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Abstract 

In the present paper, we investigate the effect of sparseness of data on 
Bartlett adjustment. The choice of statistical tools for inference is highly 
dependent on the nature of the data. When the real data set is sparse, it 
creates some problems in using asymptotic theory. This property of the 
data restricts the use of statistical tools for inference, especially when 
the data set is extensive. The Bartlett adjustment factor improves the 
chi-square approximation to the distribution of the likelihood ratio 
statistic. We introduce Bartlett adjustment for binary response with 
probit link function. We find that the Bartlett adjustment does not 
improve the results when the binary data set is sparse. 

Introduction 

The Bartlett adjustment framework is focused on the chi-square 
approximation to the likelihood ratio and other test statistic criteria. In 
the theory of testing statistical hypotheses, it is well known that the 

likelihood ratio test statistic has approximately the 2χ  distribution for 

large samples, e.g., McCullagh and Nelder [15], Serfling [18], Azzalini [3] 
and Lehmann [14]. It is possible to improve this approximation by 
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multiplying the likelihood ratio test statistic (L.R.T.S.) by a scale factor, 
as first noted by Bartlett [5, 6]. Lawley [13] developed a general approach 
to approximating the null distribution of the likelihood ratio test statistic 
by finding a correction factor so that the null distribution of the modified 

statistic has the same moments as the reference, ,2χ  chi-square 

distribution, ignoring terms of order, where n is the size of the sample. 

In the last two decades, there has been renewed interest in Bartlett 
corrections leading to better approximations of the null distribution of 
the likelihood ratio statistic by a chi-square distribution, e.g., Lawley 
[13], Barndorff-Nielsen and Cox [4], Cordeiro and Paula [11], Cordeiro 
and Ferrari [10] and Cordeiro [8, 9]. Cordeiro [8] developed a Bartlett 
correction to improve the L.R.T.S. distribution for univariate generalized 
linear models (GLMs) (Nelder and Wedderburn [17]). He provided a 
general formula for the expected value of the likelihood ratio statistic for 

GLMs, corrected up to terms of order .1−n  His formula has advantages 

for numerical purposes because it requires only operations on matrices. 

The effect of sparseness of the data on goodness-of-fit criteria in 
medical studies and other applied fields has been considered by several 
authors, e.g., Boyle et al. [7], Spiess and Hamerle [19] and Zadkarami 
[21]. The sparseness of data sets depends on a range of factors and 
models which may, or may not, be under the control of the researchers. 
Sparseness of the data creates some problems in using asymptotic theory 
and it is consequently computationally demanding, especially when the 
data set is extensive (Ainswort and Dean [1] and King and Zeng [12]). 
Sparseness in the data affects the shape of the log likelihood function so 
that it does not have a quadratic form. Therefore, from a theoretical point 
of view, this does not allow us to compare the change in the deviance 
between two nested models using the chi-square distribution (Zadkarami 
[21]). In this paper, we investigate the effect of sparseness of the data on 
the Bartlett adjustment. 

The structure of the paper is as follows. We introduce the Bartlett 
adjustment in Section 1. The correction factors for GLMs are induced in 
Section 2. In Section 3, the empirical results are discussed and finally 
conclusion is presented in Section 4. 
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1. Bartlett Adjustment 

Let l  denote the log likelihood function dependent on qp +  unknown 

parameter ( )qp
T

+= θθθθ ...,,, 21  and ( )kl  denote the result of 

maximizing l  with respect to ....,,, 21 kθθθ  The statistic denotes the 

likelihood ratio test for the hypothesis 

( ) ( ) ,...,,: 00
110 qpqpppH ++++ == θθθθ  

where pθθθ ...,,, 21  are nuisance parameters. Lawley [13], by an 

exceedingly complicated calculation, has shown that, under fairly general 
regularity conditions, 

( ( ( ) )) ( ),2 2−++=− nOkE k
k εll  
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,rr θ∂∂= ll  

,2
srrs θ∂θ∂∂= ll  ,3

tsrrst θ∂θ∂θ∂∂= ll  etc. 

( ),rsrs E l=λ  ( ),rstrst E l=λ  etc. 

,rsrsrs λ−= ll  ,rstrstrst λ−= ll  etc. 

( ) ,trstrs θ∂λ∂=λ  ( ) ,ursturst θ∂λ∂=λ  etc. 

( ) ,2
utrsturs θ∂θ∂λ∂=λ  (1) 

where all subscripts are summed over the values 1 to k. Furthermore, he 
has shown that 

( ( ( ) ( ) )) ( ) ( ( )),12 22 −−
+

+ ++=+ε−ε+=− nObqnOqE pqp
pqp ll  
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where b is a constant of order .1−n  In fact, the statistic 

( ( ) ( ) ) ( )pqp
pqp

l qqW ε−ε+−= +
+ ll2  

has the same moments as 2χ  with q degrees of freedom, neglecting 

quantities of order .1−n  

2. Correction Factors for Generalized Linear Models 

Let the random variables nYY ...,,1  be independent, and each iY  has 

a density function of the form 

( ) ( ) ( )[ ] ( ) ,},exp{,; ydycbyyf iiiiii ψ++θ−θψ=ψθ  (2) 

where ( ),.b  ( ).c  and ( ).d  are known functions. The expectation and 

variance of iY  can be expressed as 

( ) ( ) iiii bYE θ∂θ∂=µ=    and   ( ) ,Var iii VY ψ=  

respectively, where iiiV θ∂µ∂=  is called the variance function and 

( )ii q µ=θ  is a known function of iµ  only. It is assumed that iψ  is known 

for each observation and then the iY ’s have distributions belonging to the 

same one-parameter exponential family (McCullagh and Nelder [15]). 

We assume that ( )ipii XXX ...,,1=  are the explanatory variables 

associated with individual i and ( )ii g η=µ  is a one-to-one function so that 

,β=η X  where ( )n
T ηη=η ...,,1  and ( )n

T XXX ...,,1=  is an ( )nppn <×  

known matrix of the explanatory variables and ( )p
T ββ=β ...,,1  denotes 

a set of unknown model parameters to be estimated. 

As Nelder and Wedderburn [17] showed, the estimation of  β can be 

obtained by the maximum likelihood method which is equivalent to an 

iteratively re-weighted least squares procedure. Wedderburn [20] proved 

the finiteness, existence in the interior of the parameter space and 

uniqueness of the maximum likelihood estimates of β for various 

distributions and link functions. 
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2.1. Correction factors for generalized linear models 

We now consider the issue of the Bartlett adjustment for GLMs. 
Cordeiro [8] provided the matrix form of the Bartlett adjustment, for 
GLMs based on Lawley [13]. Lawley showed that, under general 
regularity conditions, 

( ( ( ) )) ( ),2 2−+ε+=− nOpE p
p ll  

where l  denotes the log likelihood function and ( )pl  denotes the result of 

maximizing l  with respect to ....,,1 pββ  The general matrix form for ,pε  

which is obtained by Cordeiro [8], is given by 

( ) ( )( )11
3
1tr

4
1 32 GFGZHZ T

dp +Ψ−Ψ=ε  

( ( ) ) ,1321
12
1 3 Ψ+Ψ+ FZZZZF dd

T  (3) 

where ( ) TT XXWXXZ 1−Ψ=  is an nn ×  positive semi-definite matrix 

of rank p with elements ijz  and ( )3Z  denotes an nn ×  matrix with 

elements  ,3
ijz  while W, H, F, G and dZ  are diagonal matrices of order n 

with elements which are given by 

{ ( ) } { },diagdiag 21 wVW =µ′= −  

{ },diag ψ=Ψ  

{ ( )[ ] [ ( ) ( )]},24diag 22121 µ∂∂−µ∂∂+µ∂∂−µ ′′µ ′′= −− VVVwVwVH  

{ },diag 1 µ ′′µ′= −VF  

{ ( ) ( ) },diag 321 µ′µ∂∂−µ ′′µ′= −− VVVG  

{ },...,,diag 11 nnd zzZ =  

( )T1...,,11 =  as an 1×n  vector, 

where η∂µ∂=µ′  and 22 η∂µ∂=µ ′′  denote the first and second 

derivatives of the link function g, respectively. 
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Deviance as a goodness-of-fit criterion for GLMs was suggested by 
Nelder and Wedderburn [17]. The expectation of the deviance of the 

model, ,pD  considering equation, can be expressed as 

 ( ) ( )pnp EDE ll ˆˆ2 −=  

( ) ( )pn EE llll ˆ2ˆ2 −+−=  

( ) ( ) ( ),ˆ2 2−+ε+−−= nOpE pn ll  (4) 

where, using equation (2), we have 

( ) ( ) ( ){ },2ˆ2
1
∑
=

µ−φ=−
n

i
iin vyvEE ll  

where the sum is over all observations and ( ) ( ) ( )( ).xqbxxqxv −=  

The deviance may be used to test the adequacy of a GLM. However, it 
is uninformative regarding lack of fit in the case of the binary 
distribution, see e.g., McCullagh and Nelder [15] and Aitkin et al. [2]. 

Furthermore, the deviance has an exact chi-square distribution for 
normal linear models. The lack of an exact theory for the deviance 
distribution depends upon its departure from normality. However, the 
deviance may not follow the chi-square distribution, even for 

approximately large n. 

Moreover, the deviance is most directly useful, not as an absolute 
measure of goodness of fit, but for comparing two nested models. The chi-
square approximation is usually quite accurate for a difference between 
deviances, which is equivalent to the likelihood ratio statistic, at least in 
large samples (Aitkin et al. [2], Cordeiro [9] and McCullagh and Nelder 
[15]). 

The expectation of the likelihood ratio test statistic for the two nested 
models, based on equation (4), is given by 

( ) ( )qppl DDEWE +−=  

( ) ( )2−
+ +ε−ε+−+= nOpqp pqp  
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( ( )) ( ),1 2−
+ +ε−ε+= nOqq pqp  

where the Bartlett correction factor to test 0H  is denoted by =c  

( ( )) .1 1−
+ ε−ε+ qpqp  

2.2. Bartlett adjustment for binary responses 

Let ,iY  conditional on the explanatory variables X, be a Bernoulli 

variable with probability function ( ) ( ) ( −θ=−= − yppyf yy exp1 1  

( )( )),exp1log θ+  where { }1,0∈y  and ( )( ).1log pp −=θ  Comparing this 

with equation (2), we have ( ) ( )( ),exp1log θ+=θb  ( ) 0, =ψyc  and .1=ψ  

Therefore, the matrix { } ,1diag nnI ×==Ψ  the identity matrix, and we 

can write equation (3) in the form 

( ) ( )( ) ( ( ) ) .1321
12
111

3
1tr

4
1 332 FZZZZFGFGZHZ dd

TT
dp +++−=ε  

Zadkarami [21] showed that the probit link function produced the 

best results in comparison with the logit and complementary log-log link 

function. The assumption of the probit link function gives the mean as 

( ) ( ),ηΦ==µ=| pXYE  

where XTβ=η  denotes the linear predictor and Φ denotes the cumulative 

distribution function of the standard normal. Consequently, the first and 

second derivatives of the link function are given by ( )ηφ=µ′  and 

( ),ηηφ−=µ ′′  respectively, where ( ).φ  denotes the density function of the 

standard normal distribution. Furthermore, the variance function can be 

expressed as ( )ppV −=θ∂µ∂= 1  and .2121 µ−=−=∂∂=µ∂∂ ppVV  

In this case, the structure of the matrices W, H, F and G, which is 

defined in Subsection 2.1, can be obtained by using equations, and so that 

{ ( )( ) ( )} { },diag1diag 2 wppW =−ηφ=  

{ ( ) ( ) ( )[ ]( ) [(( ) ( )) ]},111221214diag 22 +−−+−−ηφ+ηη= pppwpppwH  
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{ },diag η−= wF  

( ) ( ) ( )[ ]( ){ }.121diag pppwG −−ηφ+η−=  

3. Empirical Results 

The National Child Development Survey (NCDS) data set is used to 
investigate the effect of sparseness of binary data on Bartlett adjustment. 
This data set was collected on babies born in the same week (3-9 March 
1958) in England, Wales and Scotland. The interval between 28th week 
(196 days) of gestation and 4th week after birth is divided into four 
subintervals, allowing for the possibility of death before delivery 
(antepartum stillbirth), during delivery (fresh stillbirth), in the first week 
after birth (early neonatal deaths), and between the first and fourth 
weeks after birth (late neonatal deaths). We call these stages 1, 2, 3 and 
4, respectively. The survivors beyond stage 1 are further divided into two 
groups, those with assisted delivery and those with natural delivery to 
allow for the differential effects of the type of delivery in the two groups 
(Zadkarami [21]). We selected a sample of 10,141 individuals for whom 
we have complete information on forty variables associated with 
perinatal mortality. The data in stage 4 of the assisted delivery cases are 
selected as an illustration in the investigation of the effect of sparseness 
of data on the parameter estimates for the binary models. Because, our 
data set is extensive, it raises some computational problems. As an 
example, we cannot calculate the Bartlett adjustment for the natural 
delivery cases in our model because many matrices are involved in the 

calculation of .pε  Those matrices need a large amount of computer 

memory, with the result that we cannot run the program for the natural 
delivery cases. Therefore, we use only the assisted delivery data at stage 
4 as an example to demonstrate the effect of the Bartlett adjustment on 
the magnitude of the likelihood ratio test statistics as defined in 
Subsection 2.1. There are 1120 assisted delivery babies who are survived 
after stage 3. Four of them died during stage 4 and 1116 of babies are 
survived behind stage 4. The results in Table 1 indicate that 
“birthweight” is negatively significant in stage 4 for assisted delivery 
cases. 
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Table 1. The results of fitting model to stage 4 (assisted delivery) 

Term Estimate (S.E.) p-value 

Intercept - 1.98(5.96) 0.74 

Birthweight - 0.723(0.33) 0.03 

Social class mother’s 
husband 

Re: Class I 
Class II-IV 

- 

- 0.82(0.52) 

- 
0.11 

Baby birth order Re: First baby 
2nd or later baby 
Miscarriage  

- 
2.47(5.98) 
- 0.085(36.6) 

- 
0.69 
0.99 

We adjust the likelihood ratio test for the models ,1M  ,2M  3M  and 

4M  which are defined as 

,: 011 β=ηM  

,: 11022 XM β+β=η  

,: 2211033 XXM β+β+β=η  

,: 332211044 XXXM β+β+β+β=η  

where 1X  denotes the variable “birthweight”, 2X  denotes the categorical 

variable “social class of mother’s husband” which has two levels “class I” 

and “class II-IV” and 3X  denotes the categorical variable “baby birth 

order” which has three levels “first baby”, “2nd or later baby” and 

“miscarriage”. The Bartlett correction factor c, as defined in Subsection 
2.1, is used to modify the magnitude of the likelihood ratio to give a 
better approximation to the chi-square distribution. 
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Table 2. The comparison of fitting different models to stage 4 
(assisted delivery) 

Comparison models L.R.T.S. D.F. Bartlett factor L.R.T.S. (modified) 

1M  and 2M  5.171 1 0.965 4.99 

2M  and 3M  2.227 2 0.835 1.859 

3M  and 4M  4.826 3 0.000162 0.0008 

As the results in Table 2 show, the Bartlett adjustment performs well 
for the continuous explanatory variable. However, it does not yield an 
improvement for the discrete explanatory variables in the model. We 
found that the Bartlett adjustment does not improve the likelihood ratio 
test statistic for testing the discrete variables in the sparse data set. 

4. Conclusion 

This paper is concerned mainly with the effect of the sparseness of 
the data on the asymptotic theory, especially Bartlett adjustment. The 
Bartlett adjustment is used to improve the asymptotic theory for the 
homogeneous model. However, the empirical results showed that the 
Bartlett adjustment did not improve the likelihood ratio test statistic for 
testing the discrete explanatory variables for sparse data in the 
homogeneous binary models. Therefore, asymptotic theory cannot be 
applied to this type of model. 

In fact, the sparseness of the data not only raises some theoretical 
problems but also creates some computational problems. 
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