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Abstract

In this paper, the extended projective Riccati equations method is
proposed and then the two-dimensional variable coefficient Burgers
equation is chosen to illustrate the method. As a result, two families of

exact soliton-like solutions for this equation are obtained.
1. Introduction

Finding more exact solutions of nonlinear partial differential
equations (NPDEs) in mathematical physics plays an important role in
mathematical physics. Recently, Conte et al. [3] presented an indirect
method to seek more new solitary wave solutions of some nonlinear PDEs
that can be expressed as a polynomial in two elementary functions which
satisfy a project Riccati equations [1]. In this paper, we propose the
extended projective Riccati equations method and then we choose the
two-dimensional generalized Burgers equation to illustrate the method.
As a result, two families of soliton-like solutions are found with the help
of symbolic computation system-Maple.
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2. The Extended Projective Riccati Equations Method
Now we establish the improved projective Riccati system method as
follows:

Given an NPDEs with three variables {x, y, ¢},
P(ut, Uy, Uys Uspy Uygs Uy L) =0, 1)

Step 1. We assume that Eq. (1) has the following formal solutions:

m

u(w, y,1) = ag + D o' (©)[agt(e) + bio(@)l @)

i=1
where ag = ag(x, ¥, t), a; =a;(x, y,t), b; =b(x, ), (=12, ...,m)
and & = &(x, y, t) are all unknown functions of {x, y, t}, o(§) and 1(§)
satisfy the following projective Riccati system [1-3, 6].

'(g) = es(8)1(), T(E) = R +et*(E) - po(E), ex1, ®3)

2
() = —S[R ~ 2u0(8) + & = Ls2@)], R=o, 4)

where R and p are constants.

The parameter m is the balance constant [5], which is obtained by
balancing the highest order derivative term and the nonlinear terms in
(1) (m is usually a positive integer). If m is a fraction or a negative

integer, we usually make the transformation u(x, y, ¢) = ¢"(x, y, t).

Step 2. Substituting (2)-(4) into (1), we can obtain a set of algebraic
polynomials for t'(¢)c’(€) (i=0,1;j=0,1,..) from the resulting
system’s numerator. Setting the coefficients of these terms t'(£)s’(€) to

zero, we get a system of over-determined partial differential equations

(PDEs) with respect to unknown functions of ag, a;, b; (i =1, 2, ..., m)

and &.

Step 3. Using symbolic computation system-Maple, we would end up
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with the explicit expressions for u, ag, a;, b; (i =1, 2, ..., m) and & or the

constraints among them.

We know that the projective Riccati equations (3) have the following
solutions:

Case1l. When e = -1, R # 0

01(6) = Rsech(vVRE) 0 (6) = VR tanh(VRE)
! psech(«/ﬁé) 1! psech(\/ﬁé) +1
a Resch(VRE) 3 VR coth(VRE)
o2(8) = pesch(VRE) +1° ()= pesch(WVRE) +1° ®
Case 2. When ¢ =1, R #0
GalE) = R sec(VRE) () = VR tan(vVRE)
3 nsec(VRE)+1’ 3 nsec(VRE)+1’
_ Resc(VRE) . VR cot(VRE)
o4(8) = nese(WVRE) +1° 1©) = pesc(VRE) +1° ©

Step 4. Write the solutions of Eq. (1) from Egs. (2), (5), (6) and the

conclusions in Step 3.
3. New Soliton-like Solutions

Consider the two-dimensional generalized Burgers equation [4]
(W +utty — Uy ), +8(t)uy, = 0. @)

In [4], the author discussed symmetries and invariant solutions of Eq.
(7). Now we apply the extend projective Riccati equations method to Eq.
(7). By the balancing procedure, we assume the solutions of (7) in the

following special form
u(x, t) = ag + box + a;1(g) + byo(8), ®)

where Qy = Clo(y, t)’ bO = bO(t)’ a = al(t)’ bl = bl(t)’ E.\ = xp(t) + Q(y’ t)
and 1(§), o(§) satisfy (1)-(2).
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Substituting (3), (4) and (8) into (7), collecting coefficients of
monomials of 1(€), o(€) and x of the resulting system’s numerator (Notice

that ag, by, a1, by, p and g are independent of x), then setting each
coefficients to zero, setting & = -1, we obtain the following over-
determined system of 13 PDEs with respect to {ag, by, a;, b1, s, D, q}
(Notice: for simplicity, we only consider the case with ¢ = 1)
2 2 2 3 2 2
—R*(-2pajnby — Rsqyby — Rp“agh; + Rp°ajp — sq,,a1n + Ray p™u

- Rpbiq; — pyayp — pagu) = 0 )
R?pby(bop + p;) = 0 (10)

~R(-Taip*n + Tai p*n® + 5Rpbip + 25q3b; — 2pbign” — 12p°arp

+2p2agh; +12p°ap® — 2s¢2byp? + 2pbig, - 2p°apbiu?) = 0, (11)
R*(sagy, + b3 +by;) = 0, (12)
2Rpby(n - 1) (u + 1) (bop + p;) = O, (13)

3 2 2 2 2
—2R[3Rp°bju + payq; — sqyan” + 5qya; — payqu

+ 8Rayup?b; + pZagay (1 — p?)] = 0, (14)
2Rpa; (- 1) (n +1) (bop + p;) = 0, (15)

3p%(n - 1) (u + 1) (2payn® + p’af - 2pa; —af + RbY) = 0, (16)
6Rp?bi(n—1)(n+1)(p + a) = 0, ()

R*(-sq,,b; - 2pbby + Rayp®by - pby, + Rp’by
- PPagan - sqiaip — pagug, — byp;) = 0, (18)

—R2upa1(b0p +p;) =0, (19)
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2.2 2 2 3
R(5Ra;p"p” - 3Rpbig;u + 2payby — 3Rsqybjp — 4p°ay R

~ 3RpZagbiu + 2R*p?b{ — pyayu® + sq,,a; - 2ai Rp®

+ Doy — Snya1H2 + pay — payu® — 2pabou’) = 0, (20)
—3R*upby (bop + p1) = 0, 21)
where s = s(t), q, = %ﬁ’t), ap = d%t(t) and so on. Using Maple to

solve the system of PDEs (9)-(21), we obtained the following results.

Case 1. p=b =0, s=s@), ap=F@)y+F0) by =—n.
t+C1

2C, _ Cy

t+C]_, p t-’rC]_,

O

g = —3(Cy® — Cy) - J'S(CZ(D C'(t+ 1) g, J’CZ 2®) 4 1 ¢y (22)

Cy
JC? + RC3 C 1
Case 2. s = s(t), u:i%, a = - 8. by = ,
3 t+ Cl t+ Cl
ag = Fi(t)y + Fa(t), p= , b=

t+C1

g = —y(C3® - C3) - .[ (G = G5)t+Cy) gy | GO 4 1 ¢, (@23
Cg t+ Cl

where Cj, ..., C4 are arbitrary constants, s = s(¢) denotes that s is an

arbitrary function of ¢, F(¢), Fy(¢) are arbitrary functions of ¢ and

_ [ HB®
(D_J.t-i-cldt

Therefore from (5), (6), (8), (22) and (23), we obtain two families of

solutions for two-dimensional generalized Burgers equation (7) as follows:

Family 1

upp = Fi(t)y + Fo(t) +

Sl )

t+C t+C t+C
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wy = Fy(t)y + Fylt) + —— - 22 J_ th[\/_( xCy +qﬂ,

t+C t+C t+C

where ¢ is determined by (22).

ugy = Fi(t)y + Fy(t) +

ugg = Fi(t)y + Fy(t) + ;

Family 2

X, VR tanh(vVR: &) Rsech(VR¢)
t+C usech(x/_E_,) + 1 psech(VRE)+1°

va x/Ecoth(\/_ﬁ) Rcsch(\/EE_,)
+C ucsch(x/_é_,) + 1 nesch(VRE) +1°

where & = xp + ¢ and aq, by, 1, p, ¢ are determined by (23).
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