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Abstract 

In the mixed modeling framework, Monte Carlo simulation and cross 
validation are employed to develop an “improved” Akaike information 
criterion, AICi, and the predictive divergence criterion, PDC, 
respectively, for model selection. The selection and the estimation 
performance of the criteria is investigated in a simulation study. Our 
simulation results demonstrate that PDC outperforms AIC and AICi in 
choosing an appropriate mixed model as a selection criterion, and AICi is 
less biased than AIC and PDC in estimating the Kullback-Leibler 
discrepancy between the true model and a fitted candidate model. 

1. Introduction 

The Akaike [1, 2] information criterion, AIC, has received widespread 
recognition as a model selection criterion. AIC provides a method of 
finding the “best” approximation to the generating model or true model, 
by providing an asymptotic estimator of the expected Kullback-Leibler 
discrepancy. This discrepancy is a measure of difference between a fitted 
candidate model and the true model. AIC is composed of a “goodness of 
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fit” term and a penalty term. The “goodness of fit” term serves as a biased 
estimator of the expected Kullback-Leibler discrepancy and reflects how 
well the model fits the observed data; the penalty term, twice the overall 
number of estimated parameters, estimates the biased adjustment 
evaluated by the difference between the expected Kullback-Leibler 
discrepancy and the expected “goodness of fit” term. Originally justified 
in large-sample instances, AIC is applicable in a broad array of modeling 
frameworks. However, in small-sample applications, AIC is likely to 
choose unsuitably high dimensional models. This limits its effectiveness 
as a model selection criterion. To overcome this limitation of AIC, the 
“corrected” AIC, AICc, has been proposed. 

AICc (Sugiura [10] and Hurvich and Tsai [6]) is the best known 
corrected version of AIC. The advantage of using AICc relies on its 
superior performance to AIC as a selection criterion in small-sample 
applications. However, because the justification of AICc necessitates the 
distribution from the candidate model, AICc is less generally applicable 
than AIC. 

An “improved” version of AIC, AICi, has been developed by Hurvich 
et al. [5] for Gaussian autoregressive model selection. For the estimation 
of the same discrepancy of AIC, the criterion consists of the same 
“goodness of fit” term as AIC, yet features a penalty term. Under 
appropriate conditions, the bias adjustment of the discrepancy 
asymptotically converges to twice the overall number of estimated 
parameters, indicating that the bias adjustment is asymptotically 
independent of the true parameter. To approximately estimate the bias 
adjustment, the penalty term of AICi therefore is assessed by utilizing 
Monte Carlo samples generated at an arbitrary parameter value. 

Apart from AIC variants, the predictive divergence criterion (PDC) 
has been proposed by Davies et al. [4] based on cross validation approach 
in the linear regression framework. PDC serves as an unbiased estimator 
of an expected discrepancy constructed for gauging the adequacy of a 
candidate model by assessing how effectively each case-deleted fitted 
model predicts the deleted case. This expected discrepancy is 
asymptotically equivalent to the expected Kullback-Leibler discrepancy, 
the target measure for AIC, AICc and AICi. 
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In the mixed modeling framework, different covariance structures 
formulate a rigorous problem for clarifying the distribution of the 
candidate model, developing a variant of AIC whose justification requires 
the distribution of the candidate model therefore confronts a formidable 
challenge. In longitudinal data analysis, a corrected variant of AIC has 
recently been justified by Azari et al. [3] for comparing models having 
different mean structures yet the same covariance structure. 

To improve effectiveness of mixed model selection, using computing 
techniques combined with asymptotic theories is an alternative approach 
to building up selection criteria. Shang and Cavanaugh [8] have proposed 
two bootstrap-corrected variants of AIC for the joint selection of the fixed 
and random components of a linear mixed model. These variants are 
justified by extending the asymptotic theory of Shibata [9]. They can be 
easily applied under nonparametric, semiparametric, and parametric 
bootstrapping. 

Motivated from the considerations in the previous ideas, we propose 
versions of AICi and PDC suitable for mixed model applications in this 
paper. The selection and the estimation performance of AIC, AICi, and 
PDC is investigated in a simulation study. Our simulation results 
demonstrate that PDC outperforms AIC and AICi in choosing an 
appropriate mixed model as a selection criterion, and AICi is less biased 
than AIC and PDC in estimating the Kullback-Leibler discrepancy 
between the true model and a fitted candidate model. 

The format of the paper is arranged as follows. In Section 2, we 
present the model and notation. In Section 3, we propose and discuss the 
criteria. Our simulation study is presented and summarized in Section 4. 
Concluding remarks are given in Section 5. 

2. Model and Notation 

For ,...,,1 mi =  let iy  denote an 1×in  vector of responses observed 

on the ith subject or case, and let ib  denote a 1×q  vector of associated 

random effects. Assume the vectors ib  are independently distributed       

as ( ).,0 DN  Let ∑ =
=

m
i inN

1
 denote the total number of response 

measurements. 
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The general linear mixed model can be represented as 

,ε++β= ZbXY  (2.1) 

where Y denotes the 1×N  response vector ( ) ,...,,1
′′′ myy  X  is an 

( )1+× pN  design matrix of full column rank, Z is an mqN ×  block 

diagonal design matrix comprised of m blocks, where each block is an 

qni ×  matrix, β is the ( ) 11 ×+p  fixed effects parameter vector, b is the 

1×mq  random effects vector ( ) ,...,,1
′′′ mbb  and ε is the 1×N  error 

vector. We assume ( )GNb ,0~  and ( ),,0~ 2RN σε  with b and ε 

distributed independently. Here, R and G are positive definite block 

diagonal matrices and G is mqmq ×  and comprised of m identical blocks, 

each of which is D. 

Let θ  denote the unknown parameter vector, consisting of the 

elements of the vector β, the matrix D, and the scalar .2σ  Let ZZGV ′=  

.2Rσ+  Note that V represents the covariance matrix of Y and that V is 

positive definite. 

Let θ̂  denote the MLE of θ, consisting of the elements of the vector ,β̂  

the matrix ,D̂  and the scalar .ˆ 2σ  Note that Ĝ  is a positive definite block 

diagonal matrix and is comprised of m identical blocks, each of which is 

.D̂  For a given set of estimates ,θ̂  the covariance matrix of Y is given by 

.ˆˆˆ 2RZGZV σ+′=  

Suppose the generating model or the true model, which presumably 
gave rise to the data, is given by 

,ooooo bZXY ε++β=  (2.2) 

where oX  is an ( )1+× opN  design matrix of full rank, oZ  is an omqN ×  

block diagonal design matrix, where each block is an oi qn ×  matrix. 

Here, the other terms are similarly defined as those in the model (2.1). 
For brevity, similar notations are not repeatedly depicted here. We only 

need to add the subscript “o” to the terms related to the generating model 
including the parameters arising from the model. 
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3. Selection Criteria 

3.1 An improved Akaike information criterion (AICi) based on 

Monte Carlo simulation 

Suppose that a candidate or approximating model is a model that 
could potentially be used to describe the data and a fitted model is a 
candidate model that has been fit to the data. A candidate class contains 
all the candidate models of interest. The Kullback-Leibler discrepancy 
between the generating model or the true model and a candidate or 
approximating model is defined as 

( ) ( ){ },ln2, θ|−=θθ YfEd oo  

where oE  denotes the expectations under the generating model, and 

( )θ|Yf  represents the probability density function corresponding to the 

approximating model. 

For a given set of estimates ,θ̂  

( ) ( ){ } θ=θ|θ|−=θθ ˆln2,ˆ YfEd oo  (3.1) 

would provide a useful measure of separation between the fitted 
approximating model and the generating model. The overall Kullback-
Leibler discrepancy is the expected value of (3.1), 

 ( ) [ ( )]ooo dEk θθ=θδ ,ˆ,AIC  

{ ( ){ } }θ=θ|θ|−= ˆln2 YfEE oo  

[ ( )] ( ),,ˆln2 oo kBYfE θ+θ|−=  (3.2) 

where the bias adjustment ( )okB θ,  is evaluated as 

( ) { ( ){ } } { ( )}.ˆln2ln2, ˆ θ|−−|θ|−=θ θ=θ YfEYfEEkB oooo  (3.3) 

We identify a candidate model having the same structure as the true 
model as correctly specified, a candidate model which has a more 
simplistic structure than the true model (e.g., includes fewer parameters, 
explanatory variables, effects, etc.) as underspecified, and a candidate 
model which has a more complex structure than the true model (e.g., 
includes more parameters, explanatory variables, effects, etc.) as 
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overspecified. When a candidate is fit to the data, correspondingly, we 
will have a correctly specified, underfit, or overfit model. 

Akaike’s [1] original AIC is given by 

( ) ,2ˆln2AIC kYf +|θ−=  

where ( )Yf |θ̂  is the maximized likelihood function, and k represents the 

dimension of estimated parameter θ̂  under the given candidate model. 

Here, the “goodness of fit” term, ( ),ˆln2 Yf |θ−  gauges how well the model 

fits the data, and the penalty term, 2k, measures the complexity that 
compensates for the bias in the lack of fit when the maximum likelihood 
estimators are used. The success of AIC depends on its approximation to 

the bias adjustment (3.3) by 2k for large samples. In Akaike’s 
justification of AIC, two fairly general assumptions are involved: 

(a) The fitted model is either correctly specified or overfit, i.e., oθ  is a 

member of the candidate class parameters θ. 

(b) A set of regularity conditions holds to ensure the conventional 

asymptotic properties of the maximum likelihood estimator .θ̂  

These two assumptions imply that AIC only applies to “correctly 
specified or overfit” candidate models and the regularity conditions must 
hold among “correctly specified or overfit” models, yet these assumptions 
never limit a wide range application of AIC since it has a simple form and 

is easily computed. However, as k increases relative to the sample size, 
AIC becomes increasingly negatively biased. The negative bias of AIC in 
small-sample applications often results in severe overfitting. 

To overcome this problem of AIC, AICi was proposed in the work 
advanced by Hurvich et al. [5] in the context of univariate Gaussian 
autoregressive models. 

The idea of AICi is motivated by the meaning of AIC. Under the 
conditions (a) and (b), the bias adjustment (3.3) converges to 2k, 
indicating that the dependence of the bias adjustment on the true 
parameter oθ  diminishes as the sample size tends to infinity. As a result, 

in large-sample applications, to estimate the bias adjustment (3.3), we 
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can use an arbitrary parameter value instead of the true parameter .oθ  

Evaluating the bias adjustment (3.3) is not possible since doing so 
requires the knowledge of the true parameter .oθ  If an arbitrary 

parameter value is utilized to evaluate (3.3), the problem will be solved. 
We can estimate the bias adjustment (3.3) by an estimator with an 
arbitrary “true” parameter. 

With an arbitrary chosen “true” parameter, estimating (3.3) relies 
upon how to estimate the first term { ( ){ } }.ln2 θ̂=θ|θ|− YfEE oo  Note that 

in this term the inner expectation is taken with respect to the 
distribution of Y at an arbitrarily chosen “true” parameter and is easily 
accessed, and the outer expectation is taken with respect to the sampling 

distribution of the MLE .θ̂  By the strong law of large numbers, the outer 

expectation can be approximately estimated by averaging over a large 
collection of the MLE’s of Monte Carlo samples generated from the true 
model at an arbitrarily chosen “true” parameter. Hence, AICi will be 
constructed by a “goodness of fit” term same as that of AIC, and a penalty 
term evaluated by Monte Carlo samples. 

For the purpose of simplifying the computation, we are naturally 
inclined to choose convenient values for oθ  if possible. Although this 

simulated approximation to the bias correction originates from 
asymptotic instances, in small to moderate-sample applications, the 
approximation should provide a more accurate estimate for the bias 
adjustment in (3.3) than 2k. This claim can be supported both by the 
simulation results that follow and by those reported in Hurvich et al. [5]. 
For the clarification of the notation, we denote the true model parameter 
by ,oθ  yet denote the arbitrary choice of the true parameter for Monte 

Carlo simulation by .aθ  

To evaluate the AICi in the mixed modeling framework, we first note 
that 

( ) ( ) ( ),lnln2 1 β−′β−+=θ|− − XYVXYVYf  (3.4) 

and we then have 

( ){ } ( ) ( ) ( ).tr lnln2 11 β−β′β−β++=θ|− −− XXVXXVVVYfE oooooo  
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(In the preceding relations and throughout the paper, we have neglected 

the additive constant .)2ln πn  For a given ,θ̂  we can arrive at 

( ){ } ( ) ( ) ( ).ˆˆˆˆtr ˆlnln2 11
ˆ β−β′β−β++=|θ|− −−
θ=θ XXVXXVVVYfE oooooo  

 (3.5) 

Again, since the bias adjustment is asymptotically independent of the 
true parameter, using the arbitrary choice of the true parameter for 
Monte Carlo simulation, it can be rewritten as 

( ) { ( ){ } } { ( )},ˆln2ln2, ˆ ∗∗θ=θ∗ θ|−−|θ|−=θ
∗

YfEYfEEkB aaaa  (3.6) 

where ∗Y  is a data vector generated from the true model at parameter 

aθ  and ∗θ̂  is the MLE of θ based on maximizing ( );aYf θ|∗  the sampling 

distribution of ∗θ̂  is governed by the density function ( );aYf θ|∗  and the 

expectation { }⋅aE  is taken with respect to ( ).aYf θ|∗  Note that ( )okB θ,  

and ( )akB θ,  are asymptotically equivalent when the sample size is large 

enough. Also note that the crucial difference between oθ  and aθ  is that 

oθ  is unknown and that aθ  is known. Certainly, the convenient chosen 

values for aθ  may simplify the computation. However, provided that 

computation allows, the parameter aθ  could be any value. Since the 

justification of AICi requires that the candidate models are correctly 

specified or overfit, we need to limit aθ  in the parameter space of the 

candidate class. In practice, since the true parameter is unknown, we can 

choose an arbitrary parameter aθ  including less parameters so that the 

candidate models are more likely to be correctly specified or overfit ones. 

Once aθ  is chosen, we can generate Monte Carlo samples from the model 

with the parameter .aθ  

Let ( ){ }KjjY ...,,1, =∗  represent a set of K Monte Carlo samples 

generated from the model with the density function ( ).aYf θ|∗  Let 

{ ( ) }Kjj ...,,1,ˆ =θ∗  represent a set of the MLEs corresponding to 

( ){ },...,,1, KjjY =∗  respectively. 
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Now by the strong law of large numbers, as ,∞→K  one can argue 

that 

( ){ } ( ) { ( ){ } } ,a.s.ln2ln21

1
ˆˆ∑

=
θ=θ∗θ=θ∗ ∗∗

|θ|−→|θ|−
K

j
aaja YfEEYfE

K
 

and 

{ ( ( ) ( ))} { ( )}a.s.ˆln2ˆln21

1
∑
=

∗∗∗∗ θ|−→θ|−
K

j
a YfEjjYf

K
 (3.7) 

Expressions (3.6) and (3.7) result in the following large-sample 
estimator of the bias adjustment: 

( ) [ ( ){ } ( ) { ( ( ) ( ))}]∑
=

∗∗θ=θ∗ θ|−−|θ|−=θ
∗

K

j
jaa jjYfYfE

K
kB

1
ˆ .ˆln2ln21,ˆ  (3.8) 

As previously discussed, AICi is thereby defined as 

( ) ( ).,ˆˆln2AICi akBYf θ+θ|−=  (3.9) 

Since ( )akB θ,ˆ  is an asymptotically unbiased estimator of the bias 

adjustment (3.3), we can easily verify that AICi in (3.9) serves as an 
asymptotically unbiased estimator of the Kullback-Leibler discrepancy in 
(3.2). 

For the further development of AICi, we need to introduce some 

notation related to aθ  in the sense of the true model for the data vector 

.∗Y  Similar to the unknown parameter oθ  in model (2.2), let aθ  denote 

the set of parameters for the generating model of ,∗Y  i.e., aθ  consists of 

the elements of the vector ,aβ  the matrix ,aD  and the scalar .2
aσ  Under 

the true model, the covariance matrix of ∗Y  can be written as =aV  

,2
aaaaa RZGZ σ+′  where aZ  is a design matrix for the random effects 

under this model, aR  is a known matrix, and aG  is a positive definite 

block diagonal matrix and is comprised of m identical blocks, each of 

which is .aD  We generate 2K Monte Carlo samples { ( ) ( ),...,,1 KYY ∗∗  
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( ) ( )}KYKY 2...,,1 ∗∗ +  from the true model at the chosen parameter    

value and solve for the K sets of corresponding MLEs 

{( ( ) ( ) ( )),1ˆ,1ˆ,1ˆ 2
∗∗∗ σβD  ( ( ) ( ) ( ))}KKKD 2ˆ,ˆ,ˆ..., ∗∗∗ σβ  under a candidate model 

(2.1) based on maximizing ( )( ) ( )( ){ },2...,,1 θ|θ|+ ∗∗ KYfKYf  respectively. 

Doing so ensures to make full use of the information from Monte Carlo 
samples. By the expressions of (3.8), (3.4) and (3.5), we can further 

develop ( )akB θ,ˆ  in the mixed model setting as 

( ) [ ( ) ( ( ))∑
=

−
∗∗ +=θ

K

j
aa jVVjV

K
kB

1

1ˆtrˆln1,ˆ  

( ( )) ( ) ( ( ))]jXXjVjXX aaaa ∗
−
∗∗ β−β′β−β+ ˆˆˆ 1  

[ ( ) ( ( ) ( )) ( ) ( ( ) ( ))]∑
=

∗∗
−
∗∗∗∗ β−′β−+−

K

j

jXjYjVjXjYjV
K

1

1 ˆˆˆˆln1  

 [ ( ( )) ( ( )) ( ) ( ( ))]∑
=

∗
−
∗∗

−
∗ β−β′β−β+=

K

j
aaaaa jXXjVjXXjVV

K
1

11 ˆˆˆˆtr1  

[( ( ) ( )) ( ) ( ( ) ( ))]∑
=

∗∗
−
∗∗∗ β−′β−−

K

j

jXjYjVjXjY
K

1

1 .ˆˆˆ1  (3.10) 

Note that in the preceding expression, aaX β  is the mean of ∗Y  under its 

generating model. Expression (3.10) is the penalty term of AICi, and is 

utilized to estimate the bias adjustment for compensating the lack of fit 

from the biased estimator. 

3.2. The predictive divergence criterion (PDC) based on cross 

validation 

To assess predictive ability of candidate models, the predictive 

divergence criterion (PDC) has been recently justified by Davies et al.      

[4] in the linear regression framework. Although the target discrepancy 

upon which PDC is based is not the Kullback-Leibler discrepancy, it 

essentially measures the dissimilarity between the generating model and 
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a fitted candidate model. Furthermore, the target overall PDC 

discrepancy is asymptotically equivalent to the Kullback-Leibler 

discrepancy and PDC is therefore an asymptotically unbiased estimator 

of the Kullback-Leibler discrepancy. 

Since PDC makes use of cross-validation approach, we need to 
introduce the notation in the cross validation setting. For the candidate 

model, let iθ̂  represent the maximum likelihood estimator of θ based on 

the data set removing the ith case iy  from the vector Y, and let ( )θ|ii yf  

represent the individual probability density function of the ith case for 

....,,1 mi =  The likelihoods corresponding to the generating model and 

the candidate model can then be expressed as 

( ) ( )∏
=

θ|=|θ
m

i
oiio yfYL

1

 

and 

( ) ( ),
1
∏
=

θ|=|θ
m

i
ii yfYL  

respectively. 

We notice that 

( ) ( ){ } iiioo
i

i yfEd
θ=θ

|θ|−=θθ ˆln2,ˆ  

would measure an individual discrepancy between the case-deleted fitted 

model and the true model for the deleted case. Since each case iy  is 

generated from the true model, in some sense this individual discrepancy 
reflects how well each case-deleted fitted model predicts the deleted case. 
For the predictive divergence criterion (PDC), the overall predictive 

discrepancy for the m independent cases can therefore be defined by 

( ) ( )∑
=

θθ=θ
m

i
o

i
io dYd

1
PDC ,ˆ,  

 ( ){ }∑
=

θ=θ
|θ|−=

m

i
iio iyfE

1
ˆ .ln2  (3.11) 
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The expected overall PDC discrepancy corresponding to (3.11) is 

( ) { ( ){ } }∑
=

θ=θ
|θ|−=θδ

m

i
iiooo iyfEEk

1
ˆPDC .ln2,  (3.12) 

Note that the overall discrepancy ( )oYd θ,PDC  is not a statistic since 

the evaluation of ( )oYd θ,PDC  requires knowledge of .oθ  Therefore, 

( )oYd θ,PDC  cannot be used to estimate ( ).,PDC ok θδ  

However, the log-likelihood measure 

( )∑
=

θ|−
m

i

i
ii yf

1

ˆln2  

is a statistics and thus can be used to estimate ( ).,PDC ok θδ  Moreover, 

this statistics is exactly unbiased for ( ),,PDC ok θδ  since 

( ) { ( )}ooo YdEk θ=θδ ,, PDCPDC  

{ ( ){ } }∑
=

θ=θ
|θ|−=

m

i
iioo iyfEE

1
ˆln2  

( ) .ˆln2
1 











θ|−= ∑
=

m

i

i
iio yfE  

Note that in the preceding expression, for the second expectation on 
the right-hand side, the inner expectation is taken with respect to the 

distribution of iy  (under the true model), and the outer expectation is 

taken with respect to the sampling distribution of .ˆ iθ  See Davies et al. 

[4] for details. Thus, we define the model selection criterion 

( )∑
=

θ|−=
m

i

i
ii yf

1

.ˆln2PDC  

PDC serves as an exactly unbiased estimator of ( )ok θδ ,PDC  regardless of 

the sample size, the relationship between the likelihoods ( )YL o |θ  and 

( ),YL |θ  or the distribution of the underlying data. 
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For the mixed modeling framework, PDC is therefore defined as 

( ) ( ) ( ),ˆˆˆˆlnPDC 1 iiii XYVXYV β−′β−+= −  

where iβ  and iV  are the corresponding MLE’s with the ith case deleted 

from the data under the given candidate model. 

For the m independent cases, the targeted measure of AIC in (3.2) 

can be re-expressed as 

 ( ) { ( ){ } }θ=θ||θ−=θδ ˆAIC ln2, YLEEk ooo  

{ ( ){ } }∑
=

θ=θ|θ|−=
m

i
iioo yfEE

1
ˆln2  

and the target measure of PDC in (3.12) can again be written as 

( ) { ( ){ } }∑
=

θ=θ
|θ|−=θδ

m

i
iiooo iyfEEk

1
ˆPDC .ln2,  

When the sample size m approaches infinity, Davies et al. [4] have 

proved that ( ) ( )oo kk θδ≈θδ ,, AICPDC  holds in the linear regression 

framework. This claim also holds in the mixed model setting, which is 

supported by the simulation results in what follows. As a result, PDC 

serves as an exactly unbiased estimator of its own discrepancy 

( ),,PDC ok θδ  and is also an asymptotically unbiased estimator of 

( ).,AIC ok θδ  

In the development of AIC, we assume that the candidate model (2.1) 

is correctly specified or overfit, or the candidate family subsumes the 

generating model. Yet cross validation procedures do not require this 

assumption and are applicable in a wider range of settings than AIC. 

4. Simulation Study 

The goal of our simulations is to search among a class of candidate 

models described as what follows for the fitted model which serves as the 

best approximation to the specified true model. We investigate the 
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effectiveness of AIC, AICi and PDC at choosing this optimal fitted 

candidate model whose corresponding criterion is minimized among the 

candidate models. 

In many applications data have a clustered structure, the mixed 
effects model treats clustered data adequately and assumes two sources 
of variation, within cluster and between clusters. The compound 
covariance structure exactly involves two variations: between subject (or 
cluster, location) variance and within subject (or cluster, location). We 
therefore consider the mixed model with the compound covariance 
structure both as the true model and as a type of the candidate models. 

The generating model 

We assume that data arises from a generating model in the form of 
(2.2) with the compound covariance structure, leading to the simply 
specified random effects. Particularly, in model (2.2), for the random 

effects vector ,ob  the dimension ,1=oq  the covariance ,2 IG oo τσ=  i.e., 

,2
ooD τσ=  and oZ  is an mN ×  block diagonal design matrix comprised 

of m blocks, where each block is an 1×in  vector consisting of all 1’s; for 

the error vector, the variance is ,2Ioσ  and the positive definite matrix 

.IRo =  The covariance matrix of Y is given by .22 IZZV ooooo σ+σ′= τ  

The true model parameter vector oθ  can be defined as ( ) .,, ′σσβ′ τ ooo  

Note that ,ok  the dimension of ,oθ  is .3+op  

To generate the simulated data, we choose the parameters =βo  

( ) ,1,1,1,1,1,1,1 ′  ,22 =στo  and 12 =σo  for the generating model. 

To compute AICi, we choose ( ) ,9,10,10 2 =σ′=β τaa  and 52 =σa  for 

the evaluation of the penalty term. For the fixed effects, a two-dimension 
parameter is chosen. One-dimension is for the intercept, and the other 
one is for one explanatory variable. Choosing one explanatory variable in 
the “true” model will ensure that the candidate models containing this 
one or more explanatory variables are correctly specified or overfit. 
Hence, the candidate class subsumes the chosen “true” model, which 
satisfies the condition of constructing AICi. Note that the chosen 
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parameters are not close to those for the generating model in order to 
show that AICi can perform quite effectively even though the choice is 
sightless. 

To obtain the stable penalty term of AICi, the number of Monte Carlo 

samples K is chosen as 500. With a larger value of K, the penalty term of 

AICi does not change much, so the number of 500 is large enough for 
calculating a stable penalty term and is small enough for avoiding a 
waste of computation. 

The candidate models 

When specifying the fixed effects, we limit the candidate models using 

nested design matrices X. The nested models are often used in simulation 

studies for model selection criteria so that large candidate models may be 
considered without making the number of models in the candidate class 
excessively high. (See, for instance, McQuarrie and Tsai [7].) Suppose 

that P regressor variables of interest are considered, then P candidate 

models are reflected on a sequence of design matrices X of ranks ...,,3,2  

( ).1+P  Each successive design matrix contains all of the regressors in 

its predecessors. We refer to p, the number of regressors in the candidate 

model, as the order of the model, and to op  as the true order. 

In our simulation study, one-dimensional random effects are 
inclusive or exclusive. 

Matching the combination of the fixed effects and random effects, we 

consider two types of candidate models for modeling data Y arising from 

model (2.1). The first type of candidate models includes one-dimensional 
random effects, i.e., it has the same “compound symmetric” covariance 
structure as the generating model and the generating model is included 

in the candidate class. For the random effects vector b, the dimension 

,1=q  and the covariance ,2IG τσ=  i.e., ,2
τσ=D  Z  is an mN ×  block 

diagonal design matrix comprised of m blocks, where each block is          

an 1×in  vector consisting of all 1’s; for the error term, the positive 

definite matrix .IR =  The covariance matrix of Y is represented by 

.22 IZZV σ+σ′= τ  
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The candidate model parameter vector θ can be defined as ( ) .,, ′σσβ′ τ  

Note that k, the dimension of θ, is .3+p  The MLE’s of the parameters, 

( ) ,ˆ,ˆ,ˆˆ ′σσβ′=θ τ  can be found via the EM algorithm. The MLE of V is 

given by .ˆˆˆ 22 IZZV σ+σ′= τ  

The second type of candidate models excludes one-dimensional 

random effects, i.e., there is no within-case variation in model (2.1). That 

is, for the random effects vector b, the covariance ,0=G  i.e., ;0=D  for 

the error term, the positive definite matrix .IR =  The covariance matrix 

of Y is represented by .2IV σ=  

The candidate model parameter θ can be defined as ( ) ., ′σβ′  Note that 

k, the dimension of θ, is .2+p  The MLE’s of the parameters, ( ) ,ˆ,ˆˆ ′σβ′=θ  

can be easily found via ordinary least squares. The MLE of V is given by 

.ˆˆ 2IV σ=  

For each design matrix with the order p, we consider the candidate 

models both with and without the random effects in model (2.1). As a 

result, the candidate class takes account of the first type of candidate 

models, i.e., the P candidate models involving both a sequence of design 

matrices X of ranks ( )1...,,3,2 +P  and the random effects, and the 

second type of candidate models, i.e., the P candidate models only 

involving a sequence of design matrices X of ranks ( ).1...,,3,2 +P  

Again, the generating model is included in the first type of candidate 

class. Therefore, in the first type of candidate class, the model of order 

op  is correctly specified ( ).1 Ppo ≤≤  Fitted models for which opp <  

are underfit, and those for which opp >  are overfit. We randomly 

generate all regressors as independent, identically distributed variates 

from a standard normal distribution. 

Simulation results 

To inspect the performance of the criteria AICi and PDC, the 

simulation is completed in four sets for ,30,20,15=m  and 50 with 
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3=n  observations for each case. For each simulation set, 100 samples 

consisting of nmN ×=  observations are generated from the specified 

true model of order .6=op  The maximum order of the candidate class is 

set at .12=P  For every sample, each candidate model is fit to the data, 

the criteria AIC, AICi, PDC, and the simulated values of ( )oθθδ ,ˆAIC  and 

( )oθθδ ,ˆPDC  are evaluated, and the fitted model favored by each criterion 

or by each simulated discrepancy is recorded. Over the 100 samples, the 

distribution of model selections is tabulated for each of the criteria and 

for each of the discrepancies. 

For each simulation set ( ),50,30,20,15=m  the distributions of 

selections by AIC, AICi, PDC, and the discrepancies ( )oθθδ ,ˆAIC  and 

( )oθθδ ,ˆPDC  are compiled over the 100 samples. 

To explore the effectiveness of the criteria as asymptotically unbiased 

estimators of ( ),,AIC ok θδ  the average values of the criterion or 

discrepancy are computed for each of the two types of candidate models 

over the orders 1 through P on the 100 samples. Then we plot the 

averages of ( )ok θδ ,AIC  and ( )ok θδ ,PDC  along with the averages for 

AIC, AICi, and PDC against the orders from 1 to P. 

The order selections for AIC, AICi, PDC, and two discrepancies are 

reported in Table 1. Over all four sets, PDC obtains the most correct 

model selections as a selection criterion. In the sets where the sample 

size is small ( )20or15 == mm  or moderate ( ),30=m  AICi and PDC 

both outperform AIC as a selection criterion. However, in the set where 

the sample size is large ( ),50=m  only PDC significantly outperforms 

AIC in choosing the correct model. In this set, AICi and AIC obtain a 

comparable number of correct model selections, although AICi tends to 

choose more parsimonious models. 
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Table 1. Model selections for simulations 

  With random effects Without random effects 

m  Underfit 
Correctly 
specified Overfit Underfit 

Correctly 
specified Overfit 

        
AIC 0 61 37 0 1 1 

AICδ  4 87 8 0 1 0 

AICi 15 76 9 0 0 0 

PDC 0 84 12 0 4 0 

15 

PDCδ  1 95 0 0 4 0 

        
AIC 0 57 43 0 0 0 

AICδ  0 92 7 0 1 0 

AICi 0 78 22 0 0 0 

PDC 0 84 15 0 1 0 

20 

PDCδ  0 99 0 0 1 0 

        
AIC 0 73 27 0 0 0 

AICδ  0 96 4 0 0 0 

AICi 0 78 22 0 0 0 

PDC 0 88 12 0 0 0 

30 

PDCδ  0 100 0 0 0 0 

        
AIC 0 66 34 0 0 0 

AICδ  0 93 7 0 0 0 

AICi 0 64 36 0 0 0 

PDC 0 73 27 0 0 0 

50 

PDCδ  0 99 1 0 0 0 

Figures 1-4 demonstrate how effectively the criteria serve as 

approximately unbiased estimators of ( ).,AIC ok θδ  As the sample size 

increases, the average curves for AICi and PDC  tend to grow closer, both 

approaching the simulated ( )ok θδ ,AIC  curve. This implies that AICi and 

PDC are all asymptotically unbiased estimators of ( ).,AIC ok θδ  
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Figure 1. Averages of criteria and simulated discrepancies ( ).15=m  

 

Figure 2. Averages of criteria and simulated discrepancies ( ).20=m  
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Figure 3. Averages of criteria and simulated discrepancies ( ).30=m  

 

Figure 4. Averages of criteria and simulated discrepancies ( ).50=m  
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Figures 1-4 also exhibit that the criterion PDC is more accurate as an 

estimator of its target discrepancy ( )ok θδ ,PDC  than as an estimator of 

( ).,AIC ok θδ  In each simulation set (except for the set with ),50=m  the 

average curve of PDC tracks the curve of ( )ok θδ ,PDC  more closely than 

the curve of ( ).,AIC ok θδ  This tendency can be explained by our previous 

justification, which claims that PDC is an unbiased estimator of its target 

discrepancy ( )ok θδ ,PDC  and is an asymptotically unbiased estimator of 

the target discrepancy of AIC, ( ).,AIC ok θδ  

The asymptotic equivalence of the two criterion discrepancies is 

further shown by Figures 1-4. With an increasing sample size, the 

simulated average curves for ( )ok θδ ,AIC  and ( )ok θδ ,AIC  approach each 

other. In large sample set ( ),50=m  we can see the ( )ok θδ ,AIC  and 

( )ok θδ ,AIC  curves are almost the same. This trend confirms that the 

target discrepancy of PDC, ( ),,PDC ok θδ  and the target discrepancy of 

AIC, ( )ok θδ ,AIC  are asymptotically equivalent. 

For correctly specified or overfit models, the average AICi curve 

follows the simulated ( )ok θδ ,AIC  curve more closely than either the 

average AICi or PDC curve. This reveals that AICi is less biased than 

AIC and PDC in estimating the expected Kullback-Leibler discrepancy 

( ).,AIC ok θδ  

5. Conclusion 

Under suitable conditions in the general linear mixed model, AICi 

serves as an asymptotically unbiased estimator of the expected 

discrepancy ( )ok θδ ,AIC  between the generating model and a fitted 

approximating model. PDC provides an exactly unbiased estimator for its 

targeted discrepancy and acts as an asymptotically unbiased estimator of 

the expected discrepancy ( )ok θδ ,AIC  as well. 

The simulation study indicates that AICi and PDC perform effectively 

in selecting a mixed model with an appropriate mean and covariance 

structure. PDC exhibits a higher success rate in identifying the correct 
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model than either AIC and AICi. In small sample applications, both AICi 

and PDC outperform AIC in selecting the correct model. 

In addition to the model selection, the simulation results demonstrate 
that the AICi provides considerably less unbiased estimates of the 

expected discrepancy ( )ok θδ ,AIC  than AIC and PDC. 

PDC is developed in the context of a general model formulation and a 
nonrestrictive set of conditions; whereas AICi is justified under certain 
conditions. From this point of view, PDC can be applied in a wider range 
of settings. 
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