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Abstract

We study the eigenvalue asymptotics for a Schrodinger operator with a
magnetic potential and with the de Gennes effect associated with the
superconductivity near critical temperature. When the magnetic
potential is depending on a parameter and the parameter tends to zero,
we examine the asymptotics of the first eigenvalue and the
corresponding eigenfunction. The result improves our previous paper
Ando and Aramaki [2] and Pan [21].

1. Introduction

In the present paper, we consider the eigenvalue asymptotics for a
magnetic Schrodinger operator associated with the superconductivity
taking the de Gennes parameter into consideration. The superconduc-

tivity of the sample in a domain Q c R? under the applied field H,p, is

described by a minimizer (y, A) of the Ginzburg-Landau functional

Gly, A] = IQ {| EVy — iyA T Ay |2 + %(1 ~|y |2)2}dx
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2 2 2
+98 IR3 | curlA — H,,p [“dx + yJ.m| v |7dS.

Here vy is a complex valued function called an order parameter and A is a
real valued vector field called a magnetic potential, and the penetration
depth A, the coherence length &, and & is a positive parameter depending
on materials and temperature and y > 0 the de Gennes parameter. y is

very small for insulator, very large for magnetic material, and lying in
between for non-magnetic material. If we put a new parameter p = 1/};2,
pu means physically,

g2 nT,

1 amal2(T. - T)

s

where T is the temperature, 7, is the critical temperature under zero

applied field, 7 is the Plank constant, [ is a typical scale of the sample, m
is the electron mass, o is a material constant independent of tem-

perature. The Ginzburg-Landau parameter x is defined by « = A/E. It is

well known that if « > 1/x/§, the sample is of type I and if 0 < k < 1/\/5,

the sample is of type I. For these arguments, see Aramaki [5], Chapman
et al. [6], Du et al. [9], Gunzburger and Ockendon [12], Lu and Pan [18,
19, 20], Helffer and Pan [17].

By a scaling

-1 -1
A A
A= g Happl = Happi»
and put Mgy, = ocH, where o >0 1is a parameter which means the

intensity of H,,, and A = oA, the associated energy Gly, A]/E? is
written by

v Al= [ {1Vonw P+ 50~ ) ax

+

Is|curlA—H|2dx+yj |\|J|2dS, (1.1)
R oQ

where dS denotes the surface element of 6Q.
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We assume that a given vector field H(x) is smooth and satisfies

divH = 0 in R®. Then there exists a unique vector field F such that
curlF = H, divF = 0 in R?, _[ Fdx = 0. 1.2)
Q
In the above and the following, we use the notations for any magnetic
potential A and any function v,
Vay = Vy —iAy, VAy = Ay — i[2A - Vy + ydivA] - | A |2\V-

The minimizers (y, A) of the functional G satisfy the following Euler

equation, called the Ginzburg-Landau system:

V2 =ud -y Py in Q,

curl?(A - F) = Lz 3{YVoalvlng 1n Q,

(Voaw) - v + vy ZKO, [v-A] =0, (1.3)
[vx curlA] = 0, on 0Q,

curlA - H as | x| - .

Here v is the unit outward normal vector at the boundary 6Q of Q, []
denotes the jump in the enclosed quantity across 0Q, and yn is the
characteristic function of Q.

It is well known that if the applied field is strong, that is to say, if
6 > 0 is large enough, G has only the trivial minimizer (0, F) which

corresponds with the normal state. Thus the critical field is defined by

H.(H, u, x) = inf{c > 0; (0, F) is a global minimizer of G}.

In order to find the asymptotics of H, as p — 0, we must consider the

asymptotics of the first eigenvalue of the Schrédinger operator —VgA

with magnetic Robin type condition as ¢ — 0. In this paper, we devote
only the analysis for the asymptotics of the first eigenvalue and the
corresponding eigenfunction of such a linear problem. For the
asymptotics of H_., we shall treat in the future work. Relatively, for the
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asymptotics as ¢ — o, there are many articles, for example, see Aramaki
[3, 4], Fournais and Helffer [10], Helffer [13], Helffer and Mohamed [14],
Helffer and Morame [15, 16].

2. Asymptotics of the First Eigenvalue and the
Corresponding Eigenfunction

In this section, we shall consider the asymptotic behavior of the first
eigenvalue and the corresponding eigenfunction for a Schrodinger

operator.

More precisely, let Q c R? be a bounded, smooth and simply
connected domain and H = H(x) a given smooth vector field in R?

satisfying
H(x)# 0in Q and div H = 0 in R®. (2.1)

Then there exists a unique, smooth vector field F(x) in R? such that

curlF =H, divF =0 in R? and I Fdx = 0. (2.2)
Q

Let u(e, y) be the infimum of the following functional corresponding to

the lowest eigenvalue of a Schrédinger operator with magnetic potential

under some boundary condition:

I|V8F¢|2dx+yI ¢ 2dS
Q oQ

we, y) = inf , (2.3)
peW-2(0;C) lo1F2 0,

where y > 0 is a parameter. It is well known that u(e, y) is achieved in

Wl’z(Q). Any minimizer of the functional (2.3) satisfies the Euler
equation:
2 .
-Verd = H(g’ V)¢ in Q,

(Vepd) - v+710 =0 on 0Q.

(2.4)
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Taking (2.2) into consideration, we rewrite (2.4) into the form

~AY + 2ieF - Vo + €2 F 29 = p(e, y)o  in Q,

o (2.5)
E—isF-v¢+y¢=0 on 0Q.

In the present paper, we consider the asymptotic behaviors of the

first eigenvalue (e, y) and the corresponding eigenfunction bg,y as

e — 0.
First, we consider the eigenvalue problem
“Ab=po  inQ,
o (2.6)

— + =0 on 0Q.
v Yo

It is well known that the first eigenvalue pg(y) of (2.6) is simple, analytic
with respect to y and py(0) = 0, and we can choose the corresponding
eigenfunction o, to be smooth and positive on Q. (See Gilberg and
Trudinger [11, Theorem 8.21 and Lemma 3.4].
Next, we consider the problem
~Av — po(y)v = -2F - Vo, in Q,

ov 2.7
E-F'YU:F.V(])’Y on 0Q.

We shall show that the problem (2.7) has a unique smooth solution v ,

such that IQ U, 0ydx = 0.

We are now in a position to state the main theorem.

Theorem 2.1. Under the situations as above, we have the asymptotics

of the first eigenvalue (e, v) and the corresponding eigenfunction g,y as
follows.

u(e, v) = no(y) + e%ua(y) + OE")
as € = 0, where

1a0) = Loy [ | [ 1901 = P P 25,
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_ HO(Y)J. |vl,y|2dx + yj. |vl,y|2dS}.
Q oQ

and

. 2. (2 3. (3 3
gy = Ogdy +ieBeuy , + & \ug{)+8 w(y)+o(s )

as € > 0, where a;, > 1, B, > 1 as ¢ > 0 and wg,Z), q/f/?’) are smooth
functions.

Remark 2.2. Pan [21] got the similar asymptotics when the applied

field H(x) = constant unit vector and, y =0. In this case, since

to(0) = 0 and we can choose ¢, =1, we see that
_ -1 2
ne0) = || | Ve, - Fy, Pdx.

Ando and Aramaki [2] considered the case where the applied field is non-

constant and y = 0. They got a more precise asymptotics of ¢, than

[21].
3. Proof of the Main Theorem

In this section we shall devote to the proof of Theorem 2.1.

We consider a functional

E,[¢] = jﬂ (V6 - Fo, > + 2(Vo, - F)o}dx + yIaQ| o 2dS 3.1)

on WH2(Q).

It is easy to show that the functional (3.1) is strictly convex,
continuous in WH2(Q) and so weakly lower semi-continuous. We shall
show that E., is bounded from below. When y = 0, since ¢, is constant,
we have E,[¢] > 0 for all ¢ € WY2(Q). Therefore, let y > 0. Then from

the integration by parts and the Schwarz inequality, we have
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Eo]= [ Vel ~2ve-F)p, + [Fo, P + 2V, - F)ojdx
+YJ69|¢|2dS
- IQ 1 Vo[? - 4(Vo-F)o, +|Fo, [*}dx
+2J-GQ¢V¢F -vdS +yjag|¢|2ds
> jg|v¢|2dx—zsjg|v¢|2dx—§jg| Fo, [2dx
" JQ| Fo, [dx - 5J‘m| o[2ds —%J'ag| o,F - v [2dS

+YJ. |9 [*dS
oQ

for any 8 > 0. If we choose § > 0 so that § < min{l/2, v}, we see that E,

is bounded from below.

Thus it follows from the standard variational theory that we see that
inf beW-2(Q) E,[¢] is achieved by a unique, real valued function

w, € W1’2(Q) and taking the Euler equation, w, satisfies the equation

-Aw, = -2F - V¢, in Q,

ow, (3.2)
W+ywY =F-vp, ondQ

Now we shall show

Proposition 3.1. Let u(e, y) be the first eigenvalue as in (2.3) and
wo(y) be the lowest eigenvalue of (2.6). Then we have

u(e, 1) = noly) + O(e?)

as € — 0.
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We continue the proof of this proposition for some time. In order to

estimate (e, v) from above, if we take ¢ = by +icw, as a test function in

Y
(2.3), we have

|V P + yj 16 2dS
oQ

[ors

u(e, v) <

_ UQ o, P+ w, |2}dxj1UQ (0, + 2w,
+¢7| Vw, - F¢, [ Vdx + y.[ag {1 o, 2+ gzlwy |2dS}
<4, "25(0)“9 Vo, P +26%(F - Vo, w, + ¢*|Fw,
+ 82|wa - F¢, P }dx + YJ.aQ{M)V 2+ Szlwy |2}dS}
< o)+ ooy 5| [ 190, = oy P+ 250, -

2 4 -2 2
o Jw,| ds}g 13 0 J | Fevy P

Thus if we put
i) 2 2
W, = [ b, "LZ(Q)UQ { Vw, - F¢, I” + z(vq)y . F)wy}dx + yjm|wy | dS}
we see that
ue, v) < poly) + £°W, + O(e*) (3.3)
as ¢ > 0.

In order to estimate u(e, y) from below, we put ¢, , = a.d, + &y, ,,

where o, is chosen so that ocEJ.Q cl)gdx = IQ g, 0y dx. Since ¢, >0 on Q,
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o, is well defined. Then we note that IQ Ve, ydydx = 0. If we substitute

this function ¢, , for (2.5) and use (2.6), we see that v, , satisfies

- 2
- Ay, - u(e, V)\Vs,y + 2ieF - Vye , + 82| F | Ve, y

= M%% —sag| F[’9, -2, F-Vo, nQ (3.4
0
% —eF vy, + vy, = l0F - vo, on 0Q.

We must prove that

u(e, v) = uoly)

82

is bounded. (3.5)

As the first step, we shall show that (u(g, v) — po(y))/e is bounded.

Lemma 3.2. Under the situation as above, we see that
(u(e, v) = po(y))/e is bounded with respect to ¢ € (0, 1].

Proof. By (2.3) and the Schwarz inequality,

ule, v) = || ¢8,y ||;§(Q)|:'[Q | V8F¢8’Y |2dx + y.[ag | ¢8,y |2dS}

> |05, -2 UQ'WE’Y dx - z»aJ'qu)&y || Fo, ., |dx

(@)

+e,2_[ |F¢8,y|2dx+yj. |¢£,y|2ds}
Q o0

> (1-2)] o,y ";;(Q)U.Q Ve s + Y-‘-anlq)g’y |2dS}

-2 2
= elbe 13 o ] [P P

> (1-¢€)uo(v) - Oe)

as &€ - 0. Thus we see that u(g, v) > po(y) — O(e). Taking (3.3) into

consideration, the proof is completed. ]
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We return to the equation (2.5). Let g,y be the normalized
eigenfunction such that |¢; , [ @ =1 Then by the elliptic estimate [11,
Theorem 6.30], we see that | ¢, , ||C2+(x(ﬁ) < C(a, 7) < o for any a € (0, 1)

and small & > 0. Passing to a subsequence, we may assume that

de,y = ¢y in C?**(Q). We remember that Ogy = Oy +8Yg
Now we claim that |y, , "L2(Q) is bounded.

In fact, if the claim does not hold, passing to a subsequence, we may

assume that C, := ||wgyy||L2(Q) — o as ¢ > 0. Put ¥, , =y, ,/C;. Then

Y, satisfies the equation

~ ~ . ~ 2 2~
_A\Va,y - H(g’ V)Ws,y + 2ieF - V\Va,y +e | Fl \Vs,y

eC

€

_ ule, ) —moly) € @2 2 ;
——¢Y_C_S|F| ¢Y_C_SF'V¢V n Q (3.6)
a\NVS,’Y L

C

€

—ieF v, + W,y = F - vo, on oQ.

Since ”\T’&Y"LZ(Q) =1, it follows from [11, Theorem 8.13] or Agmon et al.
(1, Theorem 15.2] that [ ,[yr+2.2q) < C(k, v) for any ke N (cf. Du
[7]). By the Sobolev imbedding theorem, ||\|78,Y||02+a(5) < C(a, y) for any

a € (0, 1). Passing to a subsequence, we may assume that \T/S,y - \T/Y n
C?*%(Q). Letting ¢ — 0 in (3.6), we see that y, satisfies
_A\Tfy - HO(Y)\T]Y =0 inQ,

Wy,

. Yy, =0 on &Q

and [, |12y = L. J. 0 §,¢,dx = 0. Since the real part and the imaginary

part of \T/Y are non-zero constant signs, this leads to a contradiction. Thus

e,y "L2(Q) is bounded.
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Since [y, || 2(0) is bounded, if we again apply the same arguments
as above, we see that [y ,|¢2+eq) < C(o, y). Taking Lemma 3.2 into

consideration, passing to a subsequence, we may assume that

u(e, v)s— Mo(v) w(y) and vy, — ¢y, in CZ**@) as & — 0. Letting

¢ — 0 1in (3.4), we have

=Adyy — o(V)01,y = i (v)9y — 2F - Vo, in Q

5
% F by, = iF Vo, on Q.

Let u, and v;, be the real part and imaginary part of ¢; ,,

respectively. Then v, , is a solution of the problem

~Auyy, — po(Vugy = m(y)d, in Q
Gul,y
ov

+yup, =0 on 0.

Since the boundary value problem (—A — po(y), % + yj is self adjoint, it

follows from the Fredholm alternative theorem that “the orthogonality

condition” py(v)(¢y, ¢V)L2(Q) =0 holds. Thus we have p;(y) = 0. Since
uy,, has a constant sign in Q and IQ U 9, dx = 0, we see that v, = 0.

Now vy , satisfies the equation

~Avy = po(y)vy,y = 2F -V, inQ

aUl (37)
=+ v, = F-ve, on 0Q.

We note that the solution vy, of (3.7) satisfying J.Q U 0ydx =0 is

unique.

Thus we can write ¢, , = ¢, +icvy , + €¢; ,, Where ¢, ., is bounded in

C?**(Q). Therefore, we have
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2 . 2 2
e, Dl iy = [ Vo0, —ieF Voo, Pz v y[ |, Fas
= [ 1¥0u, - 2630 - V4, ) )

_g2|F¢87Y|2}dx+yJ‘ |05, [2dS.
oQ

Here we note that since

IQ (F : V¢S,V)de
= J.Q F-{Vo, + (Vo , + Vi, )} (0, — iew, + SE)dx,

it follows that 3| (F - V¢ ¢_dx = O(g). Therefore, we have
Q &7/ Py

e, Db B 2 [ V00, P+ 1, s —06)
2 HO(Y)" (I)s,y "i?((l) - 0(52 )-

Summing up (3.3), we see that e v) =~ mo(v) ; Ho(¥)

€

is bounded with respect to

¢. That is to say, the claim (3.5) holds. This completes the proof of
Proposition 3.1.

Thus if we put u(e, y) — po(y) = e2A(e, ), passing to a subsequence,

we may assume that A(g, y) - pg(y) as ¢ - 0. We remember that we

can write ¢, , = otz0, + swg)y, where \ug)y — iy, in C?*%(Q) as ¢ —> 0.
1)

We write g,

=gy, + sq/g;, where

1
. J.Q vl’y\u(g,)ydx

e =177
9
.[lel’yl dx

Then we see that JQ \vg%ydx =0 and J‘ng?%/vlv ,dx = 0. Since \yg)y -
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ivy,, in C?**(Q), it follows that B, = 1 as ¢ — 0. Taking (2.6) and (3.7)

into consideration, \V‘(ng/ satisfies the following equation
2 2 . 2 2 2 (2
~ayZ) - (1)) + 2ieF - Vyl?) + e F Pyl?)
~ e v = 1,y inQ (3.8
o) @ _: @ _.9% B
o +yygy —ieF v = l%F v, —BcF - vu; ,  on 0Q,
where

. 2 .
fs,y =28.F - Vy , - ieBg| F | Uy + ieB (e, Y)Ul,y

O —
B QlaTBsF Vo, - ag| F o, + ahle 1)0,.

We shall show that (o, — B;)/e is bounded with respect to &.

Lemma 3.3. If we define §, = (o, — B;)/s, then {5.} is bounded with
respect to ¢ € (0, 1].

Proof. If the claim does not hold, passing to a subsequence, we may

(2

assume that 6; —> « as ¢ > 0. If we define &g, = wg,)/ﬁs, it is clear

Y

that IQ &, y$,dx = 0 and J.Qég,yvl’ydx = 0. From (3.8), & , satisfies the

following equation

- 2
_Ags,y - HO(Y)‘:a,y + 2ieF - V‘:s,y + 82' F | ‘:s,y
— (e, 7)8,,, = —2F Vo, + SLgS in Q (3.9)

Y
€
0
&+ VEe,y —1€F - Ve , = iF - v, —iB—‘SF VU, on 0Q,
ov 8

where
. 9 .
8e,y = 2PF - Vyy , - iefg| F | Uy + 1eB:(e, Y)Ul,y

—og| F |2¢y + ogh(e, "/)¢y~
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Case 1. |, , ||L2(Q) <C <o

Then applying the elliptic estimate as above, it can be seen that
||§8,y||Wk,2(Q) < C(k) for any k € N. Therefore, by the Sobolev imbedding

theorem, [&; ,[c2+a(g) < C(y, @) for any o e(0,1). Passing to a
subsequence, we may assume that &, — &, in C**(Q) as & > 0.
Then we see that IQ &¢,dx =0 and IQ &y, ,dx = 0. Letting ¢ > 0 in
(3.9), we have the equation

_AE_ay - HO(Y)E;«{ = -2iF - Vd)y in Q
%y =iF Q
v +78, = iF - v¢, on 0Q.

Thus we have &, = v; ,. This leads to a contradiction.
Case 2. ||(:€,Y||L2(Q) is unbounded.

In this case, passing to a subsequence, we may assume that

C, = "E-’Sy‘/”LZ(Q) — o as ¢ —» 0. If we put E&y = &,,/C;, then we see

that Eg, , satisfies the following equation

_Aga,y - MO(Y)E&,y + 2ieF - Vga,y + 82' F |2€87Y
9 ~ 2 1 .
— g“A(g, =——F -V, + — in Q
(8,7) &,y C. b, 5.0, 5o
0., ~ . = i B
—— ' 4 —1eF-v =—F.v ——SF'VU on 0Q.
oy yas,y és,y C“3 ¢Y Casa 1,y

Similarly as Case 1, we may assume that Ew - Ey in C2**(Q). Then

I Ey ||L2(Q) =1 and JQ E«,d)ydx =0 and Ey satisfies

_Agy = HO(Y)EY in Q
08, -

E-F’YE_,,Y =0 on 0Q.
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Since any solution of this equation is constant sign on Q, this leads to a

contradiction. |

Thus since 8, = (a, —B.)/e is bounded, we may assume that
8, > 8y as & — 0. Since ||\V(82% ||L2(Q) <C in (3.8), as the similar
arguments in Case 2, we have ||w£22{ ||CZ+Q(§) < C(y, ). Therefore, we
may assume that \yﬂ, - \ugz) in C?**(Q). Letting ¢ —> 0 in (3.8), we

get the following equation

~Ay®) — oy = 2F - Vo, |, - 2i8,F - Vo, ~ | F %9,

n P—z(Y)d’y in Q (3.10)
ou®@
‘gz + Y\I/g2) = i5oF - vo, —F - vu; on 0Q.

Since wg,z) is a solution of (3.10), we have “the orthogonality condition”

[ @F Vo0, - 280 Vo, )b, = F P} + nar)87)d
¥ IaQ(iSOF -vo2 ~ F - vuy ,0,)dS = 0.

Thus we get
ualo)| s = [ (208 Vi )b, + | F o))

+ LQ F-vu ,6,dS
2 2
:IQ|VULY—F¢Y| —IQ|VULV| dx

+ F-w ds.
J. 00 1, v¢v

From integration by parts, we see that

F. ds = J'
.[6(2 YLy 6(2(

avl,y + YU, U1 ds
ov Y > Y
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2 9
- JQlVULyl dx+IQvLyAvLydx+yJ.69|vLY| dsS
= [ 1vo Pax = o fony P

+ ZJ. (F -V, v ,dx + yJ. vy, y |2dS.
Q ’ GO
Thus we get

0als) =10y [ | [ V00~ Py P 2P v,

2 2
_uo(y)J. |ULY| dx+yj |ULY| dS:|
Q oQ
In this stage, we got the asymptotics:

u(e, v) = no(y) + e%ug(y) + o(e?),

. 2 (2 2
g,y = 0ghy +iEV) , + 8 \|1§, ) + o(g*)

as ¢ > 0.
We shall continue further arguments.
If we put ¢, , = (¢5, — ¢,)/¢, then we get the following equation

. 9 .
_A(Pa,y - “O(Y)‘ps,y = -2iF - V(I)a,y - Sl Fl (I)s,y + S)V(S, 'Y)q)a,y n Q

00y .
o +79g , = 1F - v on 0Q.

Again using the bootstrap argument, we see that {(pg’y} is bounded in
Wk’z(Q) for any k e N. Therefore, by the Sobolev imbedding theorem,

{0g,y} is bounded in C?**(Q) for any o < (0, 1). Since

dg

5

Yy aad)y n (as _1)¢y d)s,y - (])y ,

€ e €

if we multiply ¢, to the both side and integrate over Q, then we see that
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(ag —1)/e is bounded with respect to & Moreover, since 3§, =

((ag —=1) = (B¢ —1))/e, we also see that (B, — 1)/¢, is bounded with respect
to €. If we subtract (3.10) from (3.8), then we get the following equation

for ¢%) = (v —y®)/e
~808) - no(r)of) = ~2ieF - vy l?)
~2(F[ - M) + 2, - DF - Vo,
—ieB, (| F [* = a(e, 1))vr,y - 2i(5, - 50)F - Vo,
(o = D[ F P, + (0~ DAe, ),
+ (e, v) = no(r))dy in O
=B —~DF - vy, on oQ.

) = i)+ =30,

Using “the orthogonality condition”, we get

~2i(5, ~80)| (F- Vo )byds + (1e. 1) - no(r)| _ 67

(5, - 80)} F - v¢2dS = O(c).
oQ
Since by the integration by parts,

- . vh2
o ®-vo)pdx=[ F-wids,

we get (1(e, )~ ko(r)f ,#3dx = O(e). That is to say, (1)~ ho(y)

= O(g). Therefore we obtain

u(e, v) = uly) + e%a(y) + O(e?)

@ _ @

as ¢ - 0. If we put \p?% = w, then \VQ satisfies the following

equation
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B) o)) = -2iF - vy @)

_A\l/
o PP 2w -2 lE v

- LBg(l F |2 - ;\'(8’ Y))Ul,y

.o, -6
_2ZSTOF.V¢Y — (311)
+ 1 7\,(8, ’Y)q)y + }\‘(S’Y); MO(Y) ¢y in O
oy ;8- 8
ai’y + Y‘VS’?/ iF - vw(2) N - OF - v,
_Bemlp g, on 0Q.
1y
e
Here we claim
Ve = % =30 j¢ hounded. (3.12)

€

In fact, if (3.12) does not hold, passing to a subsequence, we may assume
that y, > © as ¢ » 0. If we put \T/&SQ/ = \ngl/yg, \p?% satisfies the

following equation

2i 2
~AF), — no()TE) = . ZF.vy?)

2 -1
i(l F |2 ~ e, Y))\V(2) (Bs )F . VULY
€ €Y¢
~Be (R R e, )y, - 2F V0,
T (3.13)

_ag_1|F|2d)y+aS_17»(8, Y)¢Y+7\'(8, Y)_HO(Y)d)Y in Q

) €Ye €Y¢ €Y¢
a“‘ 3 .
—\I(;i’y + NS’?/ = YLF vw( ) +iF. vo,
€
—BS_IF~VULY on 0Q.

By the elliptic estimate as above, | \;7232, ||Cz+q®) < C(a, y). Thus we may

assume that \u(3) - \y(y) C?**(Q). Letting € — 0 in (3.13), we get
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Al — o)l = -2iF -V, in©Q

ou®
\'jTY + y\ug‘o’) =iF - vo, on 0Q.

] (3) - (3) - ;
On the other hand, since J.Q vy 9, dx =0 and IQ vy vy ,dx =0, this
leads to a contradiction.

Thus (3, — 8p)/e is bounded. If we return to (3.11), then by the

similar arguments, we see that ||\u£32/ ||Cz+u(§) < C(a, 7). Thus we see

that \VQ = w% +8\|I§2 and \y?% - \y§3) in C***(Q) as & > 0. This

completes the proof of Theorem 2.1.
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