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Abstract

In this paper, we propose a generalized Burr XII mixture survival model

in which the probability of long-term survivorship and the timing of

event occurrence are modeled jointly. Both the maximum likelihood and

Markov Chain Monte Carlo methods are used to make inference about

the parameters of the model. Application of the proposed model to

survival data of leukaemia patients is given and its goodness-of-fit is

demonstrated.

1. Introduction

Common parametric survival models, such as the exponential,
Weibull and Gamma, are appropriate for data in which the event of
interest (death or relapse, for example) is certain if we observe population
individuals for long enough period of time. However, this implication is
unrealistic in many contexts, since it does not take into consideration the
existence of long-term survivors (cured or non-relapse individuals, for
example). Numerous survival data in medicine and elsewhere have led to
a consideration of mixture models which include a proportion of the
population’s individuals who will never fail (long-term survivors). For
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references to work in different areas of applications, including medicine,
integrated circuit reliability and criminology, see Ghitany [3].

Let ,1, niBi ≤≤  be a sequence of binary random variables, where

1=iB  indicates that the i-th individual from a certain population is at

risk to some type of failure and 0=iB  indicates that there is no risk of

failure. Also, assume that ( ) .1 pBP i ==  We do not observe ,iB  since we

do not know whether an individual is subject to failure or not.

The variable of interest is the time to failure for the individuals of the

population. Individuals in the risk group (or susceptible group) may have

failure times or not (i.e., censored times) while individuals in the long-

term survivors group will always have censored times. Conditional on

,1=iB  i.e., for individuals in the risk group, we assume that individuals

have independent and identically distributed failure times with

probability density function (p.d.f.)
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This is known as the generalized Burr XII (GBXII) distribution with

cumulative distribution function (c.d.f.)
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The GBXII distribution includes several important distributions as

special cases such as the Lomax ( ),1=c  the log-logistic ( )1=k  and

Weibull ( )∞→>= kbbka c ,0,1  distributions.

In this paper, we propose the GBXII mixture model with c.d.f.
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for estimating the proportion, p, of the long-term survivors in a

population as well as estimating the parameters, a, c, k, of the failure

time distribution for those individuals in the risk group. Both the
maximum likelihood (ML) and Markov Chain Monte Carlo (MCMC)
methods are used to make inference about the parameters of the GBXII
mixture model. Application of the proposed model to survival data of
leukaemia patients is given and its goodness-of-fit is demonstrated.

2. Maximum Likelihood Estimation

Given the survival data ( ){ },...,,2,1:, nit iin =δ=D  where it  is the

survival time of individual i and iδ  is the corresponding censor indicator,

i.e., ( )01=δi  if it  is failure (censored), and assuming that the failure

distribution for the individuals in the risk group has the GBXII

distribution with p.d.f. (1) and c.d.f. (2), the likelihood function is given by

( ) ( )[ ] ( )[ ]∏
=

δ−δ −=|
n

i
iin

ii kcatpFkcatpfpkcaL
1

1
00 .,,;1,,;,,, D (4)

The maximum likelihood estimates (MLEs) ,â  ,ĉ  ,k̂  p̂  of the

parameters a, c, k, p can be obtained by maximizing the log-likelihood

( ).,,,log npkcaL D|  Iterative method, such as the Newton-Raphson

technique, is needed to find the MLEs of the parameters numerically. Of

course, a crucial point for such iterative methods is the initial values of

the parameters to obtain the MLEs. For our GBXII mixture model, we

use the MATHEMATICA software package to maximize the log-

likelihood. Several initial points of the parameters are used to ensure

that the obtained estimates are indeed the MLEs.

The asymptotic (observed) variances and covariances of the MLEs ,â

,ĉ  ,k̂  p̂  are obtained by inverting the matrix of negative second

derivatives of the log-likelihood with respect to the parameters,

evaluated at the MLEs of the parameters.

To test for the nested distributions in the GBXII family, e.g., testing

the null hypothesis 1:0 =kH  (log-logistic distribution), we use the
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likelihood ratio statistic

[ ( ) ( )],ˆlog~log2 nnnn LL DD |θ−|θ−=∆ (5)

where θ̂  is the “unrestricted” MLE of θ and θ~  is the “restricted” MLE of

θ under .0H  For large samples, n∆  is distributed approximately as chi-

square with degrees of freedom equal to the number of restrictions on θ
in .0H  Small values of n∆  suggest that 0H  is plausible, whereas large

values of n∆  suggest that 0H  is implausible.

3. Bayesian Analysis

The application of MCMC techniques to survival models is now wide
spread. The MCMC techniques are particularly attractive because they
allow for uncertainty associated with the parameters to be explored.

The MCMC method simulates samples from the posterior
distribution from which the exact complicated posterior distribution can
be approximated. The output chain of the MCMC can be used to mimic a
random sample from the required posterior distribution. For further
discussion of MCMC methods, (see, e.g., Besag and Green [1], Tierney
[8]).

We consider now a Bayesian approach based on the MCMC
methodology for approximating the posterior distributions of the
parameters of interest from the GBXII mixture model. The parameters

a, c, k, p are considered to be independent with joint density given by

( ) ( )[ ] .10,0,,,exp,,, 0
3
0 <<>++λ−λ=π pkcakcapkca (6)

That is, each of the parameters a, c, k, follows an exponential distribution

with parameter ,102 8
0

−×=λ  i.e., exponential prior with large variance,

and the parameter p follows a uniform distribution over ( ).1,0  It follows

that the joint posterior density of a, c, k, p is given by

( ) ( ) ( ).,,,,,,,,, nn pkcaLpkcapkca DD |π∝|π (7)

In the MCMC methodology, we consider the Gibbs within Metropolis
sampler, which requires a complete set of conditional posterior



w
w

w
.p

ph
m

j.c
om

MODELING THE PRESENCE OF LONG-TERM SURVIVORS … 19

distributions, i.e., ( ),,,, npkca D|π  ( ),,,, npkac D|π  ( ),,,, npcak D|π

( ).,,, nkcap D|π  Since these conditional posteriors do not have standard

distributional forms, the use of Metropolis-Hastings sampler is required.

For our GBXII mixture model, we use the WinBUGS software
package to approximate the posterior distributions of the parameters.
Our program, using WinBUGS software, is run for 10,000 iterations. The
first 1,000 (10%) of the iterations are discarded due to the burn-in time.
Convergence is monitored by three different approaches:

  (i) by inspecting the time series plots of the MCMC iterations;

 (ii) by using different runs from overspread starting values and
compare the resulting fitted parameters;

(iii) by using these different runs to calculate what is called the

potential scale reduction factor, R, Gelman [2]. The potential scale

reduction factor compares the variance between chains and within chain
to monitor the convergence. It estimates the factor by which the variance
of the summary of interest might be if the simulations were to be
continued. Estimated potential scale reduction factor value closer to 1
indicates good convergence.

4. Application

As an application for the proposed generalized Burr XII mixture

model, we consider the Kersey et al. [6] data on the relapse times (in

years) of Group 2 (autologous transplants) of 44 leukaemia patients. The
data is given in the first two columns of Table 1. Maller and Zhou [7]
reported that the Weibull mixture model provides poor fit for this data.

The MLEs of the parameters a, c, k, p and their standard errors (in

parentheses) of the considered data are given by:

( ) ( ) ( ) ( ).061.0799.0ˆ,442.0649.0ˆ,036.1225.3ˆ,077.0232.0ˆ ==== pkca

The maximized log-likelihood function is –13.490.

Let ( ) ( )ntt ...,,1  be the ordered survival times and ( ) ( )nδδ ...,,1  be the

corresponding censor indicators. The Kaplan-Meier estimator (KME),



w
w

w
.p

ph
m

j.c
om

M. E. GHITANY, F. A. AL-AWADHI and S. A. AL-AWADHI20

Kaplan and Meier [5], of a distribution function ( )tF  is a non-parametric

estimator given by

( ) ( )
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See Ghitany et al. [4] for using the ( ( ) ),ntF  where ( )nt  is censored

observation, as an estimate for the proportion of long-term survivors.

Figure 1 shows the probability plot of the KME, third column of Table

1, versus the fitted value ( )kcatFp ˆ,ˆ,ˆ;ˆ 0  of the GBXII mixture model,

fourth column of Table 1. The correlation coefficient between the KME
and the fitted GBXII mixture model is 0.996, judged to be a good fit for
the given data.

Fitted value

1.0.8.6.4.20.0

KM
E

1.0

.8

.6

.4

.2

0.0

Figure 1. Kaplan-Meier estimator versus fitted value of the generalized
Burr XII mixture model.
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Table 1. Kaplan-Meier estimator (KME) and fitted generalized Burr XII
(GBXII) mixture model.

( )it ( )iδ KME GBXII mixture GBXII mixture
( )1=k

0.0575 1 0.023 0.006 0.010
0.1096 1 0.045 0.043 0.053
0.1370 1 0.068 0.083 0.092
0.1452 1 0.091 0.097 0.106
0.1479 1 0.114 0.102 0.110
0.1534 1 0.136 0.112 0.120
0.1671 1 0.159 0.140 0.146
0.1753 1 0.182 0.158 0.162
0.1836 1 0.205 0.177 0.179
0.2000 1 0.227 0.215 0.214
0.2082 1 0.250 0.234 0.231
0.2164 1 0.273 0.253 0.249
0.2219 1 0.295 0.266 0.261
0.2411 1 0.318 0.310 0.302
0.2603 1 0.341 0.352 0.342
0.2685 1 0.386 0.369 0.359
0.2685 1 0.386 0.369 0.359
0.2712 1 0.409 0.375 0.364
0.2849 1 0.432 0.402 0.391
0.2877 1 0.455 0.407 0.396
0.2904 1 0.477 0.413 0.401
0.3068 1 0.500 0.442 0.431
0.3589 1 0.523 0.521 0.513
0.4027 1 0.545 0.571 0.567
0.4685 1 0.568 0.627 0.629
0.4712 1 0.591 0.629 0.631
0.4904 1 0.614 0.641 0.645
0.5178 1 0.636 0.657 0.662
0.5342 1 0.659 0.665 0.671
0.5452 1 0.682 0.671 0.677
0.5836 1 0.705 0.687 0.695
0.6110 1 0.727 0.697 0.705
0.6137 1 0.750 0.698 0.706
0.7589 1 0.773 0.733 0.744
1.9836 0 0.773 0.790 0.793
1.9973 0 0.773 0.790 0.793
2.0110 1 0.801 0.790 0.793
2.8849 0 0.801 0.795 0.796
2.9973 0 0.801 0.795 0.796
3.2658 0 0.801 0.796 0.796
4.0411 0 0.801 0.797 0.796
4.2055 0 0.801 0.797 0.796
4.2055 0 0.801 0.797 0.796
5.0548 0 0.801 0.798 0.797
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The above MLEs show that ĉ  is much greater than 1 k̂(  is small),

indicating that the Lomax (Weibull) mixture model is not suitable for the

given data. On the other hand, k is close to 1, suggesting that the log-

logistic mixture model may be suitable for such data. To verify such

possibility, we test the null hypothesis .1:0 =kH  The summary fit in

this case is as follows:

( ) ( ) ( ).061.0797.0~,555.0727.2~,031.0289.0~ === pca

The maximized log-likelihood function is –13.677. Hence, the likelihood
ratio statistic is

( )[ ] .374.0490.13677.132 =−−−−=∆n

Which is smaller than the tabulated value .841.32
05.0:1 =χ  Hence, we

cannot reject .0H  Figure 2 shows the probability plot of the KME versus

the fitted value ( )1,~,~;~
0 catFp  of the GBXII mixture model with ,1=k

fifth column of Table 1. The correlation coefficient between the KME and

the fitted generalized Burr XII model with 1=k  is 0.995, judged to be a

good fit for the given data.

Fitted value

1.0.8.6.4.20.0
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.2

0.0

Figure 2. Kaplan-Meier estimator versus fitted value of the generalized

Burr XII mixture model with .1=k
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We know consider the Bayesian analysis of the given data. Table 2
shows posterior summaries for the GBXII mixture model, including the

estimated potential scale reduction, ,R̂  which for all parameters is close

to 1, indicating good convergence.

Table 2. Posterior summaries for the generalized
Burr XII mixture model

Parameter Mean Median SD MC error Credible 95% R̂

a 0.279 0.234 0.166 0.003 (0.138, 0.714) 0.980

c 3.285 3.082 1.118 0.017 (1.717, 6.021) 1.003

k 0.943 0.661 0.969 0.020 (0.180, 3.223) 1.001

p 0.792 0.795 0.062 0.000 (0.661, 0.906) 1.001

Estimates of the posterior densities of the parameters pkca ,,,

using the simulated samples are shown in Figure 3 and can be compared
with the values in Table 2.

Table 3 shows the posterior summaries for the GBXII mixture model

with k = 1, including the estimated potential scale reduction, ,R̂  which

for the parameters is close to 1, indicating good convergence.

Table 3. Posterior summaries for the generalized Burr XII mixture

model with 1=k  (log-logistic mixture model)

Parameter Mean Median SD MC error Credible 95% R̂

a 0.292 0.290 0.033 0.000 (0.232, 0.362) 1.003

c 2.668 2.653 0.394 0.003 (1.942, 3.486) 1.004

p 0.785 0.789 0.061 0.001 (0.656, 0.891) 1.003
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Figure 3. Approximate marginal posterior densities for a, c, k, p of the

generalized Burr XII mixture model.

Estimates of the posterior densities of the parameters a, c, p using the

simulated samples are shown in Figure 4 and can be compared with the
values in Table 3.

Figure 4. Approximate marginal posterior densities for a, c, p of the

generalized Burr XII mixture model with .1=k
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5. Conclusion

It is shown that the GBXII mixture model can be useful for modeling
survival data with long-term survivors. Also, for the data set considered
in this paper, it is shown that the log-logistic mixture model (GBXII
mixture model with )1=k  provides almost equal good fit for the data as

the full GBXII mixture model. Finally, the good fit of the GBXII mixture

model (with 1=k  or not) can be attributed to the fact that the MLE of c

is greater than 1, implying that the estimated hazard rate function of the
GBXII failure model, i.e., the estimated function
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is upside-down bathtub shaped, i.e., increases initially and then
decreases. This hazard rate feature is not covered by the usual Weibull
failure model.
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