected space, a discrete

fibration is a covering space. We have the following:

Proposition 1.2. Over a locally path-connected and semi-locally

simply connected space the following notions are equivalent:

(1) covering space (whose image is equal to a union of connected

components),
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(2) discrete fibration, and

(3) a local homeomorphism that has the HLP with respect to

[ ].1,0=I

Proof. We have only to show that condition (3) is equivalent to the

other two. Suppose that X is locally path-connected and semi-locally

simply connected. Let XY →ϕ :  be a local homeomorphism that has

the HLP with respect to I. (This amounts to unique path-lifting and

homotopy lifting.) We shall show that ϕ is a covering space. We are

assuming that X has a cover of path-connected open neighbourhoods U

such that any two paths in U with common endpoints are homotopic in X.

Consider one such open set U, and the path components (= connected

components) of ( ),1 U−ϕ  which are (presumably non-empty) open subsets

of ( ).1 U−ϕ  Then ϕ maps every such component homeomorphically onto U.

Indeed, let A be a path component of ( ).1 U−ϕ  A is open in Y, so the

restriction of ϕ to A is an open map. Since U is path-connected, and by

path-lifting, we see immediately that UA →ϕ :  is onto. We have only to

show that ϕ is one-to-one in A. Suppose y and z are two points of A such

that ( ) =ϕ y  ( ) .xz =ϕ  There is a path f in A joining y and z, so that the

image path fp ⋅ϕ=  in U begins and ends at x. Since X is semi-locally

simply connected, there is a homotopy XIIH →×:  such that

( ) ( ) ( ) ( ) ( ) .1,0,,,1,,0 xsHsHxtHtptH ====

By hypothesis, we may lift H to H  such that ( ) ( ).,0 tftH =  The other

three ‘edges’ ( ),0,sH  ( ),,1 tH  and ( )1,sH  of H  are paths →′→ yy

zz →′  in Y, each lying over the identity path at x. By the uniqueness of

path-lifting, we conclude that .zzyy =′=′=

2. Review of Cosheaf Spaces and Complete Spreads

We review the notion of cosheaf space [17] and the slightly more

general notion of complete spread, due to R. H. Fox. Our terminology is a

mixture coming from [5, 16, 17]. We first review complete spreads.
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Following [16], a spread is a continuous map ,: XY →ϕ  where Y is

locally connected, such that the connected components of sets ( ),1 U−ϕ  for

U open in X, are a base for the topology on Y. We shall assume

throughout that the domain space of a spread is locally connected, even

though the notion can be sensibly generalized to the case of an arbitrary

domain space by using quasi-components [16, 25]. In order to formulate

completeness we recall that a cogerm of a map XY →ϕ :  at Xx ∈

(with Y locally connected) is a consistent choice of connected components

{ ( )},1 UU
−ϕ⊆α=α  where U ranges over all neighbourhoods of x. By

consistent, we mean that .VUVU α⊆α⇒⊆  Then a spread over a

space X is complete if for every ,Xx ∈  and every cogerm α at x, the

intersection UUx α∈∩  is non-empty.

We next turn to cosheaf spaces. For a given map XY →ϕ :  (with Y

locally connected) consider the collection

( ){ }. point a at  of cogerm a is,
~

XxxY ∈ϕα|α=

Y
~

 is topologized by the basic sets

( ) ( ){ },,,, β=α∈|α=β UUxxU

where U is an open set of X, and β is a connected component of ( ).1 U−ϕ

We refer to the topological space Y
~

 as the display space associated with

the cosheaf ( ( )),1
0 UU −ϕπ  where 0π  denotes connected components.

Y
~

 is continuously fibered over X in the obvious way. A fiber over a given

Xx ∈0  is sometimes called a costalk; it consists of the collection of pairs

( ){ }.,0 αx  A costalk may also be regarded as the limit

( ( )),lim 1
0

0
U

Ux

−

∈←
ϕπ

taken over the filter of open neighbourhoods of .0x  Y
~

 is locally

connected. Every element Yy ∈  determines a cogerm at ( ):yϕ  take Uα
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to be the unique component of ( )U1−ϕ  that contains y. This defines a

continuous map from Y into Y
~

 (over X ), denoted

( ) ( )( ).,;
~

: αϕ=η→η yyYY

It follows easily that the inverse image set ( )βη− ,1 U  is equal to β. A

cosheaf space is then a map XY →ϕ :  (with Y locally connected) for

which η is a homeomorphism. If Y is locally connected and XY
ϕ
→  is any

map, then the canonical projection XY
ϕ
→
~~

 is a cosheaf space.

Furthermore, there are adjoint functors connecting cosheaves and

cosheaf spaces, which induces an equivalence between the category of

cosheaf spaces over X and a full subcategory of cosheaves on X (called the

spatial cosheaves in [17, Definition 5.12]). The above map η is the unit of

this adjointness. The inclusion of spatial cosheaves in cosheaves has a

right adjoint.

Cosheaf spaces and complete spreads are nearly the same. The space

Y
~

 is precisely Fox’s construction of the completion of a spread. A map

with locally connected domain over a 1T  space is a cosheaf space if and

only if it is a complete spread with 1T  domain [17, Definition 5.17]. The

following proposition may help to clarify the notion of cosheaf space and

its connection with complete spreads:

Proposition 2.1 (Topological characterization of cosheaf spaces). For

any map XY →ϕ :  with locally connected domain, the following are

equivalent:

(1) ϕ is a cosheaf space.

(2) ϕ is a spread and η is a bijection, in which case the inverse of η is

given by:

( ) ( )., 11 xx
Ux

U
−

∈

− ϕ









α=αη ∩∩
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(3) ϕ is a spread, and for every Xx ∈  and every cogerm α of ϕ at x,

the set

( )x
Ux

U
1−

∈

ϕ









α ∩∩

is equal to a singleton.

Proof. (1) implies (2) because a cosheaf space is a spread with locally

connected domain [17, 5.14, 5.17], and η is a bijection, being a

homeomorphism. Conversely, if η is a bijection, then the image set ( )βη

is equal to ( ),, βU  where β is a component of ( ).1 U−ϕ  If ϕ is a spread,

then the β are a base for Y, so that η is open, hence a homeomorphism.

The formula given for 1−η  is easily seen to hold. The equivalence of (2)

and (3) is also easy to establish.

Corollary 2.1. Over any base space, a cosheaf space is a complete

spread.

Proof. Use Proposition 2.1(3).

Example 2.1. Cosheaf spaces occur in singularity theory. In Arnold

[1] we find the “Whitney cusp:” project the surface yzzx += 3  onto the

xy-plane. This projection is a cosheaf space with a fold. The singular set

in the xy-plane is a cusp, which is resolved on the surface.

We now define the pure, cosheaf space factorization of a map with

locally connected domain. The display space construction applies to any

map XY
ϕ
→  for which Y is locally connected. Thus, we may always factor

such a map as

,
~ ~

XYY
ϕη
→→

where ϕ~  is a cosheaf space. The map η is pure meaning that for every

non-empty, connected open set ,
~
YV ⊆  ( )V1−η  is again non-empty and
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connected. In particular, η maps Y onto a dense subset of .~
Y  This

factorization of a map with locally connected domain into its pure and

cosheaf space parts is unique up to unique homeomorphism. Given

XY
ϕ
→  and a cosheaf space ,XZ

ψ
→  any map ZY

ζ
→  such that ϕ=ζ⋅ψ

factors uniquely through YY
~η

→  over X.

The class of cosheaf spaces is closed under composition, and

furthermore, if ψ⋅ϕ  and ϕ are cosheaf spaces (with locally connected

domain), then so is .ψ  Pure maps are also closed under composition, and

if qp ⋅  and q are pure maps between locally connected spaces, then so is

p. A homeomorphism (of locally connected spaces) is a cosheaf space and

a pure map. Conversely, a cosheaf space that is also a pure map is a

homeomorphism. All these facts may be established directly (using

Proposition 2.1 for instance), or they may deduced from their known

counterparts in locale or topos theory.

The following pullback result holds for factorization systems in

general [7] , except that here we require a special assumption in order to

make the pure, cosheaf space factorization of the pullback available. We

shall use this result in Section 5.

Proposition 2.2. Consider the following pullback of a cosheaf space

ψ  (with K locally connected) along an arbitrary map f.

YX

KP

f

ψτ

g

If P is locally connected, then τ is a cosheaf space.

Proof. Consider the pure, cosheaf space factorization η, ϕ of τ. There

is a map KP δ→
~

 such that the following diagram commutes:
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Indeed, from the pure, cosheaf space factorizations of ,ϕ⋅f  respectively g,

we obtain two pure, cosheaf space factorizations of :τ⋅f  one by

composing the triangle above (left) with the pure map η, and another one

by composing the triangle above (right) with the cosheaf space ψ. Thus,

there is a unique homeomorphism RQh ≅:  such that β=η⋅α⋅h  and

.ζ=⋅ξ⋅ψ h  This gives the map α⋅⋅ξ=δ h  as above. Since P is pullback,

there is a map PP
ε
→

~
 such that ϕ=ε⋅τ  and .δ=ε⋅g  The map ε is

inverse to η. In fact, Pid=η⋅ε  follows immediately by the universal

property of the pullback P. On the other hand, since we have

,η=η⋅ε⋅η  we obtain Pid~=ε⋅η  because ϕ is a cosheaf space. Hence η

is a homeomorphism, so that τ is a cosheaf space.

The above new result has the following consequence, which we shall

use later. Corollary 2.2 is already known in topos theory [13].
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Corollary 2.2. Cosheaf spaces are stable under pullback along a local

homeomorphism.

Proof. If in a pullback diagram

YX

KP

f

ψτ

g

the map f is a local homeomorphism, then so is .g  Therefore, P is locally

connected since K is. The Proposition 2.2 now applies.

3. Unramified Maps have Unique Homotopy Lifting

From [16], a surjective covering space of a locally connected space is a

complete spread, but in fact a surjective covering space of a locally

connected space is a cosheaf space [17, 5.18]. A covering space is also a

sheaf space, i.e., a local homeomorphism.

Definition 3.1. We shall refer to a map of locally connected

topological spaces that is both a sheaf and cosheaf space as an

unramified map.

In this section, we shall show that under certain connectedness

assumptions on the base space, an unramified map is a covering space.

Proposition 3.1. Over a locally connected space, an unramified map

satisfies the HLP with respect to { }0  (i.e., an unramified map has unique

path lifting).

Proof. Let XY →ϕ :  be an unramified map, with X (and hence Y)

locally connected. Suppose we have a path XIP →:  and a point Yp∈

such that ( ) ( ).0Pp =ϕ  Consider the collection Φ of partial liftings

YDPD →:  of P, where D is a connected interval (open or closed) that

contains 0. We are assuming that ( ) pPD =0  and that the following

square commutes.
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XI

YD

P

PD

ϕ

The members of Φ may be uniquely identified with their domain of

definition D because by a closed-open argument any two liftings DD PP ′,

of P must be equal. The collection Φ is non-empty because it has { }0Pp =

as a member. We establish the existence of a lifting of P by showing that

the subset

∪
Φ∈

=

DP

DA ,

which is non-empty, is both an open and closed subset of I, hence equal to

I. Let us first show that A is open. Let ,Dt ∈  with associated lifting .DP

First, we find an open neighbourhood YV ⊆  of ( )tPD  in which ϕ is a

homeomorphism, and then a connected open interval W containing t such

that ( ) ( ).VWP ϕ⊆  We may extend DP  to a partial lifting WDP ∪  of P,

where WD ∪  is connected and contains 0. Thus, ,AW ⊆  so A is open.

Note that we have a lifting .AP

Now, we argue that the open subset A is closed. Since A is connected,

the closure A  is also connected. If we can produce a lifting ,AP  then

,AA ⊆  so that A is closed. Let .At ∈  We produce a cogerm at ( )tP  as

follows. Let U be an arbitrary open neighbourhood of ( ).tP  There is a

connected open neighbourhood B of t such that ( ) .UBP ⊆  Furthermore,

AB ∩  is non-empty, hence connected. Then the connected set ( )ABPA ∩

uniquely determines a component of ( ),1 U−ϕ  and furthermore the

component of ( )U1−ϕ  obtained in this way does not depend on the choice

of B. It follows that this defines a cogerm at ( ).tP   This cogerm corresponds
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uniquely to a point of the fiber ( )( ),1 tP−ϕ  which we define to be ( ).tPA

This defines a function YAPA →:  over P, which agrees with AP  on A.

Our assumption that ϕ is a spread enters into the verification that AP  is

continuous, because we have only to check that ( )β−1
A

P  is an open set,

where β is a component of a ( ).1 U−ϕ

The next lemma is used to argue in Theorem 3.1 that homotopies can

be lifted.

Lemma 3.1. Let X be locally connected, and let XY →ϕ :  be a local

homeomorphism that is also a spread. Then Y has a base of open

neighbourhoods { }V  such that each member V of the base is a component

of ( )U1−ϕ  for some open U, and such that ϕ restricts to a homeomorphism

.: UV →ϕ

Proof. Y has a base of open sets A such that ϕ restricts to a

homeomorphism in each A. Each of these A is equal to a union of open

subsets ,WV  such that WV  is a connected component of ( ),1 W−ϕ  for W

open in X. For each such ,WV  take ( ).WVU ϕ=  Then WV  is a component

of ( )U1−ϕ  since .WU ⊆  And ϕ restricts to a homeomorphism in WV

since .AVW ⊆

The compactness of I enters into the argument of the following result.

Theorem 3.1. Over a locally connected space, an unramified map has

the HLP with respect to I (i.e., unique homotopy lifting).

Proof. Suppose we have a commutative diagram
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where ϕ is an unramified map, with X locally connected. The left vertical

map is the map ( ).,0 ss  We may define a function YIIH →×:  by

lifting, for each s, the path ( ) ,10,, ≤≤ tstH  such that ( ) ( )shsH =,0

(Proposition 3.1). Clearly, H  is a lifting of H. We argue that H  is

continuous as follows. Let

∪
ID

DA
⊆

=

denote the union of (closed or open) connected intervals D that contain 0,

such that H  is continuous in .ID ×  Now A is non-empty because it has

0 as a member. We show that A is open and closed, hence equal to I.

First, we argue that A is open. Let ,0 Dt ∈  where H  is continuous in

,ID ×  and consider a point ( ).,0 st  There is a neighbourhood YV ⊆  of

( )stH ,0  with the property guaranteed by Lemma 3.1. Then we may find

an open disk B of ( )st ,0  such that ( ) ( ).VBH ϕ⊆  Thus, we have ( ) ⊆BH

( )( ).1 Vϕϕ−  We claim that, in fact, we have ( ) .VBH ⊆  Indeed, let ( )st ′′,

.B∈  H  is continuous in ( ),IDB ×∩  and also along the line

( ){ }.10, ≤≤|′= tstL  Note that ( )st ′′,  and ( )st ,0  both lie in the

connected set ( )( ),IDLB ×∪∩  which is contained in B. Furthermore,

H  is continuous in this connected set. Hence, the image of this set under

H  is connected, and is therefore contained in the component V of

( )( ).1 Vϕϕ−  In particular, ( ) ., VstH ∈′′  We conclude our proof that A is

open by using the compactness of I to find an r such that the tubular

neighbourhood ( ) Irtrt ×+− 00 ,  is contained in the union of finitely

many open disks iB  centered at ( ),,0 ist  such that for each i we have

( ) ,ii VBH ⊆  where YVi ⊆  is a neighbourhood of ( )istH ,0  with the

property guaranteed by Lemma 3.1. It follows easily that H  is

continuous in this tubular neighbourhood. Hence [ ) ,,0 0 Art ⊆+  so that

A is open. It can be argued that A is closed in exactly the same manner

except that the second step involving the compactness of I is not required.
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We have the following:

Corollary 3.1. Over a locally path-connected (hence locally

connected) and semi-locally simply connected space, the notions of

covering space and unramified map are equivalent. (The image of such a

map is equal to a union of connected components of the base space.)

Proof. We have already mentioned the known fact that in general a

surjective covering space of a locally connected space is an unramified

map. As always, we are assuming that the image of a covering space of a

locally connected space is equal to a union of connected components of the

base space, so we may apply the surjective case to each connected

component separately, and then use the easily established fact that the

disjoint union of a collection of unramified maps is again an unramified

map. For the converse, by Propositions 1.2 and 3.1, and Theorem 3.1,

under the given assumptions an unramified map is a covering space.

We conclude this section with the following example:

Example 3.1. We describe a connected unramified map over a

connected, locally path-connected space (which is not semi-locally simply

connected) that is not a covering space. (By a connected map we mean a

map whose domain space is connected. The significance of having a

connected example is explained in Remark 3.1.) We take for the base

space X a ‘pencil’ of tangent circles nC  of radius ...,,3,2,1,
1

=n
n

topologized as a subspace of the Euclidean plane. In other words, let

∪
∞

=

=
1n

nCX

with a single tangent point a such that { }., aCCnm nm =≠∀ ∩  The

domain space Y consists of countably many copies of the real line and of

X, topologized as a subset of Euclidean 3-space. To be precise, let

,
11




























=

∞

=

∞

=
∪∪ ∪
z

z
n

n XUY
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where n is a natural number and z is an integer, and let XY →ψ :  be

the map such that:

(1) each nU  is a homeomorphic copy of the real line, and ψ restricted

to nU  is a universal covering map ,nn CU →

(2) ( ) { }...,2,1,1,2...,1 −−=ψ− a  ordered consecutively on ,1U  and

( ) { },...,1,,,1...,1 +−−−=ψ− nnnnUa n∩

(3) ψ carries zX  homeomorphically onto ,1 jzj C∞
+=∪  ...,,2,1=z

(4) each ( )aYy 1−ψ−∈  has an open neighbourhood that is

homeomorphic to the real line,

(5) ( ) { } ....,2,1,1 ==∞
= zzUX nnz ∪∩

The space Y is connected and locally path-connected. We readily see that

the map ψ is a local homeomorphism, even at the points of the fiber

( ).1 a−ψ  Furthermore, ψ is a spread, and it also holds that the fiber of any

point of X is in bijection with its cogerms, so that ψ is a cosheaf space. On

the other hand, ψ is not a covering space because the point Xa ∈  does

not have an evenly covered neighbourhood. Indeed, any neighbourhood B

of a contains a circle ,nC  for some n. For this n, the point n of ( )a1−ψ

(according to our naming convention) is a member of .nU  The connected

component of ( )B1−ψ  that contains this point must contain all of ,nU  so

that ψ cannot restrict to a homeomorphism of this component onto B.

Remark 3.1. Let ( )BSh  denote the category of sheaf spaces over a

(locally connected) space B. Let ( )B1∏  denote the full subcategory of

( )BSh  whose objects are all small coproducts of covering spaces. (For a

topos-theory perspective of covering spaces and the fundamental group of

a space we refer the reader to Grothendieck [19]. More recent

developments of this theory and further information concerning the
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category ( )B1∏  may be found in [2, 12] and the references cited therein.)

The space Y described in Example 3.1 is connected, so ψ cannot be

homeomorphic to a coproduct of covering spaces. The unramified map ψ

is thus not a member of ( ),1 X∏  where X is the space of Example 3.1.

However, ψ has unique path-lifting (Proposition 3.1).

4. The Category ( )XU

It would be of interest to know what kind of category the unramified

maps form, and what are its properties. In this section, we collect some

facts about this category. Let U  denote the category of locally connected

spaces and unramified maps (with the usual composition). This is a

category because both sheaf spaces and cosheaf spaces are closed under

composition.

If A is an object of a category ,C  then AC  denotes the category

whose objects are all morphisms .AB →  The morphisms of AC  are

commutative triangles over A. AC  is sometimes called a slice category.

Definition 4.1. For a locally connected space X, let ( )XU  denote the

slice category .XU  Explicitly, an object of ( )XU  is an unramified map

into X, and a morphism is an unramified map over X, as in the following

diagram:

A map between sheaf spaces is a sheaf space. In Section 2, we
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mentioned that similarly a map between cosheaf spaces is a cosheaf

space. Thus, the categories of sheaf, respectively cosheaf, spaces over X

are full subcategories of topological spaces over X. ( )XU  is a full

subcategory of both these categories.

Proposition 4.1. Unramified maps are stable under pullback along

an arbitrary map of locally connected spaces.

Proof. Let XK →ψ :  denote an unramified map. The pullback of ψ

is a local homeomorphism, so if the codomain space of the pullback is
locally connected, then so is its domain space. We may now apply
Proposition 2.2.

Remark 4.1. Topos versions of Propositions 2.2 and 4.1 also hold, by
the analogous concepts and tools for geometric morphisms [11, 13, 14,
18]. For instance, the topos version of Proposition 4.1 is as follows:

Complete spread objects are preserved under the inverse image functor of

an arbitrary geometric morphism between locally connected toposes. The

proof of Proposition 2.2 depends on the fact that cosheaf spaces are closed
under composition. Closure under composition of complete spread
geometric morphisms is shown in [18].

Proposition 4.2. For any locally connected space ( )XUX ,  has finite

limits and small coproducts, which are created in the including category

of sheaf spaces over X (in turn, these are created in topological spaces

over X).

Proof. The terminal unramified map is the identity .: XXid →
The sheaf space pullback of unramified maps is again an unramified map
because cosheaf spaces pullback along local homeomorphisms (Corollary
2.2). It is not difficult to see that a small coproduct of cosheaf spaces (as
topological spaces) is again a cosheaf space. If the maps are also sheaf
spaces, then this coproduct is also the sheaf space coproduct.

Remark 4.2. Let X denote a locally connected space. A covering

space is an unramified map, so by Proposition 4.2, ( )X1∏  (Remark 3.1) is

a full subcategory of ( ).XU
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From [12], the inclusion of ( )X1∏  in sheaves has both left and right

adjoints. Therefore, the inclusion of ( )X1∏  in ( )XU  has both adjoints.

Remark 4.3. For the reader interested in indexed categories and

fibrations (in the sense of categories) [4, 26], observe that ( )XU  is a

( )X1∏ -indexed category when for XP
p
→  in ( ),1 X∏  we define the fiber

category ( )pXU  as the slice category

( ) ( ) ( ).PUpXUXU p ==

This ( )X1∏ -indexed category has “∑  satisfying the BCC” because

unramified maps compose. It is a locally small ( )X1∏ -category because

the inclusion of ( )X1∏  in ( )XU  has a right adjoint.

A discrete opfibration is a functor BA →:F  with the property that

every morphism ( ) BAF →  in B has a unique lifting AA ′→  in A

[6, 20]. If A is a small category, then the category of functors Set→A

and natural transformations (denoted ASet ) is canonically equivalent to

the category of discrete opfibrations over A.

Let ( )X1π  denote the fundamental groupoid of a space X. Then, the

functor category ( )XSet 1π  is equivalent to the category of discrete

opfibrations over the groupoid ( ).1 Xπ  Let ( )XHLP  denote the full

subcategory of sheaf spaces over X that have the HLP with respect to I.
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We have a functor

( ) ( )XSetXHLP 1:1
π→π

that carries XEp →:  to the discrete opfibration ( ) ( )Epp 11 : π=π ∗

( ).1 Xπ→  (HLP with respect to I guarantees that ∗p  is a discrete

opfibration.) For locally connected X, we have the following categories

and functors:

The horizontal arrows depict full subcategories (Remark 4.2 and Theorem

3.1). We may restrict 1π  to these full subcategories, as indicated in the

diagram.

Remark 4.4. If X is locally path-connected and semi-locally simply

connected, then the four categories in the above diagram are equivalent.

Indeed, it is well-known that if X is locally path-connected and semi-

locally simply connected, then ( )X1∏  is equivalent under 1π  to the topos

( )XSet 1π  (in this case a small coproduct of covering spaces is again a

covering space). ( )XHLP  is equal to ( )X1∏  by Proposition 1.2. In

particular, for such X, ( )XU  is a Grothendieck topos.

One particular question about unramified maps that we have not

answered comes to mind: Is ( )XU  closed under coequalizers in the

including topos of sheaf spaces over X ?
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5. U is a Homotopy Invariant

In this section, we describe in what sense U is a homotopy invariant.

There is a notion of 2-cell between maps that naturally accompanies U,

which we call a U-homotopy. Because U is a homotopy invariant, these

U-homotopies may be regarded as generalized homotopies.

Definitions 5.1 and 5.2 below are in terms of what is called a pseudo-

functor, or homomorphism of bicategories [4, 7, 26]. Let CAT denote the

2-category of locally small categories, functors, and natural isomorphisms.

Briefly, a pseudo-functor in a category C  is a functor

CAT→CP :

that preserves the composition and identities of C  only up to natural

isomorphism in CAT. More precisely, a pseudo-functor P  comes equipped

with natural isomorphisms

( ) ( ) ( )ggg PPP ⋅≅⋅α fff :,   and  ( ) AA
A idid PP ≅α :

subject to certain coherence conditions [7, 26].

By Proposition 4.1, a continuous map of locally connected spaces
contravariantly induces a functor (by pullback) of unramified map

categories. Let ∗f  denote the pullback functor along a map YXf →:  of

spaces. When X and Y are locally connected, by Proposition 4.1, we have

a functor

( ) ( ) ( )XUYUffU →= ∗ :    (Definition 4.1),

where for any unramified map ,YK
ψ
→  the (underlying set of the) domain

space of the pullback ( )ψ∗f  is the space

( ) ( ) ( ) ( ){ }., kxfKXkxKf ψ=|×∈=∗

If XW
g
→  is another map (for locally connected W), then the natural

isomorphism

( ) ∗∗∗ ⋅≅⋅α fff ggg :, (1)
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is given by

( ) ( )( )( ),,,,, kwwkwf gg =αψ

where YK
ψ
→  is an unramified map. With these definitions, it is clear

that we have a contravariant pseudo-functor:

,: op CATTspU →

where Tsp denotes the category of (locally connected) topological spaces

and continuous functions (or maps).

Remark 5.1. A functor ( ) ∗= ffU  is the restriction to unramified

maps of the inverse image functor of the induced geometric morphism

between corresponding sheaf toposes. For any map f between locally

connected spaces, ∗f  preserves finite limits and small coproducts

(Proposition 4.2).

For the following, let

CATTsp →op:P

denote an arbitrary pseudo-functor. For any map ,: YXf →  we denote

the functor ( ) ( ) ( )XYf PPP →:  by .∗f  We have coherence isomorphisms

(1). We denote the identity natural isomorphism on the functor ∗f  by .1 ∗f

Definition 5.1. For a pseudo-functor P as above, a P-homotopy

YXf →⇒ :g  is a natural isomorphism .∗∗ ⇒ gf  If g⇒fH :  is a

P-homotopy and ψ  is an object of the category ( ),YP  then we call the

isomorphism ( ) ( )ψ→ψ ∗∗
ψ gfH :  in ( )XP  a component isomorphism of

H.

Example 5.1. A U-homotopy YXfH →⇒ :: g  is a natural

isomorphism .∗∗ ⇒ gf  Such an H is given by a homeomorphism :ψH
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( ) ( )ψ→ψ ∗∗ gf  over X for every unramified map .YF
ψ
→  The component

homeomorphisms ψH  are natural in ψ  in the sense that for any

diagram

over Y, the following diagram over X commutes:

( )

( )
FE

FfEf

m

HH

mf

∗∗

∗∗

∗

ψϕ

∗

gg
g

Remark 5.2. We also have 1∏ -homotopies for the pseudo-functor

1∏  (Remark 3.1). A U-homotopy defines a 1∏ -homotopy because ( )XU

contains ( ).1 X∏  Hence, the resulting classes of U-homotopy equivalent

spaces are possibly smaller.

The next result shows that ordinary homotopies induce

U-homotopies. We shall denote a homotopy YIXH →×:  such that

( ) ( )xfxH =0,  and ( ) ( )xxH g=1,  by

.:: YXfH →⇒ g

A homotopy H has an involution −H  such that ( ) ( ).1,, txHtxH −=−

Proposition 5.1. A homotopy ,:: YXfH →⇒ g  where X is locally

path-connected and Y is locally connected, induces by path-lifting a

U-homotopy ,g⇒f  i.e., H induces a natural isomorphism .∗∗ ⇒ gf  (We

shall denote the induced U-homotopy by ( ).HU  For any unramified map
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YA
ψ
→  we shall denote the component homeomorphism ( )ψHU  of the

natural isomorphism ( )HU  simply by ,ψH  as above.)

Proof. Let YXfH →⇒ :: g  be a homotopy, with X locally path-

connected and Y locally connected. For any ,YA
ψ
→  the homeomorphism

( ) ( )AAfH ∗∗
ψ → g:  over X is defined by path-lifting as follows. Let

( ) ( ),, Afax ∗∈  so that ( ) ( ).xfa =ψ  We have a path ( )( ) ( ) →ψ xftaH :,

( )xg  in X, which may be lifted uniquely to a path ba →  in A. We define

( ) ( ).,, bxaxH =ψ  This defines a function ,ψH  which is easily seen to be

a bijection. In fact, the inverse function ( ) 1−
ψH  is equal to ( ) .ψ

−H  In

order to show that ψH  is continuous it suffices to show that ( )AfP ∗
ψ :

,A→  ( ) ,, baxP =ψ  is continuous. We establish that ψP  is continuous

with the help of Lemma 3.1. First, we claim that ψP  is path-continuous,

meaning that for any path ( ),AfI ∗γ
→  ( ) ( ),, ss axs =γ  γ⋅ψP  is

continuous. We have ( ) ( ) ., xaxf =ψ∗  We have the homotopy

( ) ,:, YIItxH s →×  and also the path ( ) .10,,0 ≤≤ ttxH  By the

definition, the codomain of the unique lift of this path is ( )( ).0γψP  We may

lift ( )txH s ,  to a homotopy Ĥ  in A. It follows that ( )( ) ( ),1,ˆ sHsP =γψ

which is a continuous function.

We can now show that ψP  is continuous. It suffices to show that

( )VP 1−
ψ  is open for V with the property described in Lemma 3.1. Note

that ( )Af ∗  is locally path-connected since X is (by assumption) and since

( )ψ∗f  is a local homeomorphism. Let ( ) ( )VPax 1, −
ψ∈  so that

( ( ) ( )) ( ( )) ( ).,, VaxPaxf ψ∈ψ=ψ ψ
∗g  Hence ( ) ( ) ( )( )., 1 Vaxf ψ∈ψ −∗ g  Since
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( )ψ∗f  is continuous, there is a path-connected neighbourhood U of ( )ax,

such that ( ) ( ) ( )( ).1 VUf ψ⊆ψ −∗ g  Therefore,

( ( )) ( ( ) ( )) ( ),VUfUP ψ⊆ψ=ψ ∗
ψ g

and hence ( ) ( )( ).1 VUP ψψ⊆ −
ψ  ( )UPψ  is path-connected because ψP  is

path-continuous. ( )UPψ  meets the connected component V of ( )Vψψ−1

in a non-empty set (the point ( )axP ,ψ  is in this intersection), so

( ) ⊆ψ UP  .V  This concludes our argument that ,ψP  and hence ,ψH  is

continuous. ψH  is a homeomorphism because the same argument shows

that ( )ψ
−H  is continuous. The naturality of the component isomorphisms

ψH  is readily verified.

In order to define what we mean by a homotopy invariant we briefly
investigate what sort of 2-cell structure homotopies give the category
Tsp. Homotopies may be composed vertically and horizontally. The
vertical composite KH of g⇒fH :  and hK ⇒g:  is defined using the

map ( ).
2

1
,

2
2

2
1

1
+

→+
t

t
t

tIII  The horizontal composite HK ⋅  of

YXfH →⇒ :: g  and ZYkhK →⇒ ::  is given by

( ) ( )( ).,,, ttxHKtxHK =⋅

For every map ,: YXf →  there is a distinguished homotopy denoted f1

such that ( ) ( ),,1 xftxf =  for every ( ) ., IXtx ×∈  Any such homotopy f1

is an idempotent, and we have .111 gg ⋅=⋅ ff  The horizontal composite

hH 1⋅  of homotopies YXfH →⇒ :: g  and XWhhh →⇒ ::1  is

called “whiskering H on the left by h”. We also denote hH 1⋅  by .hH ⋅

We may also whisker H on the right by a map .ZY
h
→

We mentioned previously that a homotopy H has an involution .−H
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The involution satisfies ( ) ( ) ( ) ,,, −−−−−−−− ⋅=⋅== KHKHHKHKHH

and ( ) .11 ff =−

The above definitions almost make Tsp into a 2-category. For

instance, the interchange law holds: ( ) ( ) ,JHLKHKJL ⋅=⋅⋅  for

homotopies ,::,::,:: ZYkjKYXhJYXfH →⇒→⇒→⇒ gg

and  .:: ZYlkL →⇒  But the vertical composition is not associative,

and the idempotent homotopies f1  are not identities for vertical

composition. A consequence of not having vertical identities is that we

may not express horizontal composition in terms of whiskering and

vertical composition: the following derivation, which is valid in a

2-category, is not valid for homotopies:

( ) ( ) ( ) ( ).11 fKHkHKHK fk ⋅⋅=⋅=⋅

Even though Tsp with homotopies is not a bicategory we can still

make sense of the notion of a homomorphism of bicategories from Tsp.

We shall define a homotopy invariant as such a homomorphism. This is

spelled out in the following definition:

Definition 5.2. A homotopy invariant is a pseudo-functor

CATTsp →op:H

that moreover associates with a homotopy g⇒fH :  a natural

isomorphism ( ) ∗∗ ⇒ gfH :H  (i.e., an H -homotopy according to

Definition 5.1) such that

(1) ( ) ( ) ( ),KHHK HHH =

(2) for YXfH →⇒ :: g  and ,:: ZYkhK →⇒  we have

( ) ( ) ( )( ) .,, fhk KHHK α⋅=⋅α HHHg

In the special case of whiskering this amounts to:

(a) ( ) ( ( ) ) ,,, fhh hHHh α⋅=⋅α ∗HHg  for ,: ZYh →
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(b) ( ) ( ( )) ,, hfh, HhhH α⋅=⋅α ∗ HHg  for ,: XWh →

(3) ( ) ,11 ∗=
ffH  and

(4) ( ) ( ) .1−− = HH HH

Remark 5.3. Let CATTsp →op:H  be a homotopy invariant. If X

and Y are homotopy equivalent spaces, then ( )XH  and ( )YH  are

equivalent categories.

By building on Proposition 5.1, we shall show that U is a homotopy

invariant of locally path-connected spaces. In particular, Theorem 5.1

confirms that a U-homotopy (Definition 5.1 and Example 5.1) is a

generalized homotopy.

Theorem 5.1. The pseudo-functor CATTspU →op:  is a homotopy

invariant. In particular, if two locally path-connected spaces are

homotopy equivalent, then their categories of unramified maps are

equivalent.

Proof. U is easily seen to respect vertical composition of homotopies.

We shall show that U respects horizontal composition of homotopies

(Definition 5.2(2)) by working with vertical composition and whiskering.

Let YXfH →⇒ :: g  and ZYhkK →⇒ ::  be two homotopies. We

shall show that ( ) ( ) ( )( ).HkKUHKU ⋅⋅=⋅ g  Fix ,Xx ∈  and consider

the homotopy

( )( ) ,:,, ZIItsxHK →×

depicted by the following diagram.
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( )HKU ⋅  is defined by lifting the diagonal path in the above diagram,

whilst ( ) ( )( )HkKU ⋅⋅ g  is defined by lifting the left and bottom paths.

These two paths are homotopic in Z, so we have ( ) =⋅ HKU

(( ) ( )).HkKU ⋅⋅ g

Now, we show that U respects whiskering on the left: ( ) =⋅ hHU

( ),HUh ⋅∗  for YXfH →⇒ :: g  and .XW
h
→  (We omit the coherence

natural isomorphisms hf ,α  from the notation since they play only a

“background” role.) Let YA
ψ
→  be an unramified map. We must show

that ( ) ( ),ψ
∗

ψ =⋅ HhhH  where

For instance, keep in mind that ( ) ( ) ( )( ) ( ){ }., awhfAWawAhf ψ=|×∈=⋅ ∗

We have only to show that

( )

( )

( ) AAh

AfAhf

p

HhH

p

∗∗

⋅

∗∗

⋅

⋅

ψψ

gg
2

1

commutes, where the maps ip  are the canonical projections: ( )aw,

( )( )., awh  Since A∗g  is a pullback, it suffices to show that the square
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commutes when followed by the projection .:0 AAp →∗g  We have the

path

( )( ) ( ) ( )( ) ( )( )whwhfatwhH g→=ψ:,

in Y. By the definition, ( ) (( ) ( ))awhHpp ,20 ψ⋅⋅  is equal to the codomain

of the lift

( ) ( )awhHa ,ψ⋅→

of the former path to A. But this is precisely the definition of

( ( )( )).,0 awhHp ψ  This shows that ( ) ( ).ψ
∗

ψ =⋅ HhhH  To show that U

respects whiskering on the right we must show that ( ) ,
ψψ ∗=⋅

h
HHh  for

WY
h
→  and an unramified map .WA

ψ
→  We omit verification of this. We

may now show that U respects horizontal composition with the following

derivation (ignoring the α’s):

 ( ) ( ) ( )( )HkKUHKU ⋅⋅=⋅ g

( ) ( )HkUKU ⋅⋅= g

( ( )) ( ( ) )∗∗ ⋅⋅= kHUKUg

( ) ( ),KUHU ⋅=

where the last step is by interchange in CAT. The remaining conditions

of a homotopy invariant may be routinely verified.
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