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Abstract
In this paper we introduce and examine some properties of the double
Orlicz sequence spaces FIQ‘/[(p) and /\%W (p)-

1. Introduction

Throughout w, I' and A denote the classes of all, entire and analytic

scalar valued single sequences, respectively.

We write w? for the set of all complex sequences (*py), where

m, n € N is the set of positive integers. Then w? is a linear space under

the coordinatewise addition and scalar multiplication.
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Some initial works on double sequence spaces are found in Bromwich
[4]. Later on they were investigated by Hardy [8], Moricz [12], Moricz and
Rhoades [13], Basarir and Sonalcan [2], Tripathy [20], Colak and
Turkmenoglu [6], Turkmenoglu [22] and many others.

We need the following inequality in the sequel of the paper.

For a, b >0 and 0 < p <1, we have

(@ + by <aP +bP. (a)

The double series z: uo1 ¥mn 1s called convergent if and only if the

double sequence (S,,,,) is called convergent, where
m,n
Spn = Zi,,‘:l xij  (myn=1,23, ..)
(see [1]).

A sequence x = (x,,, ) is said to be double analytic if sup|x,,, |1/m+"

mn

<o,

The vector space of all double analytic sequences will be denoted by A2 A

1/m+n

sequence x = (x,,,) is called double entire sequence if |x,,, | -0

as m, n — o. The double entire sequences will be denoted by 2. Let

® = {all finite sequences}.

Consider a double sequence x = (x;;). The (m, n)th section xlmenl of

m,n
the sequence is defined by ™" = D x;d; forall m, n e N,
720
0,0,..,00,..
0,0,..00, ..
Omn =
0,0,..,10, ..
0,0,..,00,..

with 1 in the (m, n)th position and zero otherwise. An FK-space (or a
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metric space) X is said to have AK property if (5,,,) is a Schauder basis

[m, n]

for X or equivalently x - x.

An FDK-space is a double sequence space endowed with a complete
metrizable; locally convex topology under which the coordinate mappings
x = (x) = (x,,,) (m, n € N) are also continuous.

A double sequence x = (x,,,,) is called a Cauchy sequence if and only
if for every ¢ > 0 there exists a positive integer ng = ng(e) such that

| % — Xpq | <, forall m, n, p,q > ng.

It is known that a double sequence (x,,,) is a Cauchy sequence if and
only if it is convergent [5].

Orlicz [16] used the idea of Orlicz function to construct the space
(LM). Lindenstrauss and Tzafriri [10] investigated Orlicz sequence

spaces in more detail, and they proved that every Orlicz sequence space
{3y contains a subspace isomorphic to ¢, (1 < p < x). Subsequently,

different classes of sequence spaces were defined by Parashar and
Choudhary [17], Mursaleen et al. [14], Bektas and Altin [3], Tripathy et
al. [21], Rao and Subramanian [18], and many others. The Orlicz
sequence spaces are the special cases of Orlicz spaces studied in [9].

Recall [16] and [9], an Orlicz function is a function M : [0, ) — [0, )
which is continuous, non-decreasing and convex with M(0)=0, M(x)> 0,
for x >0 and M(x) » o as x —> oo. If convexity of Orlicz function M is
replaced by M(x +y) < M(x)+ M(y), then this function is called modulus
function, defined by Nakano [15] and further discussed by Ruckle [19]
and Maddox [11], and many others.

An Orlicz function M is said to satisfy the Ay -condition for all values
of u if there exists a constant K > 0 such that M(2u) < KM(u) (u > 0).
The Ag-condition is equivalent to M(fu) < K(M(u), for all values of u
and for / > 1.

Let (Q, X, u) be a finite measure space. We denote by E(u) the space

of all (equivalence classes of) X-measurable functions x from Q into
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[0, ©). Given an Orlicz function M, we define on E(u) a convex functional

In(@) = [ ME0)dn
and an Orlicz space LM (u) by LM (n) = {x € E(n): I};(Ax) < +» for some

L > 0}, (for detail see [9, 16]).

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to
construct Orlicz sequence space

Ly = xew:ZM(Mj<w,forsomep>0,
k=1 p

where w = {all complex sequences}.

The space /), with the norm

] = inf{p .0 ZM(MJ < 1},
k=1 p

becomes a Banach space which is called an Orlicz sequence space. For
M@i)=tP 1< p<wo), the space ¢, coincides with the classical

sequence space /.
If X i1s a sequence space, we give the following definitions:

(1) X' = the continuous dual of X;

(1) X* = {a = (App) : Zw | @nmn | < 0, for each x e X};

m,n=1

m,n=1

(i) XP = {a =(apmn): Zw Qmn®mn 18 convergent, for each x e X};

(iv) X7 = {a = (apy,): sup

m,n>1

M,N
Zm,nzl CmnXmn | < w0, for each x € X},

(v) let X be an FK-space > ®, then X/ = {Ff@un): feX};
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1/m+n

(vi) X* ={a = (amu) : sup| @pmpXmy, | < o, for each x € X};

mn
x* xP XY, X" are called a- (or Kothe-Toeplitz) dual of X, B- (or
generalized-Kothe-Toeplitz) dual of X, y-dual of X and A-dual of X,
respectively. X% is defined by Gupta and Kamptan [7]. It is clear that
X* < XP and X* < X7, but XP = X” does not hold, since the sequence

of partial sums of a double convergent series need not to be bounded.

2. Definitions and Preliminaries

Throughout the article w? denotes the spaces of all sequences.
I'%/(p) and A2%;(p) denote the Pringscheims sense of double Orlicz space
of entire sequences and Pringscheims sense of double Orlicz space of

bounded sequences, respectively.

o0

Let w? denote the set of all complex double sequences x = (Xmn ) et

and M : [0, ®) = [0, ) be an Orlicz function, or a modulus function.

Given a double sequence, x € w?. If p = (Pmy) 1s a double sequence

of strictly positive real numbers p,,,,, then we write

|x |1/m+n
ré(p)={xecw?:| M/ Zonl____

Pmn
J — 0 as m, n — o for some p >0
P

and

|x |1/m+n
A3(p)=ix ew®: sup | M|IEmnl

Pmn
< o for some p > 0.
m,n>1l p

The space /\%W (p) is a metric space with the metric

- |x —y |1/m+n Pmn
d(x, y) = inf{p > 0: sup | M| =22 ~mn <1

m,n>1 P

and the space 1“1214 (p) is a metric space with the metric
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|x _y |1/m+n Pmn
d(x, y) = max{p>0: sup| M| "L _-mn :m,n=1,2,3,...;.

m,n) P
Throughout the paper we write inf p,,,, sup p,,, and %,,, instead of

. o0 .
inf , sup and z , respectively.
m,n2l" . p>1 m,n=1

3. Main Results

Theorem 1. For every p = (py,), [/\‘}zw(p)]ﬁ = [A3(p)* = [A%(p)]

= n3;(p), where

T]?w(p) = ﬂ {x = (xmn) : Zm,n[M[l Xmn |Nm+n/pmn JJ . OO}

NeN-{1} P

Proof. (a) To prove that [2%;(p)I’ = n%;(p). (1.1
First we show that n%;(p) < [r3,(p)F.

Let x € n3;(p) and y e A%;(p). Then we can find a positive integer

N such that (| ¥, |1/m+n)pm” < max(l, sup (| Ypmn |1/m+n)pm”) < N, for
1

m,n>

all m, n.

Hence we may write

z xmnymn

< St | < 3 ([ Em2na )

m,n m,n m,n
Nm+n/pmn
< 5| paf [ | .
m,n

Since x € n%w(p), the series on the right side of the above inequality is

convergent, whence x e [r%;(p)P. Hence n3;(p) < [A3;(p)P.

Now we show that [/\%4(p)]B c T]%w(p)-
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p

For this, let x e [2%/(p)P’, and suppose that x ¢ A%;(p). Then there

p

m,n

: L N P
exists a positive integer N > 1 such that Z[M[l X | = oo,

If we define y,, = Nm+”/p’””Sgn Xpn> My, =1,2, ..., then ye

A%/ (p). But, since

menymn = Z(M(l XmnYmn |jj { (l Xmn |Nm+n/Pmn JJ .

m,n ,

we get x ¢ [37(p)]P, which contradicts to the assumption x e [73;(p)P.
Therefore x € n3;(p). Therefore [n3;(p)P = n3;(p).

®) [7%(p)* = n3s(p) and (©) [A3(p)] = n%s(p) can be shown in a

similar way of (1.1). Therefore we omit it.

Theorem 2. Let p = (pmn) be an analytic double sequence of strictly

positive real numbers p,,,. Then

() ~%/(p) is a paranormed space with

1/m+n Pmn/M
oL

g(x) = sup

m,n>1
if and only if h = inf p,,, > 0, where M = max(l, H) and H = sup p,,,.
(1) /\%,I(p) is a complete paranormed linear metric space if the
condition p in (i) is satisfied.
Proof. (i) Sufficiency. Let & > 0. It is trivial that g(6) =0 and
g(-x) = glx).
The inequality g(x + y) < g(x) + g(y) follows from the inequality (a),
since p,,,/M <1 for all positive integers m, n. We may also write

g(x) < max(( 1], |2 M) g(x), since |A[Pmn < max( x|, %) for all
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positive integers m, n and for any A € C, the set of complex numbers.
Using this inequality, it can be proved that Ax — 0, when x is fixed and

A—>0,or A > 0 and x — 0, or Ais fixed and x — 0.

Necessity. Let A%,I(p) be a paranormed space with the paranorm

1/m+n Pmn/M
J and suppose that h = 0. Since

g(x) = sup M[M

m,n>1 p

|k|pm”/M < l|h/M =1 for all positive integers m, n and A € C such

m,n>1 p

| by |Pmn/M
that 0 < | k| <1, we have sup|M|-———||=1. Hence it follows

Pmn/M
that g(Ax) = sup {M[%B =1 for x = (a) e /\%w(p) as A > 0.

m,n>1
But this contradicts to the assumption /\%/[(p) 1s a paranormed space
with g(x).
(1) The proof is clear.

Corollary 1. /\%,I(p) is a complete paranormed space with the natural

paranorm if and only if A‘}Zw(p) = /\%4.

|x |1/m+n Pmn
Theorem 3. Let N; = min{ng : sup | M —22—— < oy,
m,n>ny [

Ny = min{ng : sup p,,, <} and N = max(N;, Ny).

m,nzng

1) 1"]2‘,1 (p) is a paranormed space with

| x |1/m+n Pmn/M
g(x)= lim sup |M|-—22L 3.1)
N—wm,m n>N p

if and only if pn>0, where p= lim inf p,, and M =
N—-som,n>=N
max(1, sup pp,)-
m,n>N

(1) FJZV_, (p) is complete with the paranorm (3.1).
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Proof. (i) Necessity. Let 1“}@ (p) be a paranormed space with (3.1) and
suppose that u = 0.

Then o = inf p,,, =0 for all N € N, and hence we obtain g(Ax)

m,n>N

= lim sup |X|pm”/M =1 for all 1e(0,1], where x =(a)e I'sy(p).

N—w m,n>N
Whence L — 0 does not imply Ax — 60, when x is fixed. But this

contradicts to (3.1) to be a paranorm.

Sufficiency. Let p > 0. It is trivial that g(0) = 0, g(-x) = g(x) and
g(x +y) < g(x)+ g(y). Since p > 0 there exists a positive number B such
that p,,, > B for sufficiently large positive integer m, n. Hence for any
A eC, we may write |%|[P < max((1 |, |AP) for sufficiently large
positive integers m, n > N. Therefore, we obtain that g(kx)<

max(| X[, | A |B/M)g(x) using this, one can prove that Ax — 6, whenever x

is fixedand A —- 0, or A — 0 and x — 0, or A is fixed and x — 0.

(i) Let (x*) be a Cauchy sequence in T'(p), where x* =

kl
(xmn mneN*

Then for every ¢ > 0 (0 < £ <1) there exists a positive integer s

such that

| gkl _ gt [/min Pmn/M

g(x® —x™)= lim sup | M| Zmn—Zmn < g/2
N—oowm n>N Y

forall &, I, r,t > sq. (3.2)

By (3.2) there exists a positive integer ng such that

|xkl _xlt 1/m+n Pmn/M
sup | M mn mn
m,n>N p

<¢/2 for all k, I, r, ¢t > sy and for

N > ng. Hence we obtain

<g/2<1 3.3)

(l okl _ gyt [/min men/M
M| Emn mn
p
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so that

kKl . rt [/m+n kKl .rt [/m+n Pmn/M
(M['xm" T ﬂ< M['xm” Tmn J <¢/2 (3.9)

p p

for all %k, 1, r,t>sy and m, n > ny. This implies that (x,]flln)kleN is a

Cauchy sequence in C for each fixed m, n > ny. Hence the sequence

(x JkieN 1s convergent to x,,, say,

kl}gloo x,’ffn = X, for each fixed m, n > ny. (3.5)

Getting x,,,,, we define x = (x,,,). From (3.2) we obtain

| xkl x |1/m+n Pmn/M

g™ —x)= lim sup | M|l Zmn = "mn <¢/2 (3.6)
=0 m, n>N| p

as r,t »> o, for k, I > sy by (3.5). This implies that lim = g

kl—>o

Now we show that x = (x,,,) € T3(p). Since x*! e T3;(p) for each
(k,1) e N x N, for every ¢ > 0 (0 < &€ < 1) there exists a positive integer

n; € N such that

| xkl 1/m+n Pmn/M
M '"”T < g/2 for every m, n > ny. 3.7

By (3.6) and (3.7) and (a) we obtain

mn! M
M[l Xon |1/m+n ]p /

IA

p

Kkl 1/m+n Pmn/M
M | xmn
p

+ M(l xr})ézln ~ Xmn |

1/m+n Pmn/M
p ]

IA

g/2+¢/2=¢
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for all k, 1> max(sy, s;) and m, n > max(ng, n;). This implies that
x e Tir(p).

This completes the proof.
Theorem 4. For every p = (py,,), then n3(p) < [T (p)f < A2,

Proof. Case 1. First we show that n%;(p) < [[%(p)F.

We know that T'§;(p) c A% (p).

(P < [T (P)F. But [A34(p)F = n3s(p), by Theorem 1.

Therefore
i (p) < Tir(p). (4.1)

Case 2. Now we show that (% (p)l = A2
*

Let y = {y,,,} be an arbitrary point in (F12w(p))ﬁ. If y is not in A2,

then for each natural number g, we can find an index myn, such that

|1/mq +ng

M[I Ymgng

Pmn
>q, (1,23 ..)
p

m+n

Pmn
Define x = {x,,,} by M[x’g”j = . L for (m, n) = (mg, ny) for

x Pmn
some ¢ € N; and M(ﬂJ = 0 otherwise.
p

Then x is in T'3;(p), but for infinitely mn,

Pmn
M(—l ymngm” |J > 1. (4.2)

Pmn Pmn
Consider the sequence z = {z,,,}, where M lej = M(x—pl)lj -5

. x Pmn z Pmn x Pmn
with s:ZM(%} ; and M(%) =M( m”} (m,n=1,2,3,...).
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. . 9 z Pmn ..
Then z is a point of Tjs(p). Also z M(%) = 0. Hence z is in
T3z (p).
) 2 Pmn
But, by the equation (4.2), z M| —nnrmn does not converge.
p

= 2 XpnYmn diverges.

Thus the sequence y would not be in ('3 (p))P. This contradiction proves
that

T3 (P)P < A% (4.3)

If we now choose p = (p,,,) is a constant, M = id, where id is the

identity and yy, = x;, =1 and y,, = X,, =0 (m >1) for all n, then

obviously x € I'3(p) and y e A2, but ZZ 1 XmnYmn =, hence

ye TP (4.4)

From (4.3) and (4.4) we are granted

()P < A% (4.5)
+*
Hence (4.1) and (4.5) we are granted n3;(p) < [T (p) < A2
+

This completes the proof.

Theorem 5. Let M be an Orlicz function or modulus function which

satisfies the Ag -condition. Then T%(p) < T3 (p).
Proof. Let

x e T?(p). (5.1)

Then (| x,,, |1/m+”)p’”” < ¢ for sufficiently large m, n and every ¢ > 0.

But then by taking p > 1/2,
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| X |1/m+n Pmn c
M [”m—} < (M (ED (because M is non-decreasing)

p
< (M(2¢))
|x |1/m+n Pmn
= | M| Bl < KM(g)(by the Ag-condition, for some K > 0)
P
< ¢ (by defining M(¢g) < ¢/K)
|x |1/m+n Pmn
:MWT —0as m,n— o 5.2)
Hence
X e FJZVI(p). (5.3)

From (5.1) and (5.3) we get T'?(p) Fj{f/[(p).

This completes the proof.
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