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Abstract 

The linear stability of a planar inviscid liquid sheet moving through a 
surrounding gas is examined. The analysis investigates the effect of an 
externally imposed time modulation of the gas temperature. These 
thermal perturbations in the gas layer are assumed to influence the air-
gas interfacial tension coefficient. It is shown that the interface stability 
characteristics are described by a Mathieu equation, the coefficients of 
which are functions of the Weber number, the time modulation 
frequency, the gas/liquid density ratio, and the amplitude of the imposed 
temperature modulation. The maximum growth rate is determined as 
function of these physical parameters and the effect of the time 
modulation isolated. 

Introduction 

The phenomenon of liquid sheet or jet breakup is omnipresent in a 
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wide variety of industrial processes. A primary need for studies of liquid 

sheet breakup stems from the need for understanding the conditions 
necessary for effective fuel atomization in several types of spray 

combustion applications. See, for example, works by Clanet and 
Villermaux [1], Kim and Sirignano [4], Marmottant and Villermaux [7], 
Mansour and Chigier [6], Park et al. [8], and Sirignano and Mehring [9]. 

The classical works of Squire [10] and Hagerty and Shea [3] considered 
the temporal linear stability analysis for an inviscid liquid sheet of 

uniform thickness in a surrounding gas medium. They investigated the 
linear response to both symmetrical and antisymmetrical disturbance 

and found that the latter is the dominant mode of instability that will 
eventually lead to the break up of the sheet and subsequent formation of 

droplets. The main mechanism of instability was isolated to consist of the 
forces that take place at the interface between the liquid and the gas 

medium, namely aerodynamic advective and capillary forces. The 
disturbance growth or decay is determined from a competition between 
the stabilizing capillary forces and the destabilizing aerodynamic force. 

This competition is described by the dimensionless Weber number 

defined by ,0
2
0 σρ= auWe L  where ,Lρ  ,0u  a and 0σ  are, respectively, 

the liquid sheet density, velocity relative to the gas, thickness, and 

interface surface tension. The uniformly planar sheet becomes unstable 
whenever the Weber number exceeds some critical value. 

Dombrowski and Hooper [2] derived a dispersion relation for the 

growth rate for long waves with infinitestimal amplitude, including the 
effects of surface tension, aerodynamic force, liquid viscosity, and the 

non-uniform stretching caused by gravity. They identified the wavelength 
at the largest growth rate. Li and Tankin [5] extended Dombrowski and 

Hooper’s studies to derive a more general dispersion relation that 
encompasses both short and long waves. They isolated two distinct modes 

of instability for viscous liquid sheets, an aerodynamic mode and a 
viscous mode. It was also found that symmetrical disturbances control 

the instability process for very small Weber number; while 
antisymmetrical disturbances dominate for large Weber number. 

In this paper, we consider the effect of thermal modulations of the 
surrounding gas medium on the instability. The time-periodic variation of 
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the temperature in the surrounding gas medium, which is externally 

imposed, is assumed to influence only the interfacial properties of the 
liquid sheet. The liquid’s bulk properties are unaltered; thus, only the 

liquid’s coefficient of the surface tension is affected by the temperature 
changes in the adjacent surrounding gas. The fluctuation of the air 

temperature is assumed to be time periodic with an angular frequency ω 

and amplitude δ, i.e., ( ).cos0 tTTair ωδ+=  The effect of the frequency ω 

on the liquid sheet instability is investigated for the case of an inviscid 

fluid. 

Governing Equations 

For the inviscid liquid sheet, assume u and w are the x and y liquid 
velocity components, and p is the pressure variation resulting from a 
disturbance. These quantities are presumed to be very small. The 
equation of continuity and motion is linearized by neglecting all nonlinear 
terms in these small disturbance quantities, and can be expressed as 
follows: 
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The effect of the surrounding gas medium on the instability of the 
liquid sheet comes about through the normal stress in the boundary 
condition. The gas medium is assumed to be inviscid, and stationary 
before the disturbance commences. The governing equations, in a frame 
of reference moving with a velocity ,0u  for the disturbed gas motion are: 
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The boundary conditions are 

t
hw
∂
∂=    at ,η+== ahz  (7) 

0=w    at ,0=z   (8) 

000 →′→′→′ pwu    at ,∞=z  (9) 
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Upon introducing the potential functions φ and φ′  as 

 ,, zx wu φ=φ=  (14) 

 ,, zx wu φ′=′φ′=′  (15) 

we obtain 

 ,02 =φ∇  (16) 

 .02 =φ′∇  (17) 

The Fourier transform of equation (16) yields 

 022 =φ−φ kD  (18) 

the solution of which satisfies the boundary conditions given in (8) and is 

 ( ).cosh kzA=φ  (19) 
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Applying boundary condition (7), we find 

 ( ) ( ),sinh akAk
t
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∂
η∂=φ  (20) 

where 

 ( ) .
sinh akk

A tη=  (21) 

The solutions of equations (1) and (2), then give 
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The Fourier transform of equation (17) is 

 .022 =φ′−φ′ kD  (24) 

The solution of which satisfies the boundary conditions given in (9) and is 

 .kzBe−=φ′  (25) 

According to boundary condition (5), then 
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Put (23) and (29) into boundary condition (11) and Fourier transform the 
right hand part of equation (11), we get 
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where auR L
2
00 ρσ=  is the inverse Weber number, and LQ ρρ′=  is the 

density ratio. Upon rearranging the above equations, we have 
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The form of the solution for the above equation is 
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Put this solution into equation (31), we get following equation: 
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where kaK =  is the dimensionless wavenumber. 

Setting ,2τ=ωt  we get 
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For an antisymmetrical disturbance, we can get the following equation 
using a similar derivation: 
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Introducing a nondimensional frequency ( ),ˆ 0 auω=ω  and (34) and (35) 

become 
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The above equations are known as the Mathieu equations which admit 

solutions of the form: 

 ( ) ( ) ( ),τ+=τ ντ−ντ Peef ii  (38) 
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where ,iR iν+ν=ν  and ( )τP  is a periodic function, and iν  determines 

the stability of Mathieu equations. If ,0=νi  the equations remain 

stable; otherwise, it is unstable. The absolute value of iν  represents the 

growth rate of disturbance wave. The larger the absolute value of ,iν  the 

larger is the growth rate of the disturbance wave. 

For Mathieu equations, the following equation should be satisfied 

 ( ) ( ) ;0cos =π−πν f  (39) 

and, then, the value of iν  can be obtained from the above equation.        

To facilitate the analysis and compare with published results, iυ  is 

defined as a dimensionless growth rate of the disturbance wave as     
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nondimensional growth rate, and we define the gas Weber number as 
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Analysis and Discussion 

Thermal modulation absent 

Without the effect of thermal modulation, i.e., ,0=ε  the equations 

take a very simple form. 

For the symmetrical disturbance, we have 
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For antisymmetrical disturbance 
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In order to get a stable solution for the symmetrical disturbance, the 
equation below should be satisfied. 

 ( ) ( )( ) .0coth 2223 >++− QKQKQKRK  (42) 
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Solving equation (42) for R, we get 
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or equivalently, 

 ( ) .
coth2 K
KQKWe +<  (44) 

In order to get a stable solution for the antisymmetrical disturbance, the 

equation below should be satisfied 

 ( ) ( )( ) 0tanh 2223 >++− QKQKQKRK  (45) 

from which, we obtain, 
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or equivalently, 

 ( ) .
tanh2 K
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For long-wave disturbances, ,1K  ( ) KK ≈tanh  and ( ) ;1coth KK ≈  

therefore, for a symmetrical disturbance 

 .2 KWe <  (48) 

On the other hand, for short wave ,1K  ( ) ,1tanh ≈K  and ( ) ,1coth ≈K  

then both (44) and (47) reduce to 

 .2 KQKWe +<  (49) 

Generally, equations (42) and (46) have to be solved numerically. This 

has been done and stability curves are presented in Figure 1 for a density 

ratio of .1.0=Q  In Figure 1, the region above the solid curve is the 

instability region for symmetrical disturbance, and the region above the 

dash curve is the instability region for antisymmetrical disturbance. Both 

instability regions are due to the aerodynamic interaction at the 

interface. 
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It is clear from Figure 1 that for inviscid liquid sheets, the instability 

range for symmetrical disturbances is wider than that for 

antisymmetrical disturbances. Both critical Weber numbers approach the 

same asymptotic value of ,KQK +  from above for antisymmetrical 

disturbances and from below for symmetrical disturbances. The same 

instability range for each type disturbance has been obtained by Hagerty 

and Shea [3] and Li and Tankin [5], and thus our results are consistent 

with previous works in the absence of modulation. 

The growth rate is obtained by solving equations (40) and (41). 

Figures 2 and 3 show the nondimensional growth rate iν̂  for an 

antisymmetrical disturbance and a symmetrical disturbance, 

respectively, where the density ratio 1.0=Q  and gas Weber number 

.42 =We  These results also mirror those obtained by Li and Tankin [5]. 

Figure 4 illustrates the aerodynamic instability of inviscid liquid 

sheet at small Weber numbers (Figure 4(a)) and at large Weber numbers 

(Figure 4(b)). The solid lines correspond to a symmetrical disturbance, 

and the dashed curves to an antisymmetrical disturbance. Figure 4(a) 

indicates that at very small gas Weber numbers, symmetrical 

disturbances have a larger growth rate than antisymmetrical ones and 

dominate the instability process. As the gas Weber number increases, the 

maximum growth rate for both types of disturbances increase; however, 

that of antisymmetrical disturbance increases faster and, above a certain 

gas Weber number, antisymmetrical disturbances become predominant in 

full agreement with the results obtained by Li and Tankin [5]. 

Thermal modulation case 

The inclusion of thermal modulation is described by the Mathieu 

equations (36) and (37). For a demonstration we set ,1ˆ =ω  5.0=ε  and 

.1.0=Q  The solution of the Mathieu equations yields the location of the 

instability regions, shown as a three-dimensional plot in Figure 5, as a 

function of K and .2We  

The maximum growth rate of disturbance for a given Weber number, 

with K varying, is located in either the first instability region, which is 
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caused by aerodynamic forces or in the second instability region which is 

the lowest mode caused by thermal modulation. Only the first two 

instability regions, therefore, need to be considered when studying the 

instability analysis. 

For a small Weber number, it is found that the maximum 

nondimensional growth rate of the disturbance is located in the second 

unstable region which is caused by thermal modulation, as illustrated in 

Figure 6 for a Weber number of 1.0, where the maximum growth rate for 

the first unstable region is 0.54. The maximum growth rate for the second 

unstable region is 0.78. The dominant wave number in the first unstable 

region is approximately equal to the dominant wave number without 

thermal modulation, which can be found from the comparison between 

Figures 6 and 7. The dominant wave number in the second unstable 

region is much larger than the dominant wave number in the first region. 

The dominant wave number with thermal modulation is somewhat larger 

than that without thermal modulation and will result in the smaller 

wavelength for thermal modulation case. As the Weber number increases, 

the maximum growth rates in both regions increase. However, the 

increase of the maximum growth rates in first unstable region is much 

faster than that in second unstable region. When the Weber number 

exceeds a certain value (in this case 22 =We  with symmetrical 

disturbance), the maximum growth rate of the first unstable region will 

be larger than that in second unstable region, shown as Figures 8 and 9. 

In Figure 8 ( ),32 =We  the maximum growth rate for first unstable region 

is 1.85, whereas the maximum growth rate for second unstable region is 

1.75. In Figure 9, we examine the growth rate without thermal 

modulation ( )42 =We  and learn that the maximum growth rate for first 

unstable region is 2.45, whereas the maximum growth rate for second 

unstable region is 2.2. With increasing Weber number, the maximum 

growth rate difference between in the first and second unstable region 

keep going up, shown as Figure 5. When maximum growth rate shift from 

the first unstable region to second unstable region, the dominant wave 

number jumps from a high value to a low value shown as Figure 10. This 

means the wavelength of maximum growth rate jumps to a high value, 
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which approximately equal to the wavelength of maximum growth rate 

without thermal modulation at the same Weber number. Similar results 

are obtained in the instability analysis of antisymmetrical disturbance. 

The maximum growth rate shifts from the second unstable region to the 

first unstable region when ,25.12 =We  shown as Figure 10. 

From Figure 10, it is clear that the whole dominant wave number of 

the antisymmetrical disturbance is always larger than that of 

symmetrical disturbance. It is also found the maximum growth rate of 

the antisymmetrical disturbance is larger than that of symmetrical 

disturbance shown as Figure 11. The antisymmetrical disturbance 

dominates the instability of liquid sheet. 

For the next case considered, ω̂  is set to 5, Q equal to 0.1 and thermal 

modulation amplitude is held at 0.5. From Figure 12, it is found that 

maximum growth rates of symmetrical and antisymmetrical disturbance 

almost keep the same value. It means that both symmetrical and 

antisymmetrical disturbances are important under high frequency 

thermal modulation effect. From Figure 13, it is clear that maximum 

growth rate jumps from second unstable region to first unstable region at 

a very high Weber number. It illustrates that the second unstable region 

caused by thermal modulation dominates the instability of liquid sheet in 

a wider region compared with smaller frequency case. Also the maximum 

growth rate of high frequency is much larger than that of low frequency 

at low Weber number and will reduce the breakup time of liquid sheet. 

The thermal modulation amplitude also affects the instability 

analysis of a liquid sheet. From Figure 14, we can see that the second 

unstable region control the instability of liquid sheet in a very small 

range. In this case, the maximum growth rate shifts from the second 

unstable region to the first unstable region at 3.02 =We  for 

antisymmetrical disturbance and shifts from the second unstable region 

to the first unstable region at 5.02 =We  for the symmetrical 

disturbance. Also the maximum growth rate of lower thermal amplitude 

is much smaller than that of high thermal amplitude at low Weber 

number. It means it will delay the breakup time of liquid sheet. 
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Conclusion 

The paper examines the temporal instability of a moving thin inviscid 
liquid sheet in a heat conducting surrounding gas medium the 
temperature of which is assumed time modulated. The thermal effect acts 
in such a way as to modify the coefficient of interfacial surface tension. 
The instability is described by a Mathieu equation, the coefficients of 
which are function of the Weber number in the gas medium, the density 
ratio, the modulation frequency, and the modulation amplitude. 

From the above discussion, it is found that both thermal modulation 
and aerodynamic forces can affect the liquid sheet breakup process. The 
thermal modulation dominates the liquid sheet breakup when the Weber 
number is small, and plays only a small role as the Weber number 
increases. The frequency and amplitude of the thermal modulation also 
affect the liquid sheet breakup. High frequency will result in short 
wavelength and short breakup time in low Weber number. High thermal 
modulation amplitude will widen the unstable region controlled by 
thermal modulation. 

The effects of finite amplitude disturbances require a weakly 
nonlinear analysis. This is described in a follow-up paper. 
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Figure 1. Critical Weber for inviscid liquid sheets ( )1.0=Q  solid curve: 

symmetrical disturbance; dash curve: antisymmetrical disturbance. 
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Figure 2. Nondimensional growth rate of a symmetrical disturbance, 

1.0=Q  and .42 =We  
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Figure 3. Nondimensional growth rate of an antisymmetrical 

disturbance, where 1.0=Q  and .42 =We  
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Figure 4(a) 
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Figure 4(b) 

Figure 4. Nondimensional growth rate of a disturbance at 1.0=Q  solid 

curve: symmetric disturbance, dash line: antisymmetrical disturbance. 
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Figure 5. The unstable regions of liquid sheet with thermal modulation 

( )5.0,1ˆ =ε=ω  at .1.0=Q  
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Figure 6. Nondimensional growth rate of an antisymmetrical 

disturbance with thermal modulation ( )5.0,1ˆ =ε=ω  at 1.0=Q  and 

.12 =We  
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Figure 7. Nondimensional growth rate of an antisymmetrical 
disturbance without thermal modulation at 1.0=Q  and .12 =We  
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Figure 8. Nondimensional growth rate of a symmetrical disturbance 
with thermal modulation ( )5.0,1ˆ =ε=ω  at 1.0=Q  and .32 =We  
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Figure 9. Nondimensional growth rate of a symmetrical disturbance 

without thermal modulation ( )5.0,1ˆ =ε=ω  at 1.0=Q  and .42 =We  

 

Figure 10. Nondimensional dominant wavenumber for an inviscid liquid 

sheet with thermal modulation ( ).5.0,1ˆ =ε=ω  .1.0=Q  Solid curve: 

symmetrical disturbance; dash curve: antisymmetrical disturbance. 
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Figure 11. Nondimensional maximum growth rate for an inviscid liquid 

sheet with thermal modulation ( )5.0,1ˆ =ε=ω  at .1.0=Q  Solid curve: 

symmetrical disturbance; dash curve: antisymmetrical disturbance. In 
the top figure, detail at small gas Weber number is given. 
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Figure 12. Nondimensional maximum growth rate for inviscid liquid 

sheet with thermal modulation ( )5.0,5ˆ =ε=ω  at .1.0=Q  Solid curve: 

symmetrical disturbance; dash curve: antisymmetrical disturbance. 
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Figure 13. Nondimensional whole dominant wavenumber for inviscid 

liquid sheet with thermal modulation ( ).5.0,5ˆ =ε=ω  .1.0=Q  Solid 

curve: symmetrical disturbance: dash curve: antisymmetrical 
disturbance. 
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Figure 14. Nondimensional whole dominant wavenumber for inviscid 

liquid sheet with thermal modulation ( ).2.0,1ˆ =ε=ω  .1.0=Q  Solid 

curve: symmetrical disturbance; dash curve: antisymmetrical disturbance. 

 

Figure 15. Non-dimensional maximum growth rate for inviscid liquid 

sheet with thermal modulation ( ).2.0,1ˆ =ε=ω  .1.0=Q  Solid curve: 

symmetrical disturbance; dash curve: antisymmetrical disturbance. 
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