ON AN EIGENVALUE ASYMPTOTICS FOR A SCHRÖDINGER OPERATOR WITH THE DE GENNES EFFECT ASSOCIATED WITH SUPERCONDUCTIVITY

JUNICHI ARAMAKI

Department of Mathematical Sciences Faculty of Science and Engineearing Tokyo Denki University Hatoyama-Machi, Saitama 350-0394, Japan e-mail: aramaki@r.dendai.ac.jp

Abstract

We study the eigenvalue asymptotics for a Schrödinger operator with a magnetic potential and with the de Gennes effect associated with the superconductivity near critical temperature. When the magnetic potential is depending on a parameter and the parameter tends to zero, we examine the asymptotics of the first eigenvalue and the corresponding eigenfunction. The result improves our previous paper Ando and Aramaki [2] and Pan [21].

1. Introduction

In the present paper, we consider the eigenvalue asymptotics for a magnetic Schrödinger operator associated with the superconductivity taking the de Gennes parameter into consideration. The superconductivity of the sample in a domain $\Omega \subset \mathbb{R}^3$ under the applied field \mathbb{H}_{appl} is described by a minimizer (ψ, \mathbb{A}) of the Ginzburg-Landau functional

$$G[\psi,\ \mathbb{A}] = \int_{\Omega} \left\{ \mid \xi \nabla \psi - i \gamma \lambda^{-1} \mathbb{A} \psi \mid^{2} + \frac{1}{2} (1 - \mid \psi \mid^{2})^{2} \right\} dx$$

 $2000\ Mathematics\ Subject\ Classification:\ 82D55,\ 35P15,\ 35Q55.$

Keywords and phrases: eigenvalue problems, the de Gennes effect, superconductivity.

Received January 15, 2008

$$+\delta^{2}\int_{\mathbb{R}^{3}}|\operatorname{curl}A-\mathbb{H}_{\operatorname{appl}}|^{2}dx+\gamma\int_{\partial\Omega}|\psi|^{2}dS.$$

Here ψ is a complex valued function called an *order parameter* and $\mathbb A$ is a real valued vector field called a *magnetic potential*, and the penetration depth λ , the coherence length ξ , and δ is a positive parameter depending on materials and temperature and $\gamma \geq 0$ the de Gennes parameter. γ is very small for insulator, very large for magnetic material, and lying in between for non-magnetic material. If we put a new parameter $\mu = 1/\xi^2$, μ means physically,

$$\mu = \frac{1}{\xi^2} = \frac{4m\alpha^2 l^2 (T_c - T)}{\hbar T_c},$$

where T is the temperature, T_c is the critical temperature under zero applied field, \hbar is the Plank constant, l is a typical scale of the sample, m is the electron mass, α is a material constant independent of temperature. The Ginzburg-Landau parameter κ is defined by $\kappa = \lambda/\xi$. It is well known that if $\kappa > 1/\sqrt{2}$, the sample is of type II and if $0 < \kappa < 1/\sqrt{2}$, the sample is of type I. For these arguments, see Aramaki [5], Chapman et al. [6], Du et al. [9], Gunzburger and Ockendon [12], Lu and Pan [18, 19, 20], Helffer and Pan [17].

By a scaling

$$\mathcal{A} = \frac{\gamma \lambda^{-1}}{\xi} \, \mathbb{A}, \qquad \mathcal{H}_{appl} = \frac{\gamma \lambda^{-1}}{\xi} \, \mathbb{H}_{appl},$$

and put $\mathcal{H}_{appl} = \sigma \mathbf{H}$, where $\sigma > 0$ is a parameter which means the intensity of \mathcal{H}_{appl} and $\mathcal{A} = \sigma \mathbf{A}$, the associated energy $G[\psi, \mathbb{A}]/\xi^2$ is written by

$$\mathcal{G}[\Psi, \mathbf{A}] = \int_{\Omega} \left\{ \left| \nabla_{\sigma \mathbf{A}} \Psi \right|^{2} + \frac{\mu}{2} (1 - |\Psi|^{2})^{2} \right\} dx$$

$$+ \frac{\kappa^{2} \sigma^{2}}{\mu} \int_{\mathbb{R}^{3}} \left| \operatorname{curl} \mathbf{A} - \mathbf{H} \right|^{2} dx + \gamma \int_{\partial \Omega} |\Psi|^{2} dS, \qquad (1.1)$$

where dS denotes the surface element of $\partial\Omega$.

We assume that a given vector field $\mathbf{H}(x)$ is smooth and satisfies $\operatorname{div}\mathbf{H} = 0$ in \mathbb{R}^3 . Then there exists a unique vector field \mathbf{F} such that

$$\operatorname{curl} \mathbf{F} = \mathbf{H}, \quad \operatorname{div} \mathbf{F} = 0 \text{ in } \mathbb{R}^3, \quad \int_{\Omega} \mathbf{F} dx = 0.$$
 (1.2)

In the above and the following, we use the notations for any magnetic potential A and any function ψ ,

$$\nabla_{\mathbf{A}}\psi = \nabla\psi - i\mathbf{A}\psi, \quad \nabla_{\mathbf{A}}^{2}\psi = \Delta\psi - i[2\mathbf{A}\cdot\nabla\psi + \psi\mathrm{div}\mathbf{A}] - |\mathbf{A}|^{2}\psi.$$

The minimizers (ψ, \mathbf{A}) of the functional \mathcal{G} satisfy the following Euler equation, called the Ginzburg-Landau system:

$$\begin{cases}
-\nabla_{\sigma \mathbf{A}}^{2} \psi = \mu(1 - |\psi|^{2}) \psi & \text{in } \Omega, \\
\operatorname{curl}^{2}(\mathbf{A} - \mathbf{F}) = \frac{\mu}{\sigma \kappa^{2}} \Im\{\overline{\psi} \nabla_{\sigma \mathbf{A}} \psi\} \chi_{\Omega} & \text{in } \Omega, \\
(\nabla_{\sigma \mathbf{A}} \psi) \cdot \mathbf{v} + \gamma \psi = 0, \quad [\mathbf{v} \cdot \mathbf{A}] = 0, \\
[\mathbf{v} \times \operatorname{curl} \mathbf{A}] = 0, & \text{on } \partial \Omega, \\
\operatorname{curl} \mathbf{A} \to \mathbf{H} & \text{as } |x| \to \infty.
\end{cases}$$
(1.3)

Here \mathbf{v} is the unit outward normal vector at the boundary $\partial\Omega$ of Ω , $[\cdot]$ denotes the jump in the enclosed quantity across $\partial\Omega$, and χ_{Ω} is the characteristic function of Ω .

It is well known that if the applied field is strong, that is to say, if $\sigma > 0$ is large enough, $\mathcal G$ has only the trivial minimizer $(0, \mathbf F)$ which corresponds with the normal state. Thus the critical field is defined by

$$H_c(\mathbf{H}, \mu, \kappa) = \inf\{\sigma > 0; (0, \mathbf{F}) \text{ is a global minimizer of } \mathcal{G}\}.$$

In order to find the asymptotics of H_c as $\mu \to 0$, we must consider the asymptotics of the first eigenvalue of the Schrödinger operator $-\nabla^2_{\epsilon \mathbf{A}}$ with magnetic Robin type condition as $\epsilon \to 0$. In this paper, we devote only the analysis for the asymptotics of the first eigenvalue and the corresponding eigenfunction of such a linear problem. For the asymptotics of H_c , we shall treat in the future work. Relatively, for the

asymptotics as $\varepsilon \to \infty$, there are many articles, for example, see Aramaki [3, 4], Fournais and Helffer [10], Helffer [13], Helffer and Mohamed [14], Helffer and Morame [15, 16].

2. Asymptotics of the First Eigenvalue and the Corresponding Eigenfunction

In this section, we shall consider the asymptotic behavior of the first eigenvalue and the corresponding eigenfunction for a Schrödinger operator.

More precisely, let $\Omega \subset \mathbb{R}^3$ be a bounded, smooth and simply connected domain and $\mathbf{H} = \mathbf{H}(x)$ a given smooth vector field in \mathbb{R}^3 satisfying

$$\mathbf{H}(x) \neq 0 \text{ in } \Omega \text{ and div } \mathbf{H} = 0 \text{ in } \mathbb{R}^3.$$
 (2.1)

Then there exists a unique, smooth vector field $\mathbf{F}(x)$ in \mathbb{R}^3 such that

$$\operatorname{curl} \mathbf{F} = \mathbf{H}, \quad \operatorname{div} \mathbf{F} = 0 \text{ in } \mathbb{R}^3 \text{ and } \int_{\Omega} \mathbf{F} dx = 0.$$
 (2.2)

Let $\mu(\epsilon, \gamma)$ be the infimum of the following functional corresponding to the lowest eigenvalue of a Schrödinger operator with magnetic potential under some boundary condition:

$$\mu(\varepsilon, \gamma) = \inf_{\phi \in W^{1, 2}(\Omega; \mathbb{C})} \frac{\int_{\Omega} |\nabla_{\varepsilon \mathbf{F}} \phi|^2 dx + \gamma \int_{\partial \Omega} |\phi|^2 dS}{\|\phi\|_{L^2(\Omega)}^2}, \tag{2.3}$$

where $\gamma \geq 0$ is a parameter. It is well known that $\mu(\epsilon, \gamma)$ is achieved in $W^{1,2}(\Omega)$. Any minimizer of the functional (2.3) satisfies the Euler equation:

$$\begin{cases} -\nabla_{\varepsilon \mathbf{F}}^{2} \phi = \mu(\varepsilon, \gamma) \phi & \text{in } \Omega, \\ (\nabla_{\varepsilon \mathbf{F}} \phi) \cdot \mathbf{v} + \gamma \phi = 0 & \text{on } \partial \Omega. \end{cases}$$
 (2.4)

Taking (2.2) into consideration, we rewrite (2.4) into the form

$$\begin{cases} -\Delta \phi + 2i\varepsilon \mathbf{F} \cdot \nabla \phi + \varepsilon^{2} |\mathbf{F}|^{2} \phi = \mu(\varepsilon, \gamma) \phi & \text{in } \Omega, \\ \frac{\partial \phi}{\partial \mathbf{v}} - i\varepsilon \mathbf{F} \cdot \mathbf{v} \phi + \gamma \phi = 0 & \text{on } \partial \Omega. \end{cases}$$
 (2.5)

In the present paper, we consider the asymptotic behaviors of the first eigenvalue $\mu(\epsilon,\gamma)$ and the corresponding eigenfunction $\phi_{\epsilon,\gamma}$ as $\epsilon \to 0$.

First, we consider the eigenvalue problem

$$\begin{cases}
-\Delta \phi = \mu \phi & \text{in } \Omega, \\
\frac{\partial \phi}{\partial \mathbf{v}} + \gamma \phi = 0 & \text{on } \partial \Omega.
\end{cases}$$
(2.6)

It is well known that the first eigenvalue $\mu_0(\gamma)$ of (2.6) is simple, analytic with respect to γ and $\mu_0(0)=0$, and we can choose the corresponding eigenfunction ϕ_{γ} to be smooth and positive on $\overline{\Omega}$. (See Gilberg and Trudinger [11, Theorem 8.21 and Lemma 3.4].

Next, we consider the problem

$$\begin{cases} -\Delta v - \mu_0(\gamma)v = -2\mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega, \\ \frac{\partial v}{\partial \mathbf{v}} + \gamma v = \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text{on } \partial \Omega. \end{cases}$$
 (2.7)

We shall show that the problem (2.7) has a unique smooth solution $v_{1,\gamma}$ such that $\int_{\Omega} v_{1,\gamma} \phi_{\gamma} dx = 0$.

We are now in a position to state the main theorem.

Theorem 2.1. Under the situations as above, we have the asymptotics of the first eigenvalue $\mu(\epsilon, \gamma)$ and the corresponding eigenfunction $\phi_{\epsilon, \gamma}$ as follows.

$$\mu(\varepsilon, \gamma) = \mu_0(\gamma) + \varepsilon^2 \mu_2(\gamma) + O(\varepsilon^3)$$

as $\varepsilon \to 0$, where

$$\mu_2(\gamma) = \|\phi_{\gamma}\|_{L^2(\Omega)}^{-2} \int_{\Omega} \{ \|\nabla v_{1,\gamma} - \mathbf{F}\phi_{\gamma}\|^2 + 2(\mathbf{F} \cdot \nabla \phi_{\gamma})v_{1,\gamma} \} dx$$

$$-\mu_0(\gamma) \int_{\Omega} |v_{1,\gamma}|^2 dx + \gamma \int_{\partial \Omega} |v_{1,\gamma}|^2 dS \bigg].$$

and

$$\phi_{\varepsilon,\gamma} = \alpha_{\varepsilon}\phi_{\gamma} + i\varepsilon\beta_{\varepsilon}v_{1,\gamma} + \varepsilon^{2}\psi_{\gamma}^{(2)} + \varepsilon^{3}\psi_{\gamma}^{(3)} + o(\varepsilon^{3})$$

as $\epsilon \to 0$, where $\alpha_{\epsilon} \to 1$, $\beta_{\epsilon} \to 1$ as $\epsilon \to 0$ and $\psi_{\gamma}^{(2)}$, $\psi_{\gamma}^{(3)}$ are smooth functions.

Remark 2.2. Pan [21] got the similar asymptotics when the applied field $\mathbf{H}(x) = \text{constant}$ unit vector and, $\gamma = 0$. In this case, since $\mu_0(0) = 0$ and we can choose $\phi_{\gamma} = 1$, we see that

$$\mu_2(0) = |\Omega|^{-1} \int_{\Omega} |\nabla v_{1,\gamma} - \mathbf{F} \phi_{\gamma}|^2 dx.$$

Ando and Aramaki [2] considered the case where the applied field is non-constant and $\gamma = 0$. They got a more precise asymptotics of $\phi_{\epsilon,0}$ than [21].

3. Proof of the Main Theorem

In this section we shall devote to the proof of Theorem 2.1.

We consider a functional

$$E_{\gamma}[\phi] = \int_{\Omega} \{ |\nabla \phi - \mathbf{F} \phi_{\gamma}|^{2} + 2(\nabla \phi_{\gamma} \cdot \mathbf{F}) \phi \} dx + \gamma \int_{\partial \Omega} |\phi|^{2} dS$$
 (3.1)

on $W^{1,2}(\Omega)$.

It is easy to show that the functional (3.1) is strictly convex, continuous in $W^{1,2}(\Omega)$ and so weakly lower semi-continuous. We shall show that E_{γ} is bounded from below. When $\gamma=0$, since ϕ_0 is constant, we have $E_{\gamma}[\phi] \geq 0$ for all $\phi \in W^{1,2}(\Omega)$. Therefore, let $\gamma > 0$. Then from the integration by parts and the Schwarz inequality, we have

$$\begin{split} E_{\gamma}[\phi] &= \int_{\Omega} \{ |\nabla \phi|^{2} - 2(\nabla \phi \cdot \mathbf{F})\phi_{\gamma} + |\mathbf{F}\phi_{\gamma}|^{2} + 2(\nabla \phi_{\gamma} \cdot \mathbf{F})\phi \} dx \\ &+ \gamma \int_{\partial \Omega} |\phi|^{2} dS \\ &= \int_{\Omega} \{ |\nabla \phi|^{2} - 4(\nabla \phi \cdot \mathbf{F})\phi_{\gamma} + |\mathbf{F}\phi_{\gamma}|^{2} \} dx \\ &+ 2 \int_{\partial \Omega} \phi_{\gamma} \phi \mathbf{F} \cdot \mathbf{v} dS + \gamma \int_{\partial \Omega} |\phi|^{2} dS \\ &\geq \int_{\Omega} |\nabla \phi|^{2} dx - 2\delta \int_{\Omega} |\nabla \phi|^{2} dx - \frac{2}{\delta} \int_{\Omega} |\mathbf{F}\phi_{\gamma}|^{2} dx \\ &+ \int_{\Omega} |\mathbf{F}\phi_{\gamma}|^{2} dx - \delta \int_{\partial \Omega} |\phi|^{2} dS - \frac{1}{\delta} \int_{\partial \Omega} |\phi_{\gamma} \mathbf{F} \cdot \mathbf{v}|^{2} dS \\ &+ \gamma \int_{\partial \Omega} |\phi|^{2} dS \end{split}$$

for any $\delta > 0$. If we choose $\delta > 0$ so that $\delta < \min\{1/2, \gamma\}$, we see that E_{γ} is bounded from below.

Thus it follows from the standard variational theory that we see that $\inf_{\phi \in W^{1,2}(\Omega)} E_{\gamma}[\phi]$ is achieved by a unique, real valued function $w_{\gamma} \in W^{1,2}(\Omega)$ and taking the Euler equation, w_{γ} satisfies the equation

$$\begin{cases} -\Delta w_{\gamma} = -2\mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega, \\ \frac{\partial w_{\gamma}}{\partial \mathbf{v}} + \gamma w_{\gamma} = \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text{on } \partial \Omega. \end{cases}$$
(3.2)

Now we shall show

Proposition 3.1. Let $\mu(\epsilon, \gamma)$ be the first eigenvalue as in (2.3) and $\mu_0(\gamma)$ be the lowest eigenvalue of (2.6). Then we have

$$\mu(\varepsilon, \gamma) = \mu_0(\gamma) + O(\varepsilon^2)$$

as $\varepsilon \to 0$.

We continue the proof of this proposition for some time. In order to estimate $\mu(\epsilon, \gamma)$ from above, if we take $\phi = \phi_{\gamma} + i\epsilon w_{\gamma}$ as a test function in (2.3), we have

$$\begin{split} &\mu(\varepsilon,\,\gamma) \leq \frac{\displaystyle\int_{\Omega} |\,\nabla_{\varepsilon\mathbf{F}}\phi\,|^2 dx \,+\,\gamma \int_{\partial\Omega} |\,\phi\,|^2 dS}{\displaystyle\int_{\Omega} |\,\phi\,|^2 dx} \\ &= \left(\displaystyle\int_{\Omega} \{|\,\phi_{\gamma}\,|^2 \,+\,\varepsilon^2|\,\,w_{\gamma}\,\,|^2\} dx\right)^{-1} \!\!\left[\int_{\Omega} \{|\,\nabla\phi_{\gamma}\,+\,\varepsilon^2\mathbf{F}w_{\gamma}\,\,|^2 \right. \\ &\left. +\,\varepsilon^2|\,\,\nabla w_{\gamma}\,-\,\mathbf{F}\phi_{\gamma}\,|^2\} dx \,+\,\gamma \int_{\partial\Omega} \{|\,\phi_{\gamma}\,|^2 \,+\,\varepsilon^2|\,w_{\gamma}\,|^2 dS\right] \\ &\leq \|\phi_{\gamma}\|_{L^2(\Omega)}^{-2} \!\!\left[\int_{\Omega} \{|\,\nabla\phi_{\gamma}\,|^2 \,+\,2\varepsilon^2(\mathbf{F}\cdot\nabla\phi_{\gamma})w_{\gamma}\,+\,\varepsilon^4|\,\mathbf{F}w_{\gamma}\,|^2 \right. \\ &\left. +\,\varepsilon^2|\,\nabla w_{\gamma}\,-\,\mathbf{F}\phi_{\gamma}\,|^2\} dx \,+\,\gamma \!\!\int_{\partial\Omega} \{|\,\phi_{\gamma}\,|^2 \,+\,\varepsilon^2|\,w_{\gamma}\,|^2\} dS\right] \\ &\leq \mu_0(\gamma) +\,\varepsilon^2 \|\,\phi_{\gamma}\,\|_{L^2(\Omega)}^{-2} \!\!\left[\int_{\Omega} \{|\,\nabla w_{\gamma}\,-\,\mathbf{F}\phi_{\gamma}\,|^2 \,+\,2(\nabla\phi_{\gamma}\cdot\mathbf{F})w_{\gamma}\} dx \\ &\left. +\,\gamma \!\!\int_{\partial\Omega} |\,w_{\gamma}\,|^2 dS\right] +\,\varepsilon^4 \|\,\phi_{\gamma}\,\|_{L^2(\Omega)}^{-2} \!\!\int_{\Omega} |\,\mathbf{F}w_{\gamma}\,|^2 dx. \end{split}$$

Thus if we put

$$W_{\gamma} = \|\phi_{\gamma}\|_{L^{2}(\Omega)}^{-2} \left[\int_{\Omega} \{ |\nabla w_{\gamma} - \mathbf{F}\phi_{\gamma}|^{2} + 2(\nabla \phi_{\gamma} \cdot \mathbf{F})w_{\gamma} \} dx + \gamma \int_{\partial \Omega} |w_{\gamma}|^{2} dS \right],$$

we see that

$$\mu(\varepsilon,\,\gamma) \leq \mu_0(\gamma) + \varepsilon^2 W_\gamma + O(\varepsilon^4) \tag{3.3}$$

as $\varepsilon \to 0$.

In order to estimate $\mu(\varepsilon, \gamma)$ from below, we put $\phi_{\varepsilon, \gamma} = \alpha_{\varepsilon} \phi_{\gamma} + \varepsilon \psi_{\varepsilon, \gamma}$, where α_{ε} is chosen so that $\alpha_{\varepsilon} \int_{\Omega} \phi_{\gamma}^{2} dx = \int_{\Omega} \phi_{\varepsilon, \gamma} \phi_{\gamma} dx$. Since $\phi_{\gamma} > 0$ on $\overline{\Omega}$,

 α_{ε} is well defined. Then we note that $\int_{\Omega} \psi_{\varepsilon,\gamma} \phi_{\gamma} dx = 0$. If we substitute this function $\phi_{\varepsilon,\gamma}$ for (2.5) and use (2.6), we see that $\psi_{\varepsilon,\gamma}$ satisfies

$$\begin{cases}
-\Delta \psi_{\varepsilon,\gamma} - \mu(\varepsilon,\gamma)\psi_{\varepsilon,\gamma} + 2i\varepsilon\mathbf{F} \cdot \nabla \psi_{\varepsilon,\gamma} + \varepsilon^{2} |\mathbf{F}|^{2}\psi_{\varepsilon,\gamma} \\
= \frac{\mu(\varepsilon,\gamma) - \mu_{0}(\gamma)}{\varepsilon} \alpha_{\varepsilon}\phi_{\gamma} - \varepsilon\alpha_{\varepsilon} |\mathbf{F}|^{2}\phi_{\gamma} - 2i\alpha_{\varepsilon}\mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega \\
\frac{\partial \psi_{\varepsilon,\gamma}}{\partial \mathbf{v}} - i\varepsilon\mathbf{F} \cdot \mathbf{v}\psi_{\varepsilon,\gamma} + \gamma\psi_{\varepsilon,\gamma} = i\alpha_{\varepsilon}\mathbf{F} \cdot \mathbf{v}\phi_{\gamma} & \text{on } \partial\Omega.
\end{cases}$$
(3.4)

We must prove that

$$\frac{\mu(\varepsilon, \gamma) - \mu_0(\gamma)}{\varepsilon^2} \text{ is bounded.}$$
 (3.5)

As the first step, we shall show that $(\mu(\epsilon, \gamma) - \mu_0(\gamma))/\epsilon$ is bounded.

Lemma 3.2. Under the situation as above, we see that $(\mu(\epsilon, \gamma) - \mu_0(\gamma))/\epsilon$ is bounded with respect to $\epsilon \in (0, 1]$.

Proof. By (2.3) and the Schwarz inequality,

$$\begin{split} \mu(\varepsilon,\,\gamma) &= \| \, \phi_{\varepsilon,\,\gamma} \, \|_{L^{2}(\Omega)}^{-2} \bigg[\int_{\Omega} | \, \nabla_{\varepsilon \mathbf{F}} \phi_{\varepsilon,\,\gamma} \, |^{2} dx + \gamma \int_{\partial \Omega} | \, \phi_{\varepsilon,\,\gamma} \, |^{2} dS \bigg] \\ &\geq \| \, \phi_{\varepsilon,\,\gamma} \, \|_{L^{2}(\Omega)}^{-2} \bigg[\int_{\Omega} | \, \nabla \phi_{\varepsilon,\,\gamma} \, |^{2} dx - 2\varepsilon \int_{\Omega} | \, \nabla \phi_{\varepsilon,\,\gamma} \, | \, | \, \mathbf{F} \phi_{\varepsilon,\,\gamma} \, | dx \\ &+ \varepsilon^{2} \int_{\Omega} | \, \mathbf{F} \phi_{\varepsilon,\,\gamma} \, |^{2} dx + \gamma \int_{\partial \Omega} | \, \phi_{\varepsilon,\,\gamma} \, |^{2} dS \bigg] \\ &\geq (1-\varepsilon) \| \, \phi_{\varepsilon,\,\gamma} \, \|_{L^{2}(\Omega)}^{-2} \bigg[\int_{\Omega} | \, \nabla \phi_{\varepsilon,\,\gamma} \, |^{2} dx + \gamma \int_{\partial \Omega} | \, \phi_{\varepsilon,\,\gamma} \, |^{2} dS \bigg] \\ &- \varepsilon \| \, \phi_{\varepsilon,\,\gamma} \, \|_{L^{2}(\Omega)}^{-2} \int_{\Omega} | \, \mathbf{F} \phi_{\varepsilon,\,\gamma} \, |^{2} dx \\ &\geq (1-\varepsilon) \mu_{0}(\gamma) - O(\varepsilon) \end{split}$$

as $\epsilon \to 0$. Thus we see that $\mu(\epsilon, \gamma) \ge \mu_0(\gamma) - O(\epsilon)$. Taking (3.3) into consideration, the proof is completed.

We return to the equation (2.5). Let $\phi_{\varepsilon,\gamma}$ be the normalized eigenfunction such that $\|\phi_{\varepsilon,\gamma}\|_{L^\infty(\Omega)}=1$. Then by the elliptic estimate [11, Theorem 6.30], we see that $\|\phi_{\varepsilon,\gamma}\|_{C^{2+\alpha}(\overline{\Omega})}\leq C(\alpha,\gamma)<\infty$ for any $\alpha\in(0,1)$ and small $\varepsilon>0$. Passing to a subsequence, we may assume that $\phi_{\varepsilon,\gamma}\to\phi_{\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$. We remember that $\phi_{\varepsilon,\gamma}=\alpha_{\varepsilon}\phi_{\gamma}+\varepsilon\psi_{\varepsilon,\gamma}$.

Now we claim that $\|\psi_{\varepsilon,\gamma}\|_{L^2(\Omega)}$ is bounded.

In fact, if the claim does not hold, passing to a subsequence, we may assume that $C_{\varepsilon} := \|\psi_{\varepsilon,\gamma}\|_{L^2(\Omega)} \to \infty$ as $\varepsilon \to 0$. Put $\widetilde{\psi}_{\varepsilon,\gamma} = \psi_{\varepsilon,\gamma}/C_{\varepsilon}$. Then $\widetilde{\psi}_{\varepsilon,\gamma}$ satisfies the equation

$$\begin{cases}
-\Delta\widetilde{\psi}_{\varepsilon,\gamma} - \mu(\varepsilon,\gamma)\widetilde{\psi}_{\varepsilon,\gamma} + 2i\varepsilon\mathbf{F} \cdot \nabla\widetilde{\psi}_{\varepsilon,\gamma} + \varepsilon^{2}|\mathbf{F}|^{2}\widetilde{\psi}_{\varepsilon,\gamma} \\
= \frac{\mu(\varepsilon,\gamma) - \mu_{0}(\gamma)}{\varepsilon C_{\varepsilon}} \phi_{\gamma} - \frac{\varepsilon}{C_{\varepsilon}}|\mathbf{F}|^{2} \phi_{\gamma} - \frac{2i}{C_{\varepsilon}}\mathbf{F} \cdot \nabla\phi_{\gamma} & \text{in } \Omega \\
\frac{\partial\widetilde{\psi}_{\varepsilon,\gamma}}{\partial\mathbf{v}} - i\varepsilon\mathbf{F} \cdot \mathbf{v}\widetilde{\psi}_{\varepsilon,\gamma} + \gamma\widetilde{\psi}_{\varepsilon,\gamma} = \frac{i}{C_{\varepsilon}}\mathbf{F} \cdot \mathbf{v}\phi_{\gamma} & \text{on } \partial\Omega.
\end{cases}$$
(3.6)

Since $\|\widetilde{\psi}_{\varepsilon,\gamma}\|_{L^2(\Omega)} = 1$, it follows from [11, Theorem 8.13] or Agmon et al. [1, Theorem 15.2] that $\|\widetilde{\psi}_{\varepsilon,\gamma}\|_{W^{k+2,2}(\Omega)} \leq C(k,\gamma)$ for any $k \in \mathbb{N}$ (cf. Du [7]). By the Sobolev imbedding theorem, $\|\widetilde{\psi}_{\varepsilon,\gamma}\|_{C^{2+\alpha}(\overline{\Omega})} \leq C(\alpha,\gamma)$ for any $\alpha \in (0,1)$. Passing to a subsequence, we may assume that $\widetilde{\psi}_{\varepsilon,\gamma} \to \widetilde{\psi}_{\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$. Letting $\varepsilon \to 0$ in (3.6), we see that $\widetilde{\psi}_{\gamma}$ satisfies

$$\begin{cases} -\Delta\widetilde{\psi}_{\gamma} - \mu_{0}(\gamma)\widetilde{\psi}_{\gamma} = 0 & \text{in } \Omega, \\ \frac{\partial\widetilde{\psi}_{\gamma}}{\partial \mathbf{v}} + \gamma\widetilde{\psi}_{\gamma} = 0 & \text{on } \partial\Omega \end{cases}$$

and $\|\widetilde{\psi}_{\gamma}\|_{L^{2}(\Omega)} = 1$, $\int_{\Omega} \widetilde{\psi}_{\gamma} \phi_{\gamma} dx = 0$. Since the real part and the imaginary part of $\widetilde{\psi}_{\gamma}$ are non-zero constant signs, this leads to a contradiction. Thus $\|\psi_{\varepsilon,\gamma}\|_{L^{2}(\Omega)}$ is bounded.

Since $\|\psi_{\epsilon,\gamma}\|_{L^2(\Omega)}$ is bounded, if we again apply the same arguments as above, we see that $\|\psi_{\epsilon,\gamma}\|_{C^{2+\alpha}(\overline{\Omega})} \leq C(\alpha,\gamma)$. Taking Lemma 3.2 into consideration, passing to a subsequence, we may assume that $\frac{\mu(\epsilon,\gamma)-\mu_0(\gamma)}{\epsilon} \to \mu_1(\gamma)$ and $\psi_{\epsilon,\gamma} \to \phi_{1,\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$ as $\epsilon \to 0$. Letting $\epsilon \to 0$ in (3.4), we have

$$\begin{cases} -\Delta \phi_{1,\gamma} - \mu_0(\gamma) \phi_{1,\gamma} = \mu_1(\gamma) \phi_{\gamma} - 2i \mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial \phi_{1,\gamma}}{\partial \mathbf{v}} + \gamma \phi_{1,\gamma} = i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text{on } \partial \Omega \end{cases}$$

Let $u_{1,\gamma}$ and $v_{1,\gamma}$ be the real part and imaginary part of $\phi_{1,\gamma}$, respectively. Then $u_{1,\gamma}$ is a solution of the problem

$$\begin{cases} -\Delta u_{1,\gamma} - \mu_0(\gamma) u_{1,\gamma} = \mu_1(\gamma) \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial u_{1,\gamma}}{\partial \mathbf{v}} + \gamma u_{1,\gamma} = 0 & \text{on } \partial \Omega. \end{cases}$$

Since the boundary value problem $\left(-\Delta - \mu_0(\gamma), \frac{\partial}{\partial \mathbf{v}} + \gamma\right)$ is self adjoint, it follows from the Fredholm alternative theorem that "the orthogonality condition" $\mu_1(\gamma)(\phi_\gamma, \phi_\gamma)_{L^2(\Omega)} = 0$ holds. Thus we have $\mu_1(\gamma) = 0$. Since $u_{1,\gamma}$ has a constant sign in $\overline{\Omega}$ and $\int_{\Omega} u_{1,\gamma} \phi_\gamma dx = 0$, we see that $u_{1,\gamma} = 0$. Now $v_{1,\gamma}$ satisfies the equation

$$\begin{cases} -\Delta v_{1,\gamma} - \mu_0(\gamma) v_{1,\gamma} = -2\mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial v_{1,\gamma}}{\partial \mathbf{v}} + \gamma v_{1,\gamma} = \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text{on } \partial \Omega. \end{cases}$$
(3.7)

We note that the solution $v_{1,\gamma}$ of (3.7) satisfying $\int_{\Omega} v_{1,\gamma} \phi_{\gamma} dx = 0$ is unique.

Thus we can write $\phi_{\varepsilon,\gamma} = \phi_{\gamma} + i\varepsilon v_{1,\gamma} + \varepsilon \widetilde{\phi}_{\varepsilon,\gamma}$, where $\widetilde{\phi}_{\varepsilon,\gamma}$ is bounded in $C^{2+\alpha}(\overline{\Omega})$. Therefore, we have

$$\begin{split} \mu(\varepsilon,\,\gamma) \|\, \phi_{\varepsilon,\,\gamma} \,\|_{L^2(\Omega)}^2 &= \int_{\Omega} |\, \nabla \phi_{\varepsilon,\,\gamma} \, - i \varepsilon \mathbf{F} \cdot \nabla \phi_{\varepsilon,\,\gamma} \,|^2 dx \, + \, \gamma \! \int_{\partial \Omega} |\, \phi_{\varepsilon,\,\gamma} \,|^2 dS \\ &= \int_{\Omega} \{ |\, \nabla \phi_{\varepsilon,\,\gamma} \,|^2 \, - \, 2 \varepsilon \Im \{ (\mathbf{F} \cdot \nabla \phi_{\varepsilon,\,\gamma}) \overline{\phi_{\varepsilon,\,\gamma}} \} \\ &- \varepsilon^2 |\, \mathbf{F} \phi_{\varepsilon,\,\gamma} \,|^2 \} dx \, + \, \gamma \! \int_{\partial \Omega} |\, \phi_{\varepsilon,\,\gamma} \,|^2 dS. \end{split}$$

Here we note that since

$$\begin{split} &\int_{\Omega} (\mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}) \overline{\phi_{\varepsilon, \gamma}} dx \\ &= \int_{\Omega} \mathbf{F} \cdot \{ \nabla \phi_{\gamma} + \varepsilon (i \nabla v_{1, \gamma} + \nabla \widetilde{\psi}_{\varepsilon, \gamma}) \} (\phi_{\gamma} - i \varepsilon w_{\gamma} + \varepsilon \overline{\widetilde{\phi}_{\varepsilon, \gamma}}) dx, \end{split}$$

it follows that $\Im \int_{\Omega} (\mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}) \overline{\phi_{\varepsilon, \gamma}} dx = O(\varepsilon)$. Therefore, we have

$$\begin{split} \mu(\varepsilon,\,\gamma) \| \, \phi_{\varepsilon,\,\gamma} \, \|_{L^2(\Omega)}^2 & \geq \int_{\Omega} | \, \nabla \phi_{\varepsilon,\,\gamma} \, |^2 dx + \gamma \! \int_{\partial \Omega} | \, \phi_{\varepsilon,\,\gamma} \, |^2 dS - O(\varepsilon^2) \\ & \geq \mu_0(\gamma) \| \, \phi_{\varepsilon,\,\gamma} \, \|_{L^2(\Omega)}^2 - O(\varepsilon^2). \end{split}$$

Summing up (3.3), we see that $\frac{\mu(\epsilon, \gamma) - \mu_0(\gamma)}{\epsilon^2}$ is bounded with respect to ϵ . That is to say, the claim (3.5) holds. This completes the proof of Proposition 3.1.

Thus if we put $\mu(\varepsilon, \gamma) - \mu_0(\gamma) = \varepsilon^2 \lambda(\varepsilon, \gamma)$, passing to a subsequence, we may assume that $\lambda(\varepsilon, \gamma) \to \mu_2(\gamma)$ as $\varepsilon \to 0$. We remember that we can write $\phi_{\varepsilon,\gamma} = \alpha_\varepsilon \phi_\gamma + \varepsilon \psi_{\varepsilon,\gamma}^{(1)}$, where $\psi_{\varepsilon,\gamma}^{(1)} \to i v_{1,\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$ as $\varepsilon \to 0$. We write $\psi_{\varepsilon,\gamma}^{(1)} = i \beta_\varepsilon v_{1,\gamma} + \varepsilon \psi_{\varepsilon,\gamma}^{(2)}$, where

$$eta_{arepsilon} = -i rac{\displaystyle\int_{\Omega} v_{1,\,\gamma} \psi_{arepsilon,\,\gamma}^{(1)} dx}{\displaystyle\int_{\Omega} |v_{1,\,\gamma}|^2 dx} \, .$$

Then we see that $\int_{\Omega} \psi_{\varepsilon, \gamma}^{(2)} \phi_{\gamma} dx = 0$ and $\int_{\Omega} \psi_{\varepsilon, \gamma}^{(2)} v_{1, \gamma} dx = 0$. Since $\psi_{\varepsilon, \gamma}^{(1)} \to 0$

 $iv_{1,\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$, it follows that $\beta_{\varepsilon} \to 1$ as $\varepsilon \to 0$. Taking (2.6) and (3.7) into consideration, $\psi_{\varepsilon,\gamma}^{(2)}$ satisfies the following equation

$$\begin{cases} -\Delta \psi_{\varepsilon,\gamma}^{(2)} - \mu_{0}(\gamma) \psi_{\varepsilon,\gamma}^{(2)} + 2i\varepsilon \mathbf{F} \cdot \nabla \psi_{\varepsilon,\gamma}^{(2)} + \varepsilon^{2} |\mathbf{F}|^{2} \psi_{\varepsilon,\gamma}^{(2)} \\ -\varepsilon^{2} \lambda(\varepsilon,\gamma) \psi_{\varepsilon,\gamma}^{(2)} = f_{\varepsilon,\gamma} & \text{in } \Omega \\ \frac{\partial \psi_{\varepsilon,\gamma}^{(2)}}{\partial \mathbf{v}} + \gamma \psi_{\varepsilon,\gamma}^{(2)} - i\varepsilon \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon,\gamma}^{(2)} = i \frac{\alpha_{\varepsilon} - \beta_{\varepsilon}}{\varepsilon} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} - \beta_{\varepsilon} \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} & \text{on } \partial \Omega, \end{cases}$$

where

$$\begin{split} f_{\varepsilon,\,\gamma} \, &= \, 2\beta_\varepsilon \mathbf{F} \cdot \nabla v_{1,\,\gamma} \, - i\varepsilon \beta_\varepsilon |\, \mathbf{F}\,|^2 v_{1,\,\gamma} \, + i\varepsilon \beta_\varepsilon \lambda(\varepsilon,\,\gamma) v_{1,\,\gamma} \\ \\ &- \, 2i \, \frac{\alpha_\varepsilon \, - \beta_\varepsilon}{\varepsilon} \, \mathbf{F} \cdot \nabla \phi_\gamma \, - \alpha_\varepsilon |\, \mathbf{F}\,|^2 \phi_\gamma \, + \alpha_\varepsilon \lambda(\varepsilon,\,\gamma) \phi_\gamma. \end{split}$$

We shall show that $(\alpha_\epsilon - \beta_\epsilon)/\epsilon$ is bounded with respect to $\epsilon.$

Lemma 3.3. If we define $\delta_{\epsilon} = (\alpha_{\epsilon} - \beta_{\epsilon})/\epsilon$, then $\{\delta_{\epsilon}\}$ is bounded with respect to $\epsilon \in (0, 1]$.

Proof. If the claim does not hold, passing to a subsequence, we may assume that $\delta_{\varepsilon} \to \infty$ as $\varepsilon \to 0$. If we define $\xi_{\varepsilon,\gamma} = \psi_{\varepsilon,\gamma}^{(2)}/\delta_{\varepsilon}$, it is clear that $\int_{\Omega} \xi_{\varepsilon,\gamma} \phi_{\gamma} dx = 0$ and $\int_{\Omega} \xi_{\varepsilon,\gamma} v_{1,\gamma} dx = 0$. From (3.8), $\xi_{\varepsilon,\gamma}$ satisfies the following equation

$$\begin{cases} -\Delta \xi_{\varepsilon,\gamma} - \mu_{0}(\gamma) \xi_{\varepsilon,\gamma} + 2i\varepsilon \mathbf{F} \cdot \nabla \xi_{\varepsilon,\gamma} + \varepsilon^{2} |\mathbf{F}|^{2} \xi_{\varepsilon,\gamma} \\ -\varepsilon^{2} \lambda(\varepsilon,\gamma) \xi_{\varepsilon,\gamma} = -2i\mathbf{F} \cdot \nabla \phi_{\gamma} + \frac{1}{\delta_{\varepsilon}} g_{\varepsilon,\gamma} & \text{in } \Omega \\ \frac{\partial \xi_{\varepsilon,\gamma}}{\partial \mathbf{v}} + \gamma \xi_{\varepsilon,\gamma} - i\varepsilon \mathbf{F} \cdot \mathbf{v} \xi_{\varepsilon,\gamma} = i\mathbf{F} \cdot \mathbf{v} \phi_{\gamma} - i\frac{\beta_{\varepsilon}}{\delta_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} & \text{on } \partial\Omega, \end{cases}$$
(3.9)

where

$$\begin{split} g_{\varepsilon,\,\gamma} &= 2\beta_{\varepsilon}\mathbf{F} \cdot \nabla v_{1,\,\gamma} - i\varepsilon\beta_{\varepsilon} |\,\mathbf{F}\,|^2 v_{1,\,\gamma} + i\varepsilon\beta_{\varepsilon}\lambda(\varepsilon,\,\gamma) v_{1,\,\gamma} \\ &- \alpha_{\varepsilon} |\,\mathbf{F}\,|^2 \phi_{\gamma} + \alpha_{\varepsilon}\lambda(\varepsilon,\,\gamma) \phi_{\gamma}. \end{split}$$

Case 1.
$$\|\xi_{\varepsilon,\gamma}\|_{L^2(\Omega)} \leq C < \infty$$
.

Then applying the elliptic estimate as above, it can be seen that $\|\xi_{\varepsilon,\gamma}\|_{W^{k,2}(\Omega)} \leq C(k)$ for any $k \in \mathbb{N}$. Therefore, by the Sobolev imbedding theorem, $\|\xi_{\varepsilon,\gamma}\|_{C^{2+\alpha}(\overline{\Omega})} \leq C(\gamma,\alpha)$ for any $\alpha \in (0,1)$. Passing to a subsequence, we may assume that $\xi_{\varepsilon,\gamma} \to \xi_{\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$ as $\varepsilon \to 0$. Then we see that $\int_{\Omega} \xi_{\gamma} \phi_{\gamma} dx = 0$ and $\int_{\Omega} \xi_{\gamma} v_{1,\gamma} dx = 0$. Letting $\varepsilon \to 0$ in (3.9), we have the equation

$$\begin{cases} -\Delta \xi_{\gamma} - \mu_{0}(\gamma) \xi_{\gamma} = -2i \mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial \xi_{\gamma}}{\partial \mathbf{v}} + \gamma \xi_{\gamma} = i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text{on } \partial \Omega. \end{cases}$$

Thus we have $\xi_{\gamma} = v_{1,\gamma}$. This leads to a contradiction.

Case 2. $\|\xi_{\varepsilon,\gamma}\|_{L^2(\Omega)}$ is unbounded.

In this case, passing to a subsequence, we may assume that $C_{\varepsilon} = \|\xi_{\varepsilon,\gamma}\|_{L^2(\Omega)} \to \infty$ as $\varepsilon \to 0$. If we put $\widetilde{\xi}_{\varepsilon,\gamma} = \xi_{\varepsilon,\gamma}/C_{\varepsilon}$, then we see that $\widetilde{\xi}_{\varepsilon,\gamma}$ satisfies the following equation

$$\begin{cases} -\Delta \widetilde{\xi}_{\varepsilon, \gamma} - \mu_0(\gamma) \widetilde{\xi}_{\varepsilon, \gamma} + 2i\varepsilon \mathbf{F} \cdot \nabla \widetilde{\xi}_{\varepsilon, \gamma} + \varepsilon^2 |\mathbf{F}|^2 \widetilde{\xi}_{\varepsilon, \gamma} \\ -\varepsilon^2 \lambda(\varepsilon, \gamma) \widetilde{\xi}_{\varepsilon, \gamma} = -\frac{2i}{C_{\varepsilon}} \mathbf{F} \cdot \nabla \phi_{\gamma} + \frac{1}{\delta_{\varepsilon} C_{\varepsilon}} g_{\varepsilon, \gamma} & \text{in } \Omega \end{cases}$$

$$\frac{\partial \widetilde{\xi}_{\varepsilon, \gamma}}{\partial \mathbf{v}} + \gamma \widetilde{\xi}_{\varepsilon, \gamma} - i\varepsilon \mathbf{F} \cdot \mathbf{v} \widetilde{\xi}_{\varepsilon, \gamma} = \frac{i}{C_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} - \frac{\beta_{\varepsilon}}{C_{\varepsilon}} \delta_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text{on } \partial \Omega . \end{cases}$$

Similarly as Case 1, we may assume that $\widetilde{\xi}_{\varepsilon,\gamma} \to \widetilde{\xi}_{\gamma}$ in $C^{2+\alpha}(\overline{\Omega})$. Then $\|\widetilde{\xi}_{\gamma}\|_{L^{2}(\Omega)} = 1$ and $\int_{\Omega} \widetilde{\xi}_{\gamma} \phi_{\gamma} dx = 0$ and $\widetilde{\xi}_{\gamma}$ satisfies

$$\begin{cases} -\Delta \widetilde{\xi}_{\gamma} = \mu_{0}(\gamma) \widetilde{\xi}_{\gamma} & \text{in } \Omega \\ \frac{\partial \widetilde{\xi}_{\gamma}}{\partial \mathbf{v}} + \gamma \widetilde{\xi}_{\gamma} = 0 & \text{on } \partial \Omega. \end{cases}$$

Since any solution of this equation is constant sign on $\overline{\Omega}$, this leads to a contradiction.

Thus since $\delta_{\varepsilon} = (\alpha_{\varepsilon} - \beta_{\varepsilon})/\varepsilon$ is bounded, we may assume that $\delta_{\varepsilon} \to \delta_0$ as $\varepsilon \to 0$. Since $\|\psi_{\varepsilon,\gamma}^{(2)}\|_{L^2(\Omega)} \le C$ in (3.8), as the similar arguments in Case 2, we have $\|\psi_{\varepsilon,\gamma}^{(2)}\|_{C^{2+\alpha}(\overline{\Omega})} \le C(\gamma,\alpha)$. Therefore, we may assume that $\psi_{\varepsilon,\gamma}^{(2)} \to \psi_{\gamma}^{(2)}$ in $C^{2+\alpha}(\overline{\Omega})$. Letting $\varepsilon \to 0$ in (3.8), we get the following equation

$$\begin{cases} -\Delta \psi_{\gamma}^{(2)} - \mu_{0}(\gamma) \psi_{\gamma}^{(2)} = 2\mathbf{F} \cdot \nabla v_{1,\gamma} - 2i\delta_{0}\mathbf{F} \cdot \nabla \phi_{\gamma} - |\mathbf{F}|^{2} \phi_{\gamma} \\ + \mu_{2}(\gamma) \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial \psi_{\gamma}^{(2)}}{\partial \mathbf{v}} + \gamma \psi_{\gamma}^{(2)} = i\delta_{0}\mathbf{F} \cdot \mathbf{v} \phi_{\gamma} - \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} & \text{on } \partial\Omega. \end{cases}$$
(3.10)

Since $\psi_{\gamma}^{(2)}$ is a solution of (3.10), we have "the orthogonality condition"

$$\int_{\Omega} (2(\mathbf{F} \cdot \nabla v_{1,\gamma}) \phi_{\gamma} - 2i\delta_{0}(\mathbf{F} \cdot \nabla \phi_{\gamma}) \phi_{\gamma} - |\mathbf{F}|^{2} \phi_{\gamma}^{2} + \mu_{2}(\gamma) \phi_{\gamma}^{2}) dx$$

$$+ \int_{\partial \Omega} (i\delta_{0} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}^{2} - \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} \phi_{\gamma}) dS = 0.$$

Thus we get

$$\begin{split} \mu_2(\gamma) & \int_{\Omega} \phi_{\gamma}^2 dx = \int_{\Omega} (-2 (\mathbf{F} \cdot \nabla v_{1,\gamma}) \phi_{\gamma} + |\mathbf{F}|^2 \phi_{\gamma}^2) dx \\ & + \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} \phi_{\gamma} dS \\ & = \int_{\Omega} |\nabla v_{1,\gamma} - \mathbf{F} \phi_{\gamma}|^2 - \int_{\Omega} |\nabla v_{1,\gamma}|^2 dx \\ & + \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} \phi_{\gamma} dS. \end{split}$$

From integration by parts, we see that

$$\int_{\partial\Omega} \mathbf{F} \cdot \mathbf{v} v_{1,\,\gamma} \phi_{\gamma} dS = \int_{\partial\Omega} \left(\frac{\partial v_{1,\,\gamma}}{\partial \mathbf{v}} + \gamma v_{1,\,\gamma} \right) v_{1,\,\gamma} dS$$

$$\begin{split} &= \int_{\Omega} |\nabla v_{1,\gamma}|^2 dx + \int_{\Omega} v_{1,\gamma} \Delta v_{1,\gamma} dx + \gamma \int_{\partial \Omega} |v_{1,\gamma}|^2 dS \\ &= \int_{\Omega} |\nabla v_{1,\gamma}|^2 dx - \mu_0(\gamma) \int_{\Omega} |v_{1,\gamma}|^2 dx \\ &+ 2 \int_{\Omega} (\mathbf{F} \cdot \nabla \phi_{\gamma}) v_{1,\gamma} dx + \gamma \int_{\partial \Omega} |v_{1,\gamma}|^2 dS. \end{split}$$

Thus we get

$$\mu_{2}(\gamma) = \| \phi_{\gamma} \|_{L^{2}(\Omega)}^{-2} \left[\int_{\Omega} \{ |\nabla v_{1,\gamma} - \mathbf{F} \phi_{\gamma}|^{2} + 2(\mathbf{F} \cdot \nabla \phi_{\gamma}) v_{1,\gamma} \} dx \right]$$
$$- \mu_{0}(\gamma) \int_{\Omega} |v_{1,\gamma}|^{2} dx + \gamma \int_{\partial \Omega} |v_{1,\gamma}|^{2} dS \right].$$

In this stage, we got the asymptotics:

$$\mu(\varepsilon, \gamma) = \mu_0(\gamma) + \varepsilon^2 \mu_2(\gamma) + o(\varepsilon^2),$$

$$\phi_{\varepsilon, \gamma} = \alpha_{\varepsilon} \phi_{\gamma} + i \varepsilon v_{1, \gamma} + \varepsilon^2 \psi_{\gamma}^{(2)} + o(\varepsilon^2)$$

as $\varepsilon \to 0$.

We shall continue further arguments.

If we put $\phi_{\epsilon,\gamma}=(\phi_{\epsilon,\gamma}-\phi_{\gamma})/\epsilon$, then we get the following equation

$$\begin{cases} -\Delta \phi_{\epsilon,\,\gamma} - \mu_0(\gamma) \phi_{\epsilon,\,\gamma} &= -2i \mathbf{F} \cdot \nabla \phi_{\epsilon,\,\gamma} - \epsilon |\, \mathbf{F}\,|^2 \phi_{\epsilon,\,\gamma} + \epsilon \lambda(\epsilon,\,\gamma) \phi_{\epsilon,\,\gamma} & \text{in } \Omega \\ \frac{\partial \phi_{\epsilon,\,\gamma}}{\partial \mathbf{v}} + \gamma \phi_{\epsilon,\,\gamma} &= i \mathbf{F} \cdot \mathbf{v} \phi_{\epsilon,\,\gamma} \end{cases} \quad \text{on } \partial \Omega$$

Again using the bootstrap argument, we see that $\{\varphi_{\varepsilon,\gamma}\}$ is bounded in $W^{k,2}(\Omega)$ for any $k\in\mathbb{N}$. Therefore, by the Sobolev imbedding theorem, $\{\varphi_{\varepsilon,\gamma}\}$ is bounded in $C^{2+\alpha}(\overline{\Omega})$ for any $\alpha\in(0,1)$. Since

$$\frac{\phi_{\epsilon,\,\gamma}-\alpha_\epsilon\phi_\gamma}{\epsilon}+\frac{(\alpha_\epsilon-1)\phi_\gamma}{\epsilon}=\frac{\phi_{\epsilon,\,\gamma}-\phi_\gamma}{\epsilon}\,,$$

if we multiply $\,\phi_{\gamma}\,$ to the both side and integrate over $\Omega,$ then we see that

 $(\alpha_{\epsilon}-1)/\epsilon$ is bounded with respect to ϵ . Moreover, since $\delta_{\epsilon}=((\alpha_{\epsilon}-1)-(\beta_{\epsilon}-1))/\epsilon$, we also see that $(\beta_{\epsilon}-1)/\epsilon$, is bounded with respect to ϵ . If we subtract (3.10) from (3.8), then we get the following equation for $\phi_{\epsilon,\gamma}^{(3)}:=(\psi_{\epsilon,\gamma}^{(2)}-\psi_{\gamma}^{(2)})/\epsilon$

$$\begin{cases} -\Delta \phi_{\epsilon,\gamma}^{(3)} - \mu_0(\gamma) \phi_{\epsilon,\gamma}^{(3)} = -2i\varepsilon \mathbf{F} \cdot \nabla \psi_{\epsilon,\gamma}^{(2)} \\ -\varepsilon^2(|\mathbf{F}|^2 - \lambda(\varepsilon,\gamma)) \psi_{\epsilon,\gamma}^{(2)} + 2(\beta_{\varepsilon} - 1) \mathbf{F} \cdot \nabla v_{1,\gamma} \\ -i\varepsilon \beta_{\varepsilon}(|\mathbf{F}|^2 - \lambda(\varepsilon,\gamma)) v_{1,\gamma} - 2i(\delta_{\varepsilon} - \delta_0) \mathbf{F} \cdot \nabla \phi_{\gamma} \\ -(\alpha_{\varepsilon} - 1) |\mathbf{F}|^2 \phi_{\gamma} + (\alpha_{\varepsilon} - 1) \lambda(\varepsilon,\gamma) \phi_{\gamma} \\ + (\lambda(\varepsilon,\gamma) - \mu_0(\gamma)) \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial \phi_{\varepsilon,\gamma}^{(3)}}{\partial \mathbf{v}} + \gamma \phi_{\varepsilon,\gamma}^{(3)} = i\varepsilon \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon,\gamma}^{(2)} + i(\delta_{\varepsilon} - \delta_0) \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} \\ -(\beta_{\varepsilon} - 1) \mathbf{F} \cdot \mathbf{v} v_{1,\gamma} & \text{on } \partial \Omega. \end{cases}$$

Using "the orthogonality condition", we get

$$-2i(\delta_{\varepsilon} - \delta_{0}) \int_{\Omega} (\mathbf{F} \cdot \nabla \phi_{\gamma}) \phi_{\gamma} dx + (\lambda(\varepsilon, \gamma) - \mu_{0}(\gamma)) \int_{\Omega} \phi_{\gamma}^{2} dx$$
$$+ i(\delta_{\varepsilon} - \delta_{0}) \int_{\partial\Omega} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}^{2} dS = O(\varepsilon).$$

Since by the integration by parts,

$$2\int_{\Omega} (\mathbf{F} \cdot \nabla \phi_{\gamma}) \phi_{\gamma} dx = \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}^{2} dS,$$

we get $(\lambda(\varepsilon, \gamma) - \mu_0(\gamma)) \int_{\Omega} \phi_{\gamma}^2 dx = O(\varepsilon)$. That is to say, $\lambda(\varepsilon, \gamma) - \mu_0(\gamma) = O(\varepsilon)$. Therefore we obtain

$$\mu(\epsilon,\,\gamma)=\,\mu(\gamma)+\,\epsilon^2\mu_2(\gamma)+{\it O}(\epsilon^3)$$

as $\epsilon \to 0$. If we put $\psi_{\epsilon,\gamma}^{(3)} = \frac{\psi_{\epsilon,\gamma}^{(2)} - \psi_{\gamma}^{(2)}}{\epsilon}$, then $\psi_{\epsilon,\gamma}^{(3)}$ satisfies the following equation

$$\begin{cases}
-\Delta \psi_{\varepsilon,\gamma}^{(3)} - \mu_{0}(\gamma)\psi_{\varepsilon,\gamma}^{(3)} = -2i\mathbf{F} \cdot \nabla \psi_{\varepsilon,\gamma}^{(2)} \\
-\varepsilon(|\mathbf{F}|^{2} - \lambda(\varepsilon,\gamma))\psi_{\varepsilon,\gamma}^{(2)} - 2\frac{\beta_{\varepsilon} - 1}{\varepsilon}\mathbf{F} \cdot \nabla v_{1,\gamma} \\
-i\beta_{\varepsilon}(|\mathbf{F}|^{2} - \lambda(\varepsilon,\gamma))v_{1,\gamma} \\
-2i\frac{\delta_{\varepsilon} - \delta_{0}}{\varepsilon}\mathbf{F} \cdot \nabla \phi_{\gamma} - \frac{\alpha_{\varepsilon} - 1}{\varepsilon}|\mathbf{F}|^{2}\phi_{\gamma} \\
+ \frac{\alpha_{\varepsilon} - 1}{\varepsilon}\lambda(\varepsilon,\gamma)\phi_{\gamma} + \frac{\lambda(\varepsilon,\gamma) - \mu_{0}(\gamma)}{\varepsilon}\phi_{\gamma} \quad \text{in } \Omega \\
\frac{\partial \psi_{\varepsilon,\gamma}^{(3)}}{\partial \mathbf{v}} + \gamma \psi_{\varepsilon,\gamma}^{(3)} = i\mathbf{F} \cdot \mathbf{v}\psi_{\varepsilon,\gamma}^{(2)} + i\frac{\delta_{\varepsilon} - \delta_{0}}{\varepsilon}\mathbf{F} \cdot \mathbf{v}\phi_{\gamma} \\
- \frac{\beta_{\varepsilon} - 1}{\varepsilon}\mathbf{F} \cdot \mathbf{v}v_{1,\gamma} \quad \text{on } \partial\Omega.
\end{cases}$$

Here we claim

$$\gamma_{\varepsilon} = \frac{\delta_{\varepsilon} - \delta_0}{\varepsilon}$$
 is bounded. (3.12)

In fact, if (3.12) does not hold, passing to a subsequence, we may assume that $\gamma_{\epsilon} \to \infty$ as $\epsilon \to 0$. If we put $\widetilde{\psi}_{\epsilon,\gamma}^{(3)} = \psi_{\epsilon,\gamma}^{(3)}/\gamma_{\epsilon}$, $\widetilde{\psi}_{\epsilon,\gamma}^{(3)}$ satisfies the following equation

$$\begin{cases} -\Delta\widetilde{\psi}_{\epsilon,\gamma}^{(3)} - \mu_{0}(\gamma)\widetilde{\psi}_{\epsilon,\gamma}^{(3)} = -\frac{2i}{\gamma_{\epsilon}}\mathbf{F}\cdot\nabla\psi_{\epsilon,\gamma}^{(2)} \\ -\frac{\varepsilon}{\gamma_{\epsilon}}(|\mathbf{F}|^{2} - \lambda(\varepsilon,\gamma))\psi_{\epsilon,\gamma}^{(2)} - \frac{2(\beta_{\epsilon}-1)}{\varepsilon\gamma_{\epsilon}}\mathbf{F}\cdot\nabla v_{1,\gamma} \\ -\frac{i\beta_{\epsilon}}{\gamma_{\epsilon}}(|\mathbf{F}|^{2} - \lambda(\varepsilon,\gamma))v_{1,\gamma} - 2i\mathbf{F}\cdot\nabla\phi_{\gamma} \\ -\frac{\alpha_{\epsilon}-1}{\varepsilon\gamma_{\epsilon}}|\mathbf{F}|^{2}\phi_{\gamma} + \frac{\alpha_{\epsilon}-1}{\varepsilon\gamma_{\epsilon}}\lambda(\varepsilon,\gamma)\phi_{\gamma} + \frac{\lambda(\varepsilon,\gamma)-\mu_{0}(\gamma)}{\varepsilon\gamma_{\epsilon}}\phi_{\gamma} & \text{in } \Omega \end{cases}$$

$$\frac{\partial\widetilde{\psi}_{\epsilon,\gamma}^{(3)}}{\partial\mathbf{v}} + \gamma\widetilde{\psi}_{\epsilon,\gamma}^{(3)} = \frac{i}{\gamma_{\epsilon}}\mathbf{F}\cdot\mathbf{v}\psi_{\epsilon,\gamma}^{(2)} + i\mathbf{F}\cdot\mathbf{v}\phi_{\gamma} \\ -\frac{\beta_{\epsilon}-1}{\varepsilon\gamma_{\epsilon}}\mathbf{F}\cdot\mathbf{v}v_{1,\gamma} & \text{on } \partial\Omega. \end{cases}$$

By the elliptic estimate as above, $\|\widetilde{\psi}_{\varepsilon,\gamma}^{(3)}\|_{C^{2+\alpha}(\overline{\Omega})} \leq C(\alpha, \gamma)$. Thus we may assume that $\widetilde{\psi}_{\varepsilon,\gamma}^{(3)} \to \psi_{\gamma}^{(3)}$ in $C^{2+\alpha}(\overline{\Omega})$. Letting $\varepsilon \to 0$ in (3.13), we get

$$\begin{cases} -\Delta \psi_{\gamma}^{(3)} - \mu_{0}(\gamma) \psi_{\gamma}^{(3)} = -2i \mathbf{F} \cdot \nabla \phi_{\gamma} & \text{in } \Omega \\ \frac{\partial \psi_{\gamma}^{(3)}}{\partial \mathbf{v}} + \gamma \psi_{\gamma}^{(3)} = i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text{on } \partial \Omega. \end{cases}$$

On the other hand, since $\int_{\Omega} \psi_{\gamma}^{(3)} \phi_{\gamma} dx = 0$ and $\int_{\Omega} \psi_{\gamma}^{(3)} v_{1,\gamma} dx = 0$, this leads to a contradiction.

Thus $(\delta_{\varepsilon} - \delta_0)/\varepsilon$ is bounded. If we return to (3.11), then by the similar arguments, we see that $\|\psi_{\varepsilon,\gamma}^{(3)}\|_{C^{2+\alpha}(\overline{\Omega})} \leq C(\alpha, \gamma)$. Thus we see that $\psi_{\varepsilon,\gamma}^{(2)} = \psi_{\gamma}^2 + \varepsilon \psi_{\varepsilon,\gamma}^{(3)}$ and $\psi_{\varepsilon,\gamma}^{(3)} \to \psi_{\gamma}^{(3)}$ in $C^{2+\alpha}(\overline{\Omega})$ as $\varepsilon \to 0$. This completes the proof of Theorem 2.1.

References

- S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727.
- [2] N. Ando and J. Aramaki, A remark on the eigenvalue asymptotics associated with superconductivity near critical temperature, Int. J. Pure Appl. Math. 40(1) (2007), 123-134.
- [3] J. Aramaki, Semiclassical asymptotics of the ground state energy for the Neumann problem associated with superconductivity, Int. J. Differ. Equ. Appl. 9(3) (2004), 239-271.
- [4] J. Aramaki, Upper critical field and location of surface nucleation for the Ginzburg-Landau system in non-constant applied field, Far East J. Math. Sci. (FJMS) 23(1) (2006), 89-125.
- [5] J. Aramaki, Asymptotics of the eigenvalues for the Neumann Laplacian with nonconstant magnetic field associated with superconductivity, Far East J. Math. Sci. (FJMS) 25(3) (2007), 529-584.
- [6] S. J. Chapman, S. D. Howison and J. R. Ockendon, Macroscopic models for superconductivity, SIAM Reviews 34 (1992), 529-560.
- [7] Y. Du, Order Structure and Topological Method in Nonlinear Partial Differential Equations, Word Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hongkong, Taipei, Chennai, 2006.
- [8] Y. Du and X.-B. Pan, Multiple states and hysteresis for type I superconductors, J. Math. Phys. 46 (2005), 073301-1-34.
- [9] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity, SIAM Reviews 34 (1992), 45-81.

- [10] S. Fournais and B. Helffer, Accurate eigenvalues asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier, Grenoble 564(1) (2006), 1-67.
- [11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983.
- [12] M. Gunzburger and J. Ockendon, Mathematical models in superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (1999), 341-359.
- [13] B. Helffer, Bouteilles magnétiques et supraconductivité, (d'après Helffer-Morame, Lu and Pan et Helffer-Pan), Séminaire EDP de l'école Polytechnique 2001-2002.
- [14] B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138 (1996), 40-81.
- [15] B. Helffer and A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680.
- [16] B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci. École Norm. Sup. (4) 37 (2004), 105-170.
- [17] B. Helffer and X.-B. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1) (2003), 145-181.
- [18] K. Lu and X.-B. Pan, Estimates of upper critical field for the Ginzburg-Landau equations of superconductivity, Physica D 127 (1999), 73-104.
- [19] K. Lu and X.-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Physics 40 (1999), 2647-2670.
- [20] K. Lu and X.-B. Pan, Surface nucleation of superconductivity in 3-dimension, J. Differential Equations 168 (2000), 386-452.
- [21] X.-B. Pan, Superconductivity near the critical temperature, J. Math. Physics 44(6) (2003), 2639-2678.