# ON AN EIGENVALUE ASYMPTOTICS FOR A SCHRÖDINGER OPERATOR WITH THE DE GENNES EFFECT ASSOCIATED WITH SUPERCONDUCTIVITY 

## JUNICHI ARAMAKI

Department of Mathematical Sciences
Faculty of Science and Engineearing
Tokyo Denki University
Hatoyama-Machi, Saitama 350-0394, Japan
e-mail: aramaki@r.dendai.ac.jp


#### Abstract

We study the eigenvalue asymptotics for a Schrödinger operator with a magnetic potential and with the de Gennes effect associated with the superconductivity near critical temperature. When the magnetic potential is depending on a parameter and the parameter tends to zero, we examine the asymptotics of the first eigenvalue and the corresponding eigenfunction. The result improves our previous paper Ando and Aramaki [2] and Pan [21].


## 1. Introduction

In the present paper, we consider the eigenvalue asymptotics for a magnetic Schrödinger operator associated with the superconductivity taking the de Gennes parameter into consideration. The superconductivity of the sample in a domain $\Omega \subset \mathbb{R}^{3}$ under the applied field $\mathbb{H}_{\text {appl }}$ is described by a minimizer $(\psi, \mathbb{A})$ of the Ginzburg-Landau functional

$$
G[\psi, \mathbb{A}]=\int_{\Omega}\left\{\left|\xi \nabla \psi-i \gamma \lambda^{-1} \mathbb{A} \psi\right|^{2}+\frac{1}{2}\left(1-|\psi|^{2}\right)^{2}\right\} d x
$$

2000 Mathematics Subject Classification: 82D55, 35P15, 35Q55.
Keywords and phrases: eigenvalue problems, the de Gennes effect, superconductivity.
Received January 15, 2008

$$
+\delta^{2} \int_{\mathbb{R}^{3}}\left|\operatorname{curl} \mathbb{A}-\mathbb{H}_{\mathrm{appl}}\right|^{2} d x+\gamma \int_{\partial \Omega}|\psi|^{2} d S
$$

Here $\psi$ is a complex valued function called an order parameter and $\mathbb{A}$ is a real valued vector field called a magnetic potential, and the penetration depth $\lambda$, the coherence length $\xi$, and $\delta$ is a positive parameter depending on materials and temperature and $\gamma \geq 0$ the de Gennes parameter. $\gamma$ is very small for insulator, very large for magnetic material, and lying in between for non-magnetic material. If we put a new parameter $\mu=1 / \xi^{2}$, $\mu$ means physically,

$$
\mu=\frac{1}{\xi^{2}}=\frac{4 m \alpha^{2} l^{2}\left(T_{c}-T\right)}{\hbar T_{c}}
$$

where $T$ is the temperature, $T_{c}$ is the critical temperature under zero applied field, $\hbar$ is the Plank constant, $l$ is a typical scale of the sample, $m$ is the electron mass, $\alpha$ is a material constant independent of temperature. The Ginzburg-Landau parameter $\kappa$ is defined by $\kappa=\lambda / \xi$. It is well known that if $\kappa>1 / \sqrt{2}$, the sample is of type II and if $0<\kappa<1 / \sqrt{2}$, the sample is of type I. For these arguments, see Aramaki [5], Chapman et al. [6], Du et al. [9], Gunzburger and Ockendon [12], Lu and Pan [18, 19, 20], Helffer and Pan [17].

By a scaling

$$
\mathcal{A}=\frac{\gamma \lambda^{-1}}{\xi} \mathbb{A}, \quad \mathcal{H}_{\mathrm{appl}}=\frac{\gamma \lambda^{-1}}{\xi} \mathbb{H}_{\mathrm{appl}}
$$

and put $\mathcal{H}_{\text {appl }}=\sigma \mathbf{H}$, where $\sigma>0$ is a parameter which means the intensity of $\mathcal{H}_{\text {appl }}$ and $\mathcal{A}=\sigma \mathbf{A}$, the associated energy $G[\psi, \mathbb{A}] / \xi^{2}$ is written by

$$
\begin{align*}
\mathcal{G}[\psi, \mathbf{A}]= & \int_{\Omega}\left\{\left|\nabla_{\sigma \mathbf{A}} \psi\right|^{2}+\frac{\mu}{2}\left(1-|\psi|^{2}\right)^{2}\right\} d x \\
& +\frac{\kappa^{2} \sigma^{2}}{\mu} \int_{\mathbb{R}^{3}}|\operatorname{curl} \mathbf{A}-\mathbf{H}|^{2} d x+\gamma \int_{\partial \Omega}|\psi|^{2} d S \tag{1.1}
\end{align*}
$$

where $d S$ denotes the surface element of $\partial \Omega$.

We assume that a given vector field $\mathbf{H}(x)$ is smooth and satisfies $\operatorname{div} \mathbf{H}=0$ in $\mathbb{R}^{3}$. Then there exists a unique vector field $\mathbf{F}$ such that

$$
\begin{equation*}
\operatorname{curl} \mathbf{F}=\mathbf{H}, \quad \operatorname{div} \mathbf{F}=0 \text { in } \mathbb{R}^{3}, \quad \int_{\Omega} \mathbf{F} d x=0 \tag{1.2}
\end{equation*}
$$

In the above and the following, we use the notations for any magnetic potential A and any function $\psi$,

$$
\nabla_{\mathbf{A}} \psi=\nabla \psi-i \mathbf{A} \psi, \quad \nabla_{\mathbf{A}}^{2} \psi=\Delta \psi-i[2 \mathbf{A} \cdot \nabla \psi+\psi \operatorname{div} \mathbf{A}]-|\mathbf{A}|^{2} \psi .
$$

The minimizers $(\psi, \mathbf{A})$ of the functional $\mathcal{G}$ satisfy the following Euler equation, called the Ginzburg-Landau system:

$$
\begin{cases}-\nabla_{\sigma \mathbf{A}}^{2} \psi=\mu\left(1-|\psi|^{2}\right) \psi & \text { in } \Omega,  \tag{1.3}\\ \operatorname{curl}^{2}(\mathbf{A}-\mathbf{F})=\frac{\mu}{\sigma \kappa^{2}} \mathfrak{J}\left\{\bar{\psi} \nabla_{\sigma \mathbf{A}} \psi\right\} \chi_{\Omega} & \text { in } \Omega, \\ \left(\nabla_{\sigma \mathbf{A}} \psi\right) \cdot \mathbf{v}+\gamma \psi=0, \quad[\mathbf{v} \cdot \mathbf{A}]=0, & \\ \quad[\mathbf{v} \times \operatorname{curlA}]=0, & \text { on } \partial \Omega, \\ \operatorname{curl} \mathbf{A} \rightarrow \mathbf{H} & \text { as }|x| \rightarrow \infty\end{cases}
$$

Here $\mathbf{v}$ is the unit outward normal vector at the boundary $\partial \Omega$ of $\Omega$, [.] denotes the jump in the enclosed quantity across $\partial \Omega$, and $\chi_{\Omega}$ is the characteristic function of $\Omega$.

It is well known that if the applied field is strong, that is to say, if $\sigma>0$ is large enough, $\mathcal{G}$ has only the trivial minimizer $(0, \mathbf{F})$ which corresponds with the normal state. Thus the critical field is defined by

$$
H_{c}(\mathbf{H}, \mu, \kappa)=\inf \{\sigma>0 ;(0, \mathbf{F}) \text { is a global minimizer of } \mathcal{G}\}
$$

In order to find the asymptotics of $H_{c}$ as $\mu \rightarrow 0$, we must consider the asymptotics of the first eigenvalue of the Schrödinger operator $-\nabla_{\varepsilon \mathbf{A}}^{2}$ with magnetic Robin type condition as $\varepsilon \rightarrow 0$. In this paper, we devote only the analysis for the asymptotics of the first eigenvalue and the corresponding eigenfunction of such a linear problem. For the asymptotics of $H_{c}$, we shall treat in the future work. Relatively, for the
asymptotics as $\varepsilon \rightarrow \infty$, there are many articles, for example, see Aramaki [3, 4], Fournais and Helffer [10], Helffer [13], Helffer and Mohamed [14], Helffer and Morame [15, 16].

## 2. Asymptotics of the First Eigenvalue and the Corresponding Eigenfunction

In this section, we shall consider the asymptotic behavior of the first eigenvalue and the corresponding eigenfunction for a Schrödinger operator.

More precisely, let $\Omega \subset \mathbb{R}^{3}$ be a bounded, smooth and simply connected domain and $\mathbf{H}=\mathbf{H}(x)$ a given smooth vector field in $\mathbb{R}^{3}$ satisfying

$$
\begin{equation*}
\mathbf{H}(x) \neq 0 \text { in } \Omega \text { and } \operatorname{div} \mathbf{H}=0 \text { in } \mathbb{R}^{3} . \tag{2.1}
\end{equation*}
$$

Then there exists a unique, smooth vector field $\mathbf{F}(x)$ in $\mathbb{R}^{3}$ such that

$$
\begin{equation*}
\operatorname{curl} \mathbf{F}=\mathbf{H}, \quad \operatorname{div} \mathbf{F}=0 \quad \text { in } \mathbb{R}^{3} \quad \text { and } \int_{\Omega} \mathbf{F} d x=0 \tag{2.2}
\end{equation*}
$$

Let $\mu(\varepsilon, \gamma)$ be the infimum of the following functional corresponding to the lowest eigenvalue of a Schrödinger operator with magnetic potential under some boundary condition:

$$
\begin{equation*}
\mu(\varepsilon, \gamma)=\inf _{\phi \in W^{1,2}(\Omega ; \mathbb{C})} \frac{\int_{\Omega}\left|\nabla_{\varepsilon \mathbf{F}} \phi\right|^{2} d x+\gamma \int_{\partial \Omega}|\phi|^{2} d S}{\|\phi\|_{L^{2}(\Omega)}^{2}} \tag{2.3}
\end{equation*}
$$

where $\gamma \geq 0$ is a parameter. It is well known that $\mu(\varepsilon, \gamma)$ is achieved in $W^{1,2}(\Omega)$. Any minimizer of the functional (2.3) satisfies the Euler equation:

$$
\begin{cases}-\nabla_{\varepsilon \mathbf{F}}^{2} \phi=\mu(\varepsilon, \gamma) \phi & \text { in } \Omega  \tag{2.4}\\ \left(\nabla_{\varepsilon \mathbf{F}} \phi\right) \cdot \mathbf{v}+\gamma \phi=0 & \text { on } \partial \Omega\end{cases}
$$

Taking (2.2) into consideration, we rewrite (2.4) into the form

$$
\begin{cases}-\Delta \phi+2 i \varepsilon \mathbf{F} \cdot \nabla \phi+\varepsilon^{2}|\mathbf{F}|^{2} \phi=\mu(\varepsilon, \gamma) \phi & \text { in } \Omega  \tag{2.5}\\ \frac{\partial \phi}{\partial \mathbf{v}}-i \varepsilon \mathbf{F} \cdot \mathbf{v} \phi+\gamma \phi=0 & \text { on } \partial \Omega\end{cases}
$$

In the present paper, we consider the asymptotic behaviors of the first eigenvalue $\mu(\varepsilon, \gamma)$ and the corresponding eigenfunction $\phi_{\varepsilon, \gamma}$ as $\varepsilon \rightarrow 0$.

First, we consider the eigenvalue problem

$$
\begin{cases}-\Delta \phi=\mu \phi & \text { in } \Omega  \tag{2.6}\\ \frac{\partial \phi}{\partial \mathbf{v}}+\gamma \phi=0 & \text { on } \partial \Omega\end{cases}
$$

It is well known that the first eigenvalue $\mu_{0}(\gamma)$ of (2.6) is simple, analytic with respect to $\gamma$ and $\mu_{0}(0)=0$, and we can choose the corresponding eigenfunction $\phi_{\gamma}$ to be smooth and positive on $\bar{\Omega}$. (See Gilberg and Trudinger [11, Theorem 8.21 and Lemma 3.4].

Next, we consider the problem

$$
\begin{cases}-\Delta v-\mu_{0}(\gamma) v=-2 \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega  \tag{2.7}\\ \frac{\partial v}{\partial \mathbf{v}}+\gamma v=\mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega\end{cases}
$$

We shall show that the problem (2.7) has a unique smooth solution $v_{1, \gamma}$ such that $\int_{\Omega} v_{1, \gamma} \phi_{\gamma} d x=0$.

We are now in a position to state the main theorem.
Theorem 2.1. Under the situations as above, we have the asymptotics of the first eigenvalue $\mu(\varepsilon, \gamma)$ and the corresponding eigenfunction $\phi_{\varepsilon, \gamma}$ as follows.

$$
\mu(\varepsilon, \gamma)=\mu_{0}(\gamma)+\varepsilon^{2} \mu_{2}(\gamma)+O\left(\varepsilon^{3}\right)
$$

as $\varepsilon \rightarrow 0$, where

$$
\mu_{2}(\gamma)=\left\|\phi_{\gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left\{\left|\nabla v_{1, \gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}+2\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) v_{1, \gamma}\right\} d x\right.
$$

$$
\left.-\mu_{0}(\gamma) \int_{\Omega}\left|v_{1, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|v_{1, \gamma}\right|^{2} d S\right]
$$

and

$$
\phi_{\varepsilon, \gamma}=\alpha_{\varepsilon} \phi_{\gamma}+i \varepsilon \beta_{\varepsilon} v_{1, \gamma}+\varepsilon^{2} \psi_{\gamma}^{(2)}+\varepsilon^{3} \psi_{\gamma}^{(3)}+o\left(\varepsilon^{3}\right)
$$

as $\varepsilon \rightarrow 0$, where $\alpha_{\varepsilon} \rightarrow 1, \beta_{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$ and $\psi_{\gamma}^{(2)}, \psi_{\gamma}^{(3)}$ are smooth functions.

Remark 2.2. Pan [21] got the similar asymptotics when the applied field $\mathbf{H}(x)=$ constant unit vector and, $\gamma=0$. In this case, since $\mu_{0}(0)=0$ and we can choose $\phi_{\gamma}=1$, we see that

$$
\mu_{2}(0)=|\Omega|^{-1} \int_{\Omega}\left|\nabla v_{1, \gamma}-\mathbf{F} \phi_{\gamma}\right|^{2} d x
$$

Ando and Aramaki [2] considered the case where the applied field is nonconstant and $\gamma=0$. They got a more precise asymptotics of $\phi_{\varepsilon, 0}$ than [21].

## 3. Proof of the Main Theorem

In this section we shall devote to the proof of Theorem 2.1.
We consider a functional

$$
\begin{equation*}
E_{\gamma}[\phi]=\int_{\Omega}\left\{\left|\nabla \phi-\mathbf{F} \phi_{\gamma}\right|^{2}+2\left(\nabla \phi_{\gamma} \cdot \mathbf{F}\right) \phi\right\} d x+\gamma \int_{\partial \Omega}|\phi|^{2} d S \tag{3.1}
\end{equation*}
$$

on $W^{1,2}(\Omega)$.
It is easy to show that the functional (3.1) is strictly convex, continuous in $W^{1,2}(\Omega)$ and so weakly lower semi-continuous. We shall show that $E_{\gamma}$ is bounded from below. When $\gamma=0$, since $\phi_{0}$ is constant, we have $E_{\gamma}[\phi] \geq 0$ for all $\phi \in W^{1,2}(\Omega)$. Therefore, let $\gamma>0$. Then from the integration by parts and the Schwarz inequality, we have

$$
\begin{aligned}
E_{\gamma}[\phi]= & \int_{\Omega}\left\{|\nabla \phi|^{2}-2(\nabla \phi \cdot \mathbf{F}) \phi_{\gamma}+\left|\mathbf{F} \phi_{\gamma}\right|^{2}+2\left(\nabla \phi_{\gamma} \cdot \mathbf{F}\right) \phi\right\} d x \\
& +\gamma \int_{\partial \Omega}|\phi|^{2} d S \\
= & \int_{\Omega}\left\{|\nabla \phi|^{2}-4(\nabla \phi \cdot \mathbf{F}) \phi_{\gamma}+\left|\mathbf{F} \phi_{\gamma}\right|^{2}\right\} d x \\
& +2 \int_{\partial \Omega} \phi_{\gamma} \phi \mathbf{F} \cdot \mathbf{v} d S+\gamma \int_{\partial \Omega}|\phi|^{2} d S \\
\geq & \int_{\Omega}|\nabla \phi|^{2} d x-2 \delta \int_{\Omega}|\nabla \phi|^{2} d x-\frac{2}{\delta} \int_{\Omega}\left|\mathbf{F} \phi_{\gamma}\right|^{2} d x \\
& +\int_{\Omega}\left|\mathbf{F} \phi_{\gamma}\right|^{2} d x-\delta \int_{\partial \Omega}|\phi|^{2} d S-\frac{1}{\delta} \int_{\partial \Omega}\left|\phi_{\gamma} \mathbf{F} \cdot \mathbf{v}\right|^{2} d S \\
& +\gamma \int_{\partial \Omega}|\phi|^{2} d S
\end{aligned}
$$

for any $\delta>0$. If we choose $\delta>0$ so that $\delta<\min \{1 / 2, \gamma\}$, we see that $E_{\gamma}$ is bounded from below.

Thus it follows from the standard variational theory that we see that $\inf _{\phi \in W^{1,2}(\Omega)} E_{\gamma}[\phi]$ is achieved by a unique, real valued function $w_{\gamma} \in W^{1,2}(\Omega)$ and taking the Euler equation, $w_{\gamma}$ satisfies the equation

$$
\begin{cases}-\Delta w_{\gamma}=-2 \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega  \tag{3.2}\\ \frac{\partial w_{\gamma}}{\partial \mathbf{v}}+\gamma w_{\gamma}=\mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega\end{cases}
$$

Now we shall show
Proposition 3.1. Let $\mu(\varepsilon, \gamma)$ be the first eigenvalue as in (2.3) and $\mu_{0}(\gamma)$ be the lowest eigenvalue of (2.6). Then we have

$$
\mu(\varepsilon, \gamma)=\mu_{0}(\gamma)+O\left(\varepsilon^{2}\right)
$$

as $\varepsilon \rightarrow 0$.

We continue the proof of this proposition for some time. In order to estimate $\mu(\varepsilon, \gamma)$ from above, if we take $\phi=\phi_{\gamma}+i \varepsilon w_{\gamma}$ as a test function in (2.3), we have

$$
\begin{aligned}
\mu(\varepsilon, \gamma) \leq & \frac{\int_{\Omega}\left|\nabla_{\varepsilon \mathbf{F}} \phi\right|^{2} d x+\gamma \int_{\partial \Omega}|\phi|^{2} d S}{\int_{\Omega}|\phi|^{2} d x} \\
= & \left(\int_{\Omega}\left\{\left|\phi_{\gamma}\right|^{2}+\varepsilon^{2}\left|w_{\gamma}\right|^{2}\right\} d x\right)^{-1}\left[\int _ { \Omega } \left\{\left|\nabla \phi_{\gamma}+\varepsilon^{2} \mathbf{F} w_{\gamma}\right|^{2}\right.\right. \\
& \left.+\varepsilon^{2}\left|\nabla w_{\gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}\right\} d x+\gamma \int_{\partial \Omega}\left\{\left|\phi_{\gamma}\right|^{2}+\varepsilon^{2}\left|w_{\gamma}\right|^{2} d S\right] \\
\leq & \left\|\phi_{\gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int _ { \Omega } \left\{\left|\nabla \phi_{\gamma}\right|^{2}+2 \varepsilon^{2}\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) w_{\gamma}+\varepsilon^{4}\left|\mathbf{F} w_{\gamma}\right|^{2}\right.\right. \\
& \left.\left.+\varepsilon^{2}\left|\nabla w_{\gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}\right\} d x+\gamma \int_{\partial \Omega}\left\{\left|\phi_{\gamma}\right|^{2}+\varepsilon^{2}\left|w_{\gamma}\right|^{2}\right\} d S\right] \\
\leq & \mu_{0}(\gamma)+\varepsilon^{2}\left\|\phi_{\gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left\{\left|\nabla w_{\gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}+2\left(\nabla \phi_{\gamma} \cdot \mathbf{F}\right) w_{\gamma}\right\} d x\right. \\
& \left.+\gamma \int_{\partial \Omega}\left|w_{\gamma}\right|^{2} d S\right]+\varepsilon^{4}\left\|\phi_{\gamma}\right\|_{L^{2}(\Omega)}^{-2} \int_{\Omega}\left|\mathbf{F} w_{\gamma}\right|^{2} d x .
\end{aligned}
$$

Thus if we put

$$
W_{\gamma}=\left\|\phi_{\gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left\{\left|\nabla w_{\gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}+2\left(\nabla \phi_{\gamma} \cdot \mathbf{F}\right) w_{\gamma}\right\} d x+\gamma \int_{\partial \Omega}\left|w_{\gamma}\right|^{2} d S\right]
$$

we see that

$$
\begin{equation*}
\mu(\varepsilon, \gamma) \leq \mu_{0}(\gamma)+\varepsilon^{2} W_{\gamma}+O\left(\varepsilon^{4}\right) \tag{3.3}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$.
In order to estimate $\mu(\varepsilon, \gamma)$ from below, we put $\phi_{\varepsilon, \gamma}=\alpha_{\varepsilon} \phi_{\gamma}+\varepsilon \psi_{\varepsilon, \gamma}$, where $\alpha_{\varepsilon}$ is chosen so that $\alpha_{\varepsilon} \int_{\Omega} \phi_{\gamma}^{2} d x=\int_{\Omega} \phi_{\varepsilon, \gamma} \phi_{\gamma} d x$. Since $\phi_{\gamma}>0$ on $\bar{\Omega}$,
$\alpha_{\varepsilon}$ is well defined. Then we note that $\int_{\Omega} \psi_{\varepsilon, \gamma} \phi_{\gamma} d x=0$. If we substitute this function $\phi_{\varepsilon, \gamma}$ for (2.5) and use (2.6), we see that $\psi_{\varepsilon, \gamma}$ satisfies

$$
\begin{cases}-\Delta \psi_{\varepsilon, \gamma}-\mu(\varepsilon, \gamma) \psi_{\varepsilon, \gamma}+2 i \varepsilon \mathbf{F} \cdot \nabla \psi_{\varepsilon, \gamma}+\varepsilon^{2}|\mathbf{F}|^{2} \psi_{\varepsilon, \gamma} &  \tag{3.4}\\ =\frac{\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon} \alpha_{\varepsilon} \phi_{\gamma}-\varepsilon \alpha_{\varepsilon}|\mathbf{F}|^{2} \phi_{\gamma}-2 i \alpha_{\varepsilon} \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \psi_{\varepsilon, \gamma}}{\partial \mathbf{v}}-i \varepsilon \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon, \gamma}+\gamma \psi_{\varepsilon, \gamma}=i \alpha_{\varepsilon} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega\end{cases}
$$

We must prove that

$$
\begin{equation*}
\frac{\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon^{2}} \text { is bounded. } \tag{3.5}
\end{equation*}
$$

As the first step, we shall show that $\left(\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)\right) / \varepsilon$ is bounded.
Lemma 3.2. Under the situation as above, we see that $\left(\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)\right) / \varepsilon$ is bounded with respect to $\varepsilon \in(0,1]$.

Proof. By (2.3) and the Schwarz inequality,

$$
\begin{aligned}
\mu(\varepsilon, \gamma)= & \left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left|\nabla_{\varepsilon \mathbf{F}} \phi_{\varepsilon, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|\phi_{\varepsilon, \gamma}\right|^{2} d S\right] \\
\geq & \left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left|\nabla \phi_{\varepsilon, \gamma}\right|^{2} d x-2 \varepsilon \int_{\Omega}\left|\nabla \phi_{\varepsilon, \gamma}\right|\left|\mathbf{F} \phi_{\varepsilon, \gamma}\right| d x\right. \\
& \left.+\varepsilon^{2} \int_{\Omega}\left|\mathbf{F} \phi_{\varepsilon, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|\phi_{\varepsilon, \gamma}\right|^{2} d S\right] \\
\geq & (1-\varepsilon)\left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left|\nabla \phi_{\varepsilon, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|\phi_{\varepsilon, \gamma}\right|^{2} d S\right] \\
& -\varepsilon\left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{-2} \int_{\Omega}\left|\mathbf{F} \phi_{\varepsilon, \gamma}\right|^{2} d x \\
\geq & (1-\varepsilon) \mu_{0}(\gamma)-O(\varepsilon)
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. Thus we see that $\mu(\varepsilon, \gamma) \geq \mu_{0}(\gamma)-O(\varepsilon)$. Taking (3.3) into consideration, the proof is completed.

We return to the equation (2.5). Let $\phi_{\varepsilon, \gamma}$ be the normalized eigenfunction such that $\left\|\phi_{\varepsilon, \gamma}\right\|_{L^{\infty}(\Omega)}=1$. Then by the elliptic estimate [11, Theorem 6.30], we see that $\left\|\phi_{\varepsilon, \gamma}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\alpha, \gamma)<\infty$ for any $\alpha \in(0,1)$ and small $\varepsilon>0$. Passing to a subsequence, we may assume that $\phi_{\varepsilon, \gamma} \rightarrow \phi_{\gamma}$ in $C^{2+\alpha}(\bar{\Omega})$. We remember that $\phi_{\varepsilon, \gamma}=\alpha_{\varepsilon} \phi_{\gamma}+\varepsilon \psi_{\varepsilon, \gamma}$.

Now we claim that $\left\|\psi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}$ is bounded.
In fact, if the claim does not hold, passing to a subsequence, we may assume that $C_{\varepsilon}:=\left\|\psi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)} \rightarrow \infty$ as $\varepsilon \rightarrow 0$. Put $\widetilde{\psi}_{\varepsilon, \gamma}=\psi_{\varepsilon, \gamma} / C_{\varepsilon}$. Then $\widetilde{\Psi}_{\varepsilon, \gamma}$ satisfies the equation

$$
\begin{cases}-\Delta \widetilde{\psi}_{\varepsilon, \gamma}-\mu(\varepsilon, \gamma) \widetilde{\psi}_{\varepsilon, \gamma}+2 i \varepsilon \mathbf{F} \cdot \nabla \widetilde{\psi}_{\varepsilon, \gamma}+\varepsilon^{2}|\mathbf{F}|^{2} \widetilde{\psi}_{\varepsilon, \gamma} &  \tag{3.6}\\ =\frac{\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon C_{\varepsilon}} \phi_{\gamma}-\frac{\varepsilon}{C_{\varepsilon}}|\mathbf{F}|^{2} \phi_{\gamma}-\frac{2 i}{C_{\varepsilon}} \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \widetilde{\psi}_{\varepsilon, \gamma}}{\partial \mathbf{v}}-i \varepsilon \mathbf{F} \cdot \mathbf{v} \widetilde{\psi}_{\varepsilon, \gamma}+\gamma \widetilde{\psi}_{\varepsilon, \gamma}=\frac{i}{C_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega .\end{cases}
$$

Since $\left\|\widetilde{\psi}_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}=1$, it follows from [11, Theorem 8.13] or Agmon et al. [1, Theorem 15.2] that $\left\|\widetilde{\psi}_{\varepsilon, \gamma}\right\|_{W^{k+2,2}(\Omega)} \leq C(k, \gamma)$ for any $k \in \mathbb{N}$ (cf. Du [7]). By the Sobolev imbedding theorem, $\left\|\widetilde{\psi}_{\varepsilon, \gamma}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\alpha, \gamma)$ for any $\alpha \in(0,1)$. Passing to a subsequence, we may assume that $\widetilde{\psi}_{\varepsilon, \gamma} \rightarrow \widetilde{\psi}_{\gamma}$ in $C^{2+\alpha}(\bar{\Omega})$. Letting $\varepsilon \rightarrow 0$ in (3.6), we see that $\widetilde{\psi}_{\gamma}$ satisfies

$$
\begin{cases}-\Delta \widetilde{\psi}_{\gamma}-\mu_{0}(\gamma) \widetilde{\psi}_{\gamma}=0 & \text { in } \Omega \\ \frac{\partial \widetilde{\psi}_{\gamma}}{\partial \mathbf{v}}+\gamma \widetilde{\psi}_{\gamma}=0 & \text { on } \partial \Omega\end{cases}
$$

and $\left\|\widetilde{\psi}_{\gamma}\right\|_{L^{2}(\Omega)}=1, \int_{\Omega} \widetilde{\psi}_{\gamma} \phi_{\gamma} d x=0$. Since the real part and the imaginary part of $\widetilde{\psi}_{\gamma}$ are non-zero constant signs, this leads to a contradiction. Thus $\left\|\psi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}$ is bounded.

Since $\left\|\psi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}$ is bounded, if we again apply the same arguments as above, we see that $\left\|\psi_{\varepsilon, \gamma}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\alpha, \gamma)$. Taking Lemma 3.2 into consideration, passing to a subsequence, we may assume that $\frac{\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon} \rightarrow \mu_{1}(\gamma)$ and $\psi_{\varepsilon, \gamma} \rightarrow \phi_{1, \gamma}$ in $C^{2+\alpha}(\bar{\Omega})$ as $\varepsilon \rightarrow 0$. Letting $\varepsilon \rightarrow 0$ in (3.4), we have

$$
\begin{cases}-\Delta \phi_{1, \gamma}-\mu_{0}(\gamma) \phi_{1, \gamma}=\mu_{1}(\gamma) \phi_{\gamma}-2 i \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \phi_{1, \gamma}}{\partial \mathbf{v}}+\gamma \phi_{1, \gamma}=i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega\end{cases}
$$

Let $u_{1, \gamma}$ and $v_{1, \gamma}$ be the real part and imaginary part of $\phi_{1, \gamma}$, respectively. Then $u_{1, \gamma}$ is a solution of the problem

$$
\begin{cases}-\Delta u_{1, \gamma}-\mu_{0}(\gamma) u_{1, \gamma}=\mu_{1}(\gamma) \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial u_{1, \gamma}}{\partial \mathbf{v}}+\gamma u_{1, \gamma}=0 & \text { on } \partial \Omega\end{cases}
$$

Since the boundary value problem $\left(-\Delta-\mu_{0}(\gamma), \frac{\partial}{\partial \mathbf{v}}+\gamma\right)$ is self adjoint, it follows from the Fredholm alternative theorem that "the orthogonality condition" $\mu_{1}(\gamma)\left(\phi_{\gamma}, \phi_{\gamma}\right)_{L^{2}(\Omega)}=0$ holds. Thus we have $\mu_{1}(\gamma)=0$. Since $u_{1, \gamma}$ has a constant sign in $\bar{\Omega}$ and $\int_{\Omega} u_{1, \gamma} \phi_{\gamma} d x=0$, we see that $u_{1, \gamma}=0$. Now $v_{1, \gamma}$ satisfies the equation

$$
\begin{cases}-\Delta v_{1, \gamma}-\mu_{0}(\gamma) v_{1, \gamma}=-2 \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega  \tag{3.7}\\ \frac{\partial v_{1, \gamma}}{\partial \mathbf{v}}+\gamma v_{1, \gamma}=\mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega\end{cases}
$$

We note that the solution $v_{1, \gamma}$ of (3.7) satisfying $\int_{\Omega} v_{1, \gamma} \phi_{\gamma} d x=0$ is unique.

Thus we can write $\phi_{\varepsilon, \gamma}=\phi_{\gamma}+i \varepsilon v_{1, \gamma}+\varepsilon \widetilde{\phi}_{\varepsilon, \gamma}$, where $\widetilde{\phi}_{\varepsilon, \gamma}$ is bounded in $C^{2+\alpha}(\bar{\Omega})$. Therefore, we have

$$
\begin{aligned}
\mu(\varepsilon, \gamma)\left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{2}= & \int_{\Omega}\left|\nabla \phi_{\varepsilon, \gamma}-i \varepsilon \mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|\phi_{\varepsilon, \gamma}\right|^{2} d S \\
= & \int_{\Omega}\left\{\left|\nabla \phi_{\varepsilon, \gamma}\right|^{2}-2 \varepsilon \Im\left\{\left(\mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}\right) \overline{\phi_{\varepsilon, \gamma}}\right\}\right. \\
& \left.-\varepsilon^{2}\left|\mathbf{F} \phi_{\varepsilon, \gamma}\right|^{2}\right\} d x+\gamma \int_{\partial \Omega}\left|\phi_{\varepsilon, \gamma}\right|^{2} d S .
\end{aligned}
$$

Here we note that since

$$
\begin{aligned}
& \int_{\Omega}\left(\mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}\right) \overline{\phi_{\varepsilon, \gamma}} d x \\
= & \int_{\Omega} \mathbf{F} \cdot\left\{\nabla \phi_{\gamma}+\varepsilon\left(i \nabla v_{1, \gamma}+\nabla \widetilde{\psi}_{\varepsilon, \gamma}\right)\right\}\left(\phi_{\gamma}-i \varepsilon w_{\gamma}+\varepsilon \overline{\widetilde{\phi}_{\varepsilon, \gamma}}\right) d x
\end{aligned}
$$

it follows that $\mathfrak{J} \int_{\Omega}\left(\mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}\right) \overline{\phi_{\varepsilon, \gamma}} d x=O(\varepsilon)$. Therefore, we have

$$
\begin{aligned}
\mu(\varepsilon, \gamma)\left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{2} & \geq \int_{\Omega}\left|\nabla \phi_{\varepsilon, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|\phi_{\varepsilon, \gamma}\right|^{2} d S-O\left(\varepsilon^{2}\right) \\
& \geq \mu_{0}(\gamma)\left\|\phi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}^{2}-O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Summing up (3.3), we see that $\frac{\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon^{2}}$ is bounded with respect to $\varepsilon$. That is to say, the claim (3.5) holds. This completes the proof of Proposition 3.1.

Thus if we put $\mu(\varepsilon, \gamma)-\mu_{0}(\gamma)=\varepsilon^{2} \lambda(\varepsilon, \gamma)$, passing to a subsequence, we may assume that $\lambda(\varepsilon, \gamma) \rightarrow \mu_{2}(\gamma)$ as $\varepsilon \rightarrow 0$. We remember that we can write $\phi_{\varepsilon, \gamma}=\alpha_{\varepsilon} \phi_{\gamma}+\varepsilon \psi_{\varepsilon, \gamma}^{(1)}$, where $\psi_{\varepsilon, \gamma}^{(1)} \rightarrow i v_{1, \gamma}$ in $C^{2+\alpha}(\bar{\Omega})$ as $\varepsilon \rightarrow 0$.
We write $\psi_{\varepsilon, \gamma}^{(1)}=i \beta_{\varepsilon} v_{1, \gamma}+\varepsilon \psi_{\varepsilon, \gamma}^{(2)}$, where

$$
\beta_{\varepsilon}=-i \frac{\int_{\Omega} v_{1, \gamma} \psi_{\varepsilon, \gamma}^{(1)} d x}{\int_{\Omega}\left|v_{1, \gamma}\right|^{2} d x}
$$

Then we see that $\int_{\Omega} \psi_{\varepsilon, \gamma}^{(2)} \phi_{\gamma} d x=0$ and $\int_{\Omega} \psi_{\varepsilon, \gamma}^{(2)} v_{1, \gamma} d x=0$. Since $\psi_{\varepsilon, \gamma}^{(1)} \rightarrow$
$i v_{1, \gamma}$ in $C^{2+\alpha}(\bar{\Omega})$, it follows that $\beta_{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$. Taking (2.6) and (3.7) into consideration, $\psi_{\varepsilon, \gamma}^{(2)}$ satisfies the following equation

$$
\begin{cases}-\Delta \psi_{\varepsilon, \gamma}^{(2)}-\mu_{0}(\gamma) \psi_{\varepsilon, \gamma}^{(2)}+2 i \varepsilon \mathbf{F} \cdot \nabla \psi_{\varepsilon, \gamma}^{(2)}+\varepsilon^{2}|\mathbf{F}|^{2} \psi_{\varepsilon, \gamma}^{(2)} & \text { in } \Omega  \tag{3.8}\\ -\varepsilon^{2} \lambda(\varepsilon, \gamma) \psi_{\varepsilon, \gamma}^{(2)}=f_{\varepsilon, \gamma} & \\ \frac{\partial \psi_{\varepsilon, \gamma}^{(2)}}{\partial \mathbf{v}}+\gamma \psi_{\varepsilon, \gamma}^{(2)}-i \varepsilon \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon, \gamma}^{(2)}=i \frac{\alpha_{\varepsilon}-\beta_{\varepsilon}}{\varepsilon} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}-\beta_{\varepsilon} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega\end{cases}
$$

where

$$
\begin{aligned}
f_{\varepsilon, \gamma}= & 2 \beta_{\varepsilon} \mathbf{F} \cdot \nabla v_{1, \gamma}-i \varepsilon \beta_{\varepsilon}|\mathbf{F}|^{2} v_{1, \gamma}+i \varepsilon \beta_{\varepsilon} \lambda(\varepsilon, \gamma) v_{1, \gamma} \\
& -2 i \frac{\alpha_{\varepsilon}-\beta_{\varepsilon}}{\varepsilon} \mathbf{F} \cdot \nabla \phi_{\gamma}-\alpha_{\varepsilon}|\mathbf{F}|^{2} \phi_{\gamma}+\alpha_{\varepsilon} \lambda(\varepsilon, \gamma) \phi_{\gamma}
\end{aligned}
$$

We shall show that $\left(\alpha_{\varepsilon}-\beta_{\varepsilon}\right) / \varepsilon$ is bounded with respect to $\varepsilon$.
Lemma 3.3. If we define $\delta_{\varepsilon}=\left(\alpha_{\varepsilon}-\beta_{\varepsilon}\right) / \varepsilon$, then $\left\{\delta_{\varepsilon}\right\}$ is bounded with respect to $\varepsilon \in(0,1]$.

Proof. If the claim does not hold, passing to a subsequence, we may assume that $\delta_{\varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$. If we define $\xi_{\varepsilon, \gamma}=\psi_{\varepsilon, \gamma}^{(2)} / \delta_{\varepsilon}$, it is clear that $\int_{\Omega} \xi_{\varepsilon, \gamma} \phi_{\gamma} d x=0$ and $\int_{\Omega} \xi_{\varepsilon, \gamma} v_{1, \gamma} d x=0$. From (3.8), $\xi_{\varepsilon, \gamma}$ satisfies the following equation

$$
\begin{cases}-\Delta \xi_{\varepsilon, \gamma}-\mu_{0}(\gamma) \xi_{\varepsilon, \gamma}+2 i \varepsilon \mathbf{F} \cdot \nabla \xi_{\varepsilon, \gamma}+\varepsilon^{2}|\mathbf{F}|^{2} \xi_{\varepsilon, \gamma} &  \tag{3.9}\\ -\varepsilon^{2} \lambda(\varepsilon, \gamma) \xi_{\varepsilon, \gamma}=-2 i \mathbf{F} \cdot \nabla \phi_{\gamma}+\frac{1}{\delta_{\varepsilon}} g_{\varepsilon, \gamma} & \text { in } \Omega \\ \frac{\partial \xi_{\varepsilon, \gamma}}{\partial \mathbf{v}}+\gamma \xi_{\varepsilon, \gamma}-i \varepsilon \mathbf{F} \cdot \mathbf{v} \xi_{\varepsilon, \gamma}=i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}-i \frac{\beta_{\varepsilon}}{\delta_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega\end{cases}
$$

where

$$
\begin{aligned}
g_{\varepsilon, \gamma}= & 2 \beta_{\varepsilon} \mathbf{F} \cdot \nabla v_{1, \gamma}-i \varepsilon \beta_{\varepsilon}|\mathbf{F}|^{2} v_{1, \gamma}+i \varepsilon \beta_{\varepsilon} \lambda(\varepsilon, \gamma) v_{1, \gamma} \\
& -\alpha_{\varepsilon}|\mathbf{F}|^{2} \phi_{\gamma}+\alpha_{\varepsilon} \lambda(\varepsilon, \gamma) \phi_{\gamma}
\end{aligned}
$$

Case 1. $\left\|\xi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)} \leq C<\infty$.
Then applying the elliptic estimate as above, it can be seen that $\left\|\xi_{\varepsilon, \gamma}\right\|_{W^{k, 2}(\Omega)} \leq C(k)$ for any $k \in \mathbb{N}$. Therefore, by the Sobolev imbedding theorem, $\left\|\xi_{\varepsilon, \gamma}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\gamma, \alpha)$ for any $\alpha \in(0,1)$. Passing to a subsequence, we may assume that $\xi_{\varepsilon, \gamma} \rightarrow \xi_{\gamma}$ in $C^{2+\alpha}(\bar{\Omega})$ as $\varepsilon \rightarrow 0$. Then we see that $\int_{\Omega} \xi_{\gamma} \phi_{\gamma} d x=0$ and $\int_{\Omega} \xi_{\gamma} v_{1, \gamma} d x=0$. Letting $\varepsilon \rightarrow 0$ in (3.9), we have the equation

$$
\begin{cases}-\Delta \xi_{\gamma}-\mu_{0}(\gamma) \xi_{\gamma}=-2 i \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \xi_{\gamma}}{\partial \mathbf{v}}+\gamma \xi_{\gamma}=i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega\end{cases}
$$

Thus we have $\xi_{\gamma}=v_{1, \gamma}$. This leads to a contradiction.
Case 2. $\left\|\xi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)}$ is unbounded.
In this case, passing to a subsequence, we may assume that $C_{\varepsilon}=\left\|\xi_{\varepsilon, \gamma}\right\|_{L^{2}(\Omega)} \rightarrow \infty$ as $\varepsilon \rightarrow 0$. If we put $\tilde{\xi}_{\varepsilon, \gamma}=\xi_{\varepsilon, \gamma} / C_{\varepsilon}$, then we see that $\tilde{\xi}_{\varepsilon, \gamma}$ satisfies the following equation

$$
\begin{cases}-\Delta \widetilde{\xi}_{\varepsilon, \gamma}-\mu_{0}(\gamma) \widetilde{\xi}_{\varepsilon, \gamma}+2 i \varepsilon \mathbf{F} \cdot \nabla \widetilde{\xi}_{\varepsilon, \gamma}+\varepsilon^{2}|\mathbf{F}|^{2} \widetilde{\xi}_{\varepsilon, \gamma} & \text { in } \Omega \\ -\varepsilon^{2} \lambda(\varepsilon, \gamma) \widetilde{\xi}_{\varepsilon, \gamma}=-\frac{2 i}{C_{\varepsilon}} \mathbf{F} \cdot \nabla \phi_{\gamma}+\frac{1}{\delta_{\varepsilon} C_{\varepsilon}} g_{\varepsilon, \gamma} & \\ \frac{\partial \widetilde{\xi}_{\varepsilon, \gamma}}{\partial \mathbf{v}}+\gamma \widetilde{\xi}_{\varepsilon, \gamma}-i \varepsilon \mathbf{F} \cdot \mathbf{v} \widetilde{\xi}_{\varepsilon, \gamma}=\frac{i}{C_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}-\frac{\beta_{\varepsilon}}{C_{\varepsilon} \delta_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega\end{cases}
$$

Similarly as Case 1 , we may assume that $\tilde{\xi}_{\varepsilon, \gamma} \rightarrow \tilde{\xi}_{\gamma}$ in $C^{2+\alpha}(\bar{\Omega})$. Then $\left\|\tilde{\xi}_{\gamma}\right\|_{L^{2}(\Omega)}=1$ and $\int_{\Omega} \widetilde{\xi}_{\gamma} \phi_{\gamma} d x=0$ and $\tilde{\xi}_{\gamma}$ satisfies

$$
\begin{cases}-\Delta \widetilde{\xi}_{\gamma}=\mu_{0}(\gamma) \widetilde{\xi}_{\gamma} & \text { in } \Omega \\ \frac{\partial \widetilde{\xi}_{\gamma}}{\partial \mathbf{v}}+\gamma \widetilde{\xi}_{\gamma}=0 & \text { on } \partial \Omega\end{cases}
$$

Since any solution of this equation is constant sign on $\bar{\Omega}$, this leads to a contradiction.

Thus since $\delta_{\varepsilon}=\left(\alpha_{\varepsilon}-\beta_{\varepsilon}\right) / \varepsilon$ is bounded, we may assume that $\delta_{\varepsilon} \rightarrow \delta_{0}$ as $\varepsilon \rightarrow 0$. Since $\left\|\psi_{\varepsilon, \gamma}^{(2)}\right\|_{L^{2}(\Omega)} \leq C$ in (3.8), as the similar arguments in Case 2, we have $\left\|\psi_{\varepsilon, \gamma}^{(2)}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\gamma, \alpha)$. Therefore, we may assume that $\psi_{\varepsilon, \gamma}^{(2)} \rightarrow \psi_{\gamma}^{(2)}$ in $C^{2+\alpha}(\bar{\Omega})$. Letting $\varepsilon \rightarrow 0$ in (3.8), we get the following equation

$$
\begin{cases}-\Delta \psi_{\gamma}^{(2)}-\mu_{0}(\gamma) \psi_{\gamma}^{(2)}=2 \mathbf{F} \cdot \nabla v_{1, \gamma}-2 i \delta_{0} \mathbf{F} \cdot \nabla \phi_{\gamma}-|\mathbf{F}|^{2} \phi_{\gamma} &  \tag{3.10}\\ \quad+\mu_{2}(\gamma) \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \psi_{\gamma}^{(2)}}{\partial \mathbf{v}}+\gamma \psi_{\gamma}^{(2)}=i \delta_{0} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}-\mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega .\end{cases}
$$

Since $\psi_{\gamma}^{(2)}$ is a solution of (3.10), we have "the orthogonality condition"

$$
\begin{aligned}
& \int_{\Omega}\left(2\left(\mathbf{F} \cdot \nabla v_{1, \gamma}\right) \phi_{\gamma}-2 i \delta_{0}\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) \phi_{\gamma}-|\mathbf{F}|^{2} \phi_{\gamma}^{2}+\mu_{2}(\gamma) \phi_{\gamma}^{2}\right) d x \\
& +\int_{\partial \Omega}\left(i \delta_{0} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}^{2}-\mathbf{F} \cdot \mathbf{v} v_{1, \gamma} \phi_{\gamma}\right) d S=0 .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
\mu_{2}(\gamma) \int_{\Omega} \phi_{\gamma}^{2} d x= & \int_{\Omega}\left(-2\left(\mathbf{F} \cdot \nabla v_{1, \gamma}\right) \phi_{\gamma}+|\mathbf{F}|^{2} \phi_{\gamma}^{2}\right) d x \\
& +\int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} \phi_{\gamma} d S \\
= & \int_{\Omega}\left|\nabla v_{1, \gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}-\int_{\Omega}\left|\nabla v_{1, \gamma}\right|^{2} d x \\
& +\int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} \phi_{\gamma} d S .
\end{aligned}
$$

From integration by parts, we see that

$$
\int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} \phi_{\gamma} d S=\int_{\partial \Omega}\left(\frac{\partial v_{1, \gamma}}{\partial v}+\gamma v_{1, \gamma}\right) v_{1, \gamma} d S
$$

$$
\begin{aligned}
= & \int_{\Omega}\left|\nabla v_{1, \gamma}\right|^{2} d x+\int_{\Omega} v_{1, \gamma} \Delta v_{1, \gamma} d x+\gamma \int_{\partial \Omega}\left|v_{1, \gamma}\right|^{2} d S \\
= & \int_{\Omega}\left|\nabla v_{1, \gamma}\right|^{2} d x-\mu_{0}(\gamma) \int_{\Omega}\left|v_{1, \gamma}\right|^{2} d x \\
& +2 \int_{\Omega}\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) v_{1, \gamma} d x+\gamma \int_{\partial \Omega}\left|v_{1, \gamma}\right|^{2} d S
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
\mu_{2}(\gamma)= & \left\|\phi_{\gamma}\right\|_{L^{2}(\Omega)}^{-2}\left[\int_{\Omega}\left\{\left|\nabla v_{1, \gamma}-\mathbf{F} \phi_{\gamma}\right|^{2}+2\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) v_{1, \gamma}\right\} d x\right. \\
& \left.-\mu_{0}(\gamma) \int_{\Omega}\left|v_{1, \gamma}\right|^{2} d x+\gamma \int_{\partial \Omega}\left|v_{1, \gamma}\right|^{2} d S\right] .
\end{aligned}
$$

In this stage, we got the asymptotics:

$$
\begin{gathered}
\mu(\varepsilon, \gamma)=\mu_{0}(\gamma)+\varepsilon^{2} \mu_{2}(\gamma)+o\left(\varepsilon^{2}\right) \\
\phi_{\varepsilon, \gamma}=\alpha_{\varepsilon} \phi_{\gamma}+i \varepsilon v_{1, \gamma}+\varepsilon^{2} \psi_{\gamma}^{(2)}+o\left(\varepsilon^{2}\right)
\end{gathered}
$$

as $\varepsilon \rightarrow 0$.
We shall continue further arguments.
If we put $\varphi_{\varepsilon, \gamma}=\left(\phi_{\varepsilon, \gamma}-\phi_{\gamma}\right) / \varepsilon$, then we get the following equation

$$
\begin{cases}-\Delta \varphi_{\varepsilon, \gamma}-\mu_{0}(\gamma) \varphi_{\varepsilon, \gamma}=-2 i \mathbf{F} \cdot \nabla \phi_{\varepsilon, \gamma}-\varepsilon|\mathbf{F}|^{2} \phi_{\varepsilon, \gamma}+\varepsilon \lambda(\varepsilon, \gamma) \phi_{\varepsilon, \gamma} & \text { in } \Omega \\ \frac{\partial \varphi_{\varepsilon, \gamma}}{\partial \mathbf{v}}+\gamma \varphi_{\varepsilon, \gamma}=i \mathbf{F} \cdot \mathbf{v} \phi_{\varepsilon, \gamma} & \text { on } \partial \Omega\end{cases}
$$

Again using the bootstrap argument, we see that $\left\{\varphi_{\varepsilon, \gamma}\right\}$ is bounded in $W^{k, 2}(\Omega)$ for any $k \in \mathbb{N}$. Therefore, by the Sobolev imbedding theorem, $\left\{\varphi_{\varepsilon, \gamma}\right\}$ is bounded in $C^{2+\alpha}(\bar{\Omega})$ for any $\alpha \in(0,1)$. Since

$$
\frac{\phi_{\varepsilon, \gamma}-\alpha_{\varepsilon} \phi_{\gamma}}{\varepsilon}+\frac{\left(\alpha_{\varepsilon}-1\right) \phi_{\gamma}}{\varepsilon}=\frac{\phi_{\varepsilon, \gamma}-\phi_{\gamma}}{\varepsilon}
$$

if we multiply $\phi_{\gamma}$ to the both side and integrate over $\Omega$, then we see that
$\left(\alpha_{\varepsilon}-1\right) / \varepsilon$ is bounded with respect to $\varepsilon$. Moreover, since $\delta_{\varepsilon}=$ $\left(\left(\alpha_{\varepsilon}-1\right)-\left(\beta_{\varepsilon}-1\right)\right) / \varepsilon$, we also see that $\left(\beta_{\varepsilon}-1\right) / \varepsilon$, is bounded with respect to $\varepsilon$. If we subtract (3.10) from (3.8), then we get the following equation for $\phi_{\varepsilon, \gamma}^{(3)}:=\left(\psi_{\varepsilon, \gamma}^{(2)}-\psi_{\gamma}^{(2)}\right) / \varepsilon$

$$
\left\{\begin{aligned}
-\Delta \phi_{\varepsilon, \gamma}^{(3)}-\mu_{0}(\gamma) \phi_{\varepsilon, \gamma}^{(3)}=-2 i \varepsilon \mathbf{F} \cdot \nabla \psi_{\varepsilon, \gamma}^{(2)} & \\
\quad-\varepsilon^{2}\left(|\mathbf{F}|^{2}-\lambda(\varepsilon, \gamma)\right) \psi_{\varepsilon, \gamma}^{(2)}+2\left(\beta_{\varepsilon}-1\right) \mathbf{F} \cdot \nabla v_{1, \gamma} & \\
-i \varepsilon \beta_{\varepsilon}\left(|\mathbf{F}|^{2}-\lambda(\varepsilon, \gamma)\right) v_{1, \gamma}-2 i\left(\delta_{\varepsilon}-\delta_{0}\right) \mathbf{F} \cdot \nabla \phi_{\gamma} & \\
-\left(\alpha_{\varepsilon}-1\right)|\mathbf{F}|^{2} \phi_{\gamma}+\left(\alpha_{\varepsilon}-1\right) \lambda(\varepsilon, \gamma) \phi_{\gamma} & \text { in } \Omega \\
\quad+\left(\lambda(\varepsilon, \gamma)-\mu_{0}(\gamma)\right) \phi_{\gamma} & \\
\frac{\partial \phi_{\varepsilon, \gamma}^{(3)}}{\partial \mathbf{v}}+\gamma \phi_{\varepsilon, \gamma}^{(3)}=i \varepsilon \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon, \gamma}^{(2)}+i\left(\delta_{\varepsilon}-\delta_{0}\right) \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \\
-\left(\beta_{\varepsilon}-1\right) \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega
\end{aligned}\right.
$$

Using "the orthogonality condition", we get

$$
\begin{aligned}
& -2 i\left(\delta_{\varepsilon}-\delta_{0}\right) \int_{\Omega}\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) \phi_{\gamma} d x+\left(\lambda(\varepsilon, \gamma)-\mu_{0}(\gamma)\right) \int_{\Omega} \phi_{\gamma}^{2} d x \\
& +i\left(\delta_{\varepsilon}-\delta_{0}\right) \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}^{2} d S=O(\varepsilon)
\end{aligned}
$$

Since by the integration by parts,

$$
2 \int_{\Omega}\left(\mathbf{F} \cdot \nabla \phi_{\gamma}\right) \phi_{\gamma} d x=\int_{\partial \Omega} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma}^{2} d S
$$

we get $\left(\lambda(\varepsilon, \gamma)-\mu_{0}(\gamma)\right) \int_{\Omega} \phi_{\gamma}^{2} d x=O(\varepsilon)$. That is to say, $\lambda(\varepsilon, \gamma)-\mu_{0}(\gamma)$ $=O(\varepsilon)$. Therefore we obtain

$$
\mu(\varepsilon, \gamma)=\mu(\gamma)+\varepsilon^{2} \mu_{2}(\gamma)+O\left(\varepsilon^{3}\right)
$$

as $\varepsilon \rightarrow 0$. If we put $\psi_{\varepsilon, \gamma}^{(3)}=\frac{\psi_{\varepsilon, \gamma}^{(2)}-\psi_{\gamma}^{(2)}}{\varepsilon}$, then $\psi_{\varepsilon, \gamma}^{(3)}$ satisfies the following equation

$$
\begin{cases}-\Delta \psi_{\varepsilon, \gamma}^{(3)}-\mu_{0}(\gamma) \psi_{\varepsilon, \gamma}^{(3)}=-2 i \mathbf{F} \cdot \nabla \psi_{\varepsilon, \gamma}^{(2)}  \tag{3.11}\\ -\varepsilon\left(|\mathbf{F}|^{2}-\lambda(\varepsilon, \gamma)\right) \psi_{\varepsilon, \gamma}^{(2)}-2 \frac{\beta_{\varepsilon}-1}{\varepsilon} \mathbf{F} \cdot \nabla v_{1, \gamma} & \\ -i \beta_{\varepsilon}\left(|\mathbf{F}|^{2}-\lambda(\varepsilon, \gamma)\right) v_{1, \gamma} & \\ -2 i \frac{\delta_{\varepsilon}-\delta_{0}}{\varepsilon} \mathbf{F} \cdot \nabla \phi_{\gamma}-\frac{\alpha_{\varepsilon}-1}{\varepsilon}|\mathbf{F}|^{2} \phi_{\gamma} & \\ +\frac{\alpha_{\varepsilon}-1}{\varepsilon} \lambda(\varepsilon, \gamma) \phi_{\gamma}+\frac{\lambda(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon} \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \psi_{\varepsilon, \gamma}^{(3)}}{\partial \mathbf{v}}+\gamma \psi_{\varepsilon, \gamma}^{(3)}=i \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon, \gamma}^{(2)}+i \frac{\delta_{\varepsilon}-\delta_{0}}{\varepsilon} \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \\ -\frac{\beta_{\varepsilon}-1}{\varepsilon} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega\end{cases}
$$

Here we claim

$$
\begin{equation*}
\gamma_{\varepsilon}=\frac{\delta_{\varepsilon}-\delta_{0}}{\varepsilon} \text { is bounded. } \tag{3.12}
\end{equation*}
$$

In fact, if (3.12) does not hold, passing to a subsequence, we may assume that $\gamma_{\varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$. If we put $\widetilde{\psi}_{\varepsilon, \gamma}^{(3)}=\psi_{\varepsilon, \gamma}^{(3)} / \gamma_{\varepsilon}, \widetilde{\psi}_{\varepsilon, \gamma}^{(3)}$ satisfies the following equation

$$
\begin{cases}-\Delta \widetilde{\psi}_{\varepsilon, \gamma}^{(3)}-\mu_{0}(\gamma) \widetilde{\psi}_{\varepsilon, \gamma}^{(3)}=-\frac{2 i}{\gamma_{\varepsilon}} \mathbf{F} \cdot \nabla \psi_{\varepsilon, \gamma}^{(2)} \\ & -\frac{\varepsilon}{\gamma_{\varepsilon}}\left(|\mathbf{F}|^{2}-\lambda(\varepsilon, \gamma)\right) \psi_{\varepsilon, \gamma}^{(2)}-\frac{2\left(\beta_{\varepsilon}-1\right)}{\varepsilon \gamma_{\varepsilon}} \mathbf{F} \cdot \nabla v_{1, \gamma} \\ & -\frac{i \beta_{\varepsilon}}{\gamma_{\varepsilon}}\left(|\mathbf{F}|^{2}-\lambda(\varepsilon, \gamma)\right) v_{1, \gamma}-2 i \mathbf{F} \cdot \nabla \phi_{\gamma} \\ \quad-\frac{\alpha_{\varepsilon}-1}{\varepsilon \gamma_{\varepsilon}}|\mathbf{F}|^{2} \phi_{\gamma}+\frac{\alpha_{\varepsilon}-1}{\varepsilon \gamma_{\varepsilon}} \lambda(\varepsilon, \gamma) \phi_{\gamma}+\frac{\lambda(\varepsilon, \gamma)-\mu_{0}(\gamma)}{\varepsilon \gamma_{\varepsilon}} \phi_{\gamma} & \text { in } \Omega  \tag{3.13}\\ \frac{\partial \widetilde{\psi}_{\varepsilon, \gamma}^{(3)}}{\partial \mathbf{v}}+\gamma \widetilde{\psi}_{\varepsilon, \gamma}^{(3)}=\frac{i}{\gamma_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} \psi_{\varepsilon, \gamma}^{(2)}+i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \\ \quad-\frac{\beta_{\varepsilon}-1}{\varepsilon \gamma_{\varepsilon}} \mathbf{F} \cdot \mathbf{v} v_{1, \gamma} & \text { on } \partial \Omega .\end{cases}
$$

By the elliptic estimate as above, $\left\|\widetilde{\psi}_{\varepsilon, \gamma}^{(3)}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\alpha, \gamma)$. Thus we may assume that $\widetilde{\psi}_{\varepsilon, \gamma}^{(3)} \rightarrow \psi_{\gamma}^{(3)}$ in $C^{2+\alpha}(\bar{\Omega})$. Letting $\varepsilon \rightarrow 0$ in (3.13), we get

$$
\begin{cases}-\Delta \psi_{\gamma}^{(3)}-\mu_{0}(\gamma) \psi_{\gamma}^{(3)}=-2 i \mathbf{F} \cdot \nabla \phi_{\gamma} & \text { in } \Omega \\ \frac{\partial \psi_{\gamma}^{(3)}}{\partial \mathbf{v}}+\gamma \psi_{\gamma}^{(3)}=i \mathbf{F} \cdot \mathbf{v} \phi_{\gamma} & \text { on } \partial \Omega .\end{cases}
$$

On the other hand, since $\int_{\Omega} \psi_{\gamma}^{(3)} \phi_{\gamma} d x=0$ and $\int_{\Omega} \psi_{\gamma}^{(3)} v_{1, \gamma} d x=0$, this leads to a contradiction.

Thus $\left(\delta_{\varepsilon}-\delta_{0}\right) / \varepsilon$ is bounded. If we return to (3.11), then by the similar arguments, we see that $\left\|\psi_{\varepsilon, \gamma}^{(3)}\right\|_{C^{2+\alpha}(\bar{\Omega})} \leq C(\alpha, \gamma)$. Thus we see that $\psi_{\varepsilon, \gamma}^{(2)}=\psi_{\gamma}^{2}+\varepsilon \psi_{\varepsilon, \gamma}^{(3)}$ and $\psi_{\varepsilon, \gamma}^{(3)} \rightarrow \psi_{\gamma}^{(3)}$ in $C^{2+\alpha}(\bar{\Omega})$ as $\varepsilon \rightarrow 0$. This completes the proof of Theorem 2.1.

## References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727.
[2] N. Ando and J. Aramaki, A remark on the eigenvalue asymptotics associated with superconductivity near critical temperature, Int. J. Pure Appl. Math. 40(1) (2007), 123-134.
[3] J. Aramaki, Semiclassical asymptotics of the ground state energy for the Neumann problem associated with superconductivity, Int. J. Differ. Equ. Appl. 9(3) (2004), 239271.
[4] J. Aramaki, Upper critical field and location of surface nucleation for the GinzburgLandau system in non-constant applied field, Far East J. Math. Sci. (FJMS) 23(1) (2006), 89-125.
[5] J. Aramaki, Asymptotics of the eigenvalues for the Neumann Laplacian with nonconstant magnetic field associated with superconductivity, Far East J. Math. Sci. (FJMS) 25(3) (2007), 529-584.
[6] S. J. Chapman, S. D. Howison and J. R. Ockendon, Macroscopic models for superconductivity, SIAM Reviews 34 (1992), 529-560.
[7] Y. Du, Order Structure and Topological Method in Nonlinear Partial Differential Equations, Word Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hongkong, Taipei, Chennai, 2006.
[8] Y. Du and X.-B. Pan, Multiple states and hysteresis for type I superconductors, J. Math. Phys. 46 (2005), 073301-1-34.
[9] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the GinzburgLandau model of superconductivity, SIAM Reviews 34 (1992), 45-81.
[10] S. Fournais and B. Helffer, Accurate eigenvalues asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier, Grenoble 564(1) (2006), 1-67.
[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983.
[12] M. Gunzburger and J. Ockendon, Mathematical models in superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (1999), 341359.
[13] B. Helffer, Bouteilles magnétiques et supraconductivité, (d'après Helffer-Morame, Lu and Pan et Helffer-Pan), Séminaire EDP de l'école Polytechnique 2001-2002.
[14] B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal. 138 (1996), 40-81.
[15] B. Helffer and A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal. 185 (2001), 604-680.
[16] B. Helffer and A. Morame, Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case), Ann. Sci. École Norm. Sup. (4) 37 (2004), 105-170.
[17] B. Helffer and X.-B. Pan, Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1) (2003), 145-181.
[18] K. Lu and X.-B. Pan, Estimates of upper critical field for the Ginzburg-Landau equations of superconductivity, Physica D 127 (1999), 73-104.
[19] K. Lu and X.-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Physics 40 (1999), 2647-2670.
[20] K. Lu and X.-B. Pan, Surface nucleation of superconductivity in 3-dimension, J. Differential Equations 168 (2000), 386-452.
[21] X.-B. Pan, Superconductivity near the critical temperature, J. Math. Physics 44(6) (2003), 2639-2678.

