
w
w

w
.p

ph
m

j.c
om

Adv. & Appl. in Stat. 4(1) (2004), 1-14

:tionClassifica jectSub sMathematic 2000 62F15, 62N01, 62P10.

Key words and phrases: fiducial method, Bayesian method, therapeutic equivalence, clinical

trials, progressive censored data.

Communicated by Dejian Lai

Received June 26, 2002; Revised April 26, 2003

 2004 Pushpa Publishing House

THERAPEUTIC EQUIVALENCE ASSESSMENT (TEA)

FOR EXPONENTIAL DATA

K. J. PESCHELL
1
, S. BAE

2
, R. SHANMUGAM

3
, A. A. BARTOLUCCI

1

and K. P. SINGH
2

1Department of Biostatistics, School of Public Health Center
University of Alabama at Birmingham
Birmingham, AL 35294-0022, U. S. A.

2Department of Biostatistics, School of Public Health
University of North Texas, Health Science Center
Fort Worth, TX 76107-2699, U. S. A.

3Department of Health Services Research
Southwest Texas State University
San Marcos, TX 78666, U. S. A.

Abstract

Active control equivalence trials (ACETs), conducted with the goal of

demonstrating therapeutic equivalence, are of growing importance to the

pharmaceutical industry, clinical medicine, government, and academia.

In this paper, therapeutic equivalence is defined in terms of equivalent

clinical outcome (e.g., survival) without regard to assessment of

bioequivalence. The likelihood-ratio-based asymptotic fiducial and

Bayesian methods for therapeutic equivalence assessment (TEA) are

developed in the context of survival analysis, using the exponential
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distribution. The methods are illustrated using leukemia remission data.

1. Introduction

Active control equivalence trials (ACETs) have received much

attention in the statistical literature. The reader is referred to Dunnett

and Gent [3]; Blackwelder [2]; Patel and Gupta [15]; Hauck and

Anderson [10]; Mau [14]; Makuch, Stephens and Escobar [13]; Durrelman

and Simon [5]; Fleming [8]; Dunnett and Gent [4]; Ebbutt and Frith [6];

Robins [17]; Weins and Iglewicz [20]. Therapeutic equivalence refers to

a new treatment being as efficacious as a standard treatment. Although

the FDA has a very strict definition of therapeutic equivalence (FDA [9,

p. 2937]) for regulatory purposes, therapeutic equivalence may be

considered in a less restrictive context emphasizing “equivalent” efficacy

in clinical outcome and therapeutic benefit to the patients. It is in this

context, for the purpose of individual clinical decision making, that our

methodology is the most beneficial.

Therapeutic equivalence and bioequivalence are two different

concepts, despite its controversy. Foremost, the endpoints in therapeutic

equivalence and bioequivalence are very different; the endpoint in the

former is some measure of clinical outcome, the endpoint in the latter is

typically related to blood/plasma levels. Also, assessment of therapeutic

equivalence generally requires conduct of a clinical trial(s), whereas

bioequivalence is often assessed in a much smaller setting, e.g.,

bioassays. Durrelman and Simon [5] write, “compared to the biological

problem of bioavailability, the therapeutic equivalence of two treatments

is a more pragmatic concept. Rather than assessing a theoretical

equivalence, which makes little sense when the two treatments can be

very different “in principio” (e.g., surgery versus lithotripsy), one is

interested in therapeutic decision making.” Indeed, in the view of the

FDA, bioequivalence is a prerequisite for therapeutic equivalence, clearly

establishing a difference between the two concepts.

As a particular example, in the context of breast cancer research, in
estrogen-receptive women, consider two drugs, A and B, each for
prevention of spread of the cancer. It is hypothesized that spread of the
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cancer follows from either (1) increased peptide growth factor (GF)
synthesis and subsequent binding of GFs with specific membrane-bound
receptors which in turn signal the initiation of a sequence of intracellular
actions resulting in cell division, or (2) binding of estrogen to those
limited number of cells containing intracellular estrogen receptors; those
cells, through a sequence of steps, secrete some of the GFs which then
signal the initiation of (1) in nearby cells which otherwise are
unresponsive to estrogen. Drug A could be targeted to block the binding
of the GFs to their membrane receptors or to block the post-receptor
signal transduction. Drug B could be targeted to block the binding of the
estrogen to its receptor or to block an event in the estrogen post-receptor
signal transduction mechanism. Success with either Drug A or Drug B
would prevent spread of the cancer; therefore, the drugs would yield
equivalent clinical outcome. However, the active ingredients in the drugs
could certainly be different, thereby making assessment of bioequivalence
not feasible, despite the therapeutic equivalence. Other examples where
bioequivalence is not a relevant concern may be found in hypertension
research.

There are a number of classical (non-Bayesian) methods for TEA.
Dunnett and Gent [3] present a method of significance testing to compare
two binomial samples with data summarized in 22 ×  tables. Blackwelder
[2] presents a method of hypothesis testing with a dichotomous outcome
variable and sample sizes large enough for use of the normal
approximation to the binomial. Patel and Gupta [15] present a method of
hypothesis testing with a normally distributed response variable. Hauck
and Anderson [10] use a confidence interval approach. Mau [14] presents
a method of Cox’s “confidence distributions” using the normal
approximation to the binomial. Fleming [8] presents a method for time to
event data, using Cox’s proportional hazards regression to estimate the
hazard ratio (or relative risk of failure) of the two treatments. The
method uses confidence intervals for the hazard ratio to assess
either superiority of one treatment or equivalence (for application in
“non-inferiority” trials). Dunnett and Gent [4] present a procedure with
union-intersection and intersection-union hypothesis testing approaches
to test “simultaneously for a positive difference and for equivalence”
(Dunnett and Gent [4,  p. 1729]).
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It is important to note that each of these methods pertains to either
normally distributed means or binomially distributed proportions, with
the exception of Fleming’s [8] method. Recall that his method is based on
Cox regression, and therefore, it is nonparametric. Our methodology (as
well as the Bayesian methods addressed immediately below) employs
parametric modeling in a progressively censored survival analysis
setting. Alternatively, some Bayesian methods are available for TEA.
Bartolucci and Singh [1] and Singh [18] present a method that is similar
to the confidence interval approach above, instead using a Bayesian
posterior credibility interval for the ratio of functions of parameters of
survival distributions. Their method is developed using the translated
exponential in the role of the survival distribution, along with inverted
gamma and vague priors.

Recall that therapeutic equivalence can also be considered in a
context emphasizing “equivalent” efficacy in clinical outcome and
therapeutic benefit to the subjects, where bioequivalence is not a relevant
concern. We wish to emphasize a focus on clinical outcome, survival
patterns in particular, therefore, we consider TEA based on clinical
outcome to be independent of (or, in addition to) any assessments of
bioequivalence. Additionally, all of the above-mentioned methods for
bioequivalence assessment are based on either means of a normal
distribution (the data are usually log transformed first - usually base 10,

sometimes base e) or on binomial proportions, i.e., none of the methods

make use of survival distributions. In this paper, therapeutic equivalence
is defined in terms of equivalent clinical outcome (e.g., survival) without
regard to assessment of bioequivalence. The likelihood-ratio-based
asymptotic fiducial and Bayesian methods for therapeutic equivalence
assessment (TEA) are developed in the context of survival analysis, using
the exponential distribution. The methods are illustrated using leukemia
remission data.

2. Methodology

We present a likelihood ratio based asymptotic fiducial method for
therapeutic equivalence assessment (TEA) for progressively censored
survival data. In this paper, we develop the method for the exponential



w
w

w
.p

ph
m

j.c
om

THERAPEUTIC EQUIVALENCE ASSESSMENT (TEA) … 5

distributed data. Our method requires an elicitation from a clinical expert
to establish the maximum clinically insignificant difference between two
treatments. Unlike some other methods, the method does not require a
priori specification of the standard and experimental treatments. Our
method provides a considerable amount of information for individual
clinical decision making, as opposed to merely a hypothesis testing

of “reject” or “do not reject” type, or a p-value, or even an

often-misinterpreted classical confidence interval. The numerical value of
our method is interpretable for individual clinical decision making. Also,
for the exponential distributed data, the method is easily implemented in
SAS.

The method requires data structure of an ordered pair for each of two

treatment groups, ( )iAiA cx ,  for 1=i  to An  and ( )iBiB cx ,  for 1=i  to

;Bn  note that An  need not equal to .Bn  Each ix  is either a time of death

( ;it  survival time; uncensored observation) or a time of loss-to-follow-up

( ;+It  a progressively censored observation). Each ic  is either a 0 if the

observation is uncensored or a 1 if the observation is censored. Therefore,

the number of deaths for either treatment group, ,kr  is given by

∑
=

=−=
kn

i
ikkk BAkcnr

1

.,, (2.1)

The two survival distributions are considered (clinically) equivalent if the
distance between them is less than some clinically pre-specified value
(note that this discussion is actually relevant for practical consideration).
A question then arises: what is a suitable measure of the distance? In the
setting of likelihood ratio test of

          ( ) ( )ψ=ψ ;;: 210 tftfH   versus  ( ) ( ),;;: 2211 ψ≠ψ tftfHa (2.2)

where ψ, 1ψ  and 2ψ  are parameter vectors, the likelihood ratio may be

transformed into a measure of the distance

( ) ( )[ ].,2 21 ψ−ψψ= LLD (2.3)

Although, D is an unknown with respect to the sample space, it is a

random variable in parameter space. We now apply the fiducial
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arguments: ( ) ( )∆|=|∆ DFDF1  (Fisher [7]; Quenouille [16]), where ∆ is a

measure of the distance between the two distributions. The distribution

( )∆|Df  is not easy but an asymptotic result provides an alternate

approach. Under ,0H  D has an asymptotic chi-squared distribution with

v degrees of freedom equal to the reduction from the total number of

parameters in 1ψ  and 2ψ  to the number of parameters in .ψ  Under ,aH

D has an asymptotic non-central chi-squared distribution, ( )λχ ,;2 vf

with v degrees of freedom and non-centrality parameter

( ) ( ),1
rorrror V θ−θ′θ−θ=λ − (2.4)

where rθ  and roθ  correspond to a reparameterization of the hypotheses

as

rorH θ=θ:0   versus  roraH θ≠θ:

and, where rV  is the inverse of the Fisher Information matrix with

elements

( ) .lnlnln2
1









θ∂

∂
θ∂

∂=







θ∂θ∂

∂−=−

jiji
ij

LLELEV (2.5)

Therefore, although ( )∆|Df  is not easily obtained, ( )λ|Df  is easily

obtained, as ( ).,;2 λvxf  We therefore consider the fiducial distribution of

λ given D, ( ),Dff |λ  employing the fiducial argument ( ) ( )λ|=|λ DFDFf

(Fisher [7]; Quenouille [16]), estimating ( )λ|DF  by ( ),λ̂|DF  now

subsequent to the demonstration that λ̂  is a sufficient statistic. The

question arises: is λ as a suitable measure of the distance between the

two distributions as is ∆ ?

Both ∆ and λ are random variables ranging from 0 to .∞  If ,0=∆

0H  is true, as that is the only possible way for the numerator and

denominator of the likelihood ratio to be equal. If ,0=λ  then 0H  is true,

by the definition of λ. As each ∆ and λ increases, evidence builds in

support of ;aH  therefore, each increases as the distributions differ. The
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relationship between ∆ and λ is implicit, but monotonic. Therefore,

asymptotically, λ is as suitable a measure of the distance as is ∆.

To perform the TEA, information must be elicited from a clinical
expert in order to establish the maximum clinically insignificant
difference between the two distributions. This information, which we will
base on median survival times, must then be used to determine a

clinically specified value, .expertλ  Once expertλ  has been established, one

simply calculates ( ) ( ) ( )λ|λ≈|λ=|λ≤λ ˆ
expertexpertexpert FDFDP ff  to

obtain the fiducial probability that the two distributions are as close as

expertλ  or closer. Notably, there is no need to set a significance level a

priori; in fact, there is considerable flexibility for individual clinical
decision making at this point.

3. Exponential Data

In many survival data it is appropriate to assume that the data come
from an exponential population. The likelihood function (Bartolucci and
Singh [1]; Singh [18]) is given as follows:

( ) ,1 1 1

1










+

β
−

β
∑ ∑
= +=

+







β

=

r

i

n

ri
ii ttr

L ee (3.1)

where it  denotes an uncensored observation, +
it  denotes a censored

observation, and ∑ ∑
= +=

++=
r

i

n

ri
ii ttT

1 1

 denotes the total of all observations.

In the setting of likelihood ratio test of

( ) ( )β=β ;;: 210 tftfH   versus  ( ) ( ).;;: 21 BAa tftfH β≠β (3.2)

The estimated likelihood ratio is given by

( )

( )
,10,ˆ,ˆ

ˆ

<Λ<=Λ
ββ

β

BAL

L

e

e (3.3)

where 
r

tt

r
T

r

i

n

ri
ii∑ ∑

= +=

++

==β 1 1ˆ  is the maximum likelihood estimate
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(MLE) of β, with corresponding variance estimate

( )
( )

.
2

ˆ1ˆˆ
2

ˆ
2

2 rnLE

arV
−

β=










β∂
β∂−

=β

β=β

The MLEs and variance estimates in the denominator are obtained
analogously.

To determine the non-centrality parameter to define the asymptotic
fiducial distribution, we first reparameterize the hypotheses as

0:0 =β−β BAH   versus  .0: ≠β−β BAaH (3.4)

The non-centrality parameter is

( ) ( );0
1

rrrror V θ−θ′θ−θ=λ − (3.5)

whose estimate is

( ) ( ).ˆˆˆˆˆˆ 1
BArBA V β−β′β−β=λ − (3.6)

Note that 1−
rV  is simply ( ) ( ).BA VarVar β+β  We therefore estimate 1−

rV

by

,
2

ˆ

2

ˆˆ
122

1
−

−








−

β
+

−
β

=
BB

B

AA

A
r rnrn

V (3.7)

and then we obtain λ̂  as

( )
.

2

ˆ

2

ˆ

ˆˆ
ˆ

22

2









−

β
+

−
β

β−β
=λ

BB

B

AA

A

BA

rnrn

(3.8)

Having obtained ,λ̂  an asymptotic fiducial distribution, ( ),Dff |λ  may

now be defined according to

( ) ( ) ( ).λ̂|≈λ|=|λ DFDFDF ff (3.9)

We propose the required elicitation from a clinical expert to be an
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estimate of the maximum clinically insignificant difference in median
survival times for the two treatment groups; we shall call the estimate

.smed  We first compute ,ˆ
midβ  the midpoint of Aβ̂  and ,ˆ

Bβ  and

.69314718.0ˆ5.0lnˆedm̂ midmidmid ×β=−×β=  We then compute









>+

<−
=

,ˆˆif,
2
1edm̂

,ˆˆif,
2
1edm̂

edm̂
smemid

smemid
Asme

BA

BA

d

d

ββ

ββ
(3.10)

and









<+

>−
=

,ˆˆif,
2
1edm̂

,ˆˆif,
2
1edm̂

edm̂
smemid

smemid
Bsme

BA

BA

d

d

ββ

ββ
(3.11)

so that

.edm̂edm̂ smeBsmeAsme d=− (3.12)

Next, we compute ( )5.0lnedm̂ˆ
AsmeAsme −÷=β  and BsmeBsme edm̂ˆ =β

( ).5.0ln−÷  Finally, we compute the implied ,expertλ  as

( )
.

2

ˆ

2

ˆ

ˆˆ
2
Bsme

2
Asme

2
BsmeAsme

expert











−

β
+

−
β

β−β
=λ

BBAA rnrn

(3.13)

Though, the clinical expert only provides information to estimate the

medians with a difference of .smed  We are able to make inferences

regarding therapeutic equivalence of the distributions, and not merely
therapeutic equivalence of the medians.

4. Applications: Acute Myelogenous Leukemia Data

A phase III trial was performed to compare remission induction in
two groups of acute myelogenous leukemia patients (Vogler et al. [19]).
The goal of the trial was to demonstrate that the experimental treatment,
the anthracycline idarubicin (IDR) in combination with cytarabine (CA),
was superior, in remission induction, to a standard treatment, the
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anthracycline daunorubicin (DNR) in combination with CA. The trial
demonstrated the hypothesized superiority of IDR in remission induction.
The only inference made with respect to survival was that no statistically
significant difference existed between the two treatment groups, assessed
by the log-rank and generalized Wilcoxon rank sum tests. In this section,
we demonstrate the likelihood ratio based asymptotic fiducial method for
TEA by applying it to this leukemia data, with the goal of demonstrating
therapeutically equivalent survival in the two treatment groups. We
begin with description of the data structure as well as preliminary
descriptive analyses of the data.

Two hundred thirty patients were randomized, 111 to IDR and 119 to
DNR. We use 109 and 115 patients, respectively (the exclusions are for
incorrect diagnosis, randomized but not treated, or death prior to
treatment). There were 104 deaths in the IDR group and 103 deaths in
the DNR group, implying 5 and 12 censored observations, respectively.
The data are measured in months. For the exponential distribution,

MLEs for the IDR group and the DNR group are 972.16ˆ =βe  and

,725.15ˆ =βs  respectively. The MLE for the two groups combined is

.352.16ˆ =βc  We perform likelihood ratio test for comparing one

exponential population with two exponential populations. The likelihood

ratio test has a p-value of 0.583, failing to demonstrate evidence for two

populations. This result is the desired one as a preliminary for TEA, for if
this test demonstrates evidence in favor of two populations, then one
treatment is superior to the other in terms of survival. As neither
treatment outperforms the other, we may later examine clinically
equivalent survival using the exponential distribution.

We examine goodness of fit using the method of Hollander and
Proschan [11] and Lee [12, p. 191]. It is noteworthy that this method does
lack power, as the test is against a universal alternative. However, a
strength of this test is its ability to handle progressive censored data. For
IDR and DNR, the test has p-values of 0.7495 and 0.4238, respectively,
yielding conclusions that the exponential distribution is appropriate. It is
very important that the methodology not be blindly applied in practice.
Simply, if a subject matter expert examines the MLEs of the survival
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functions and feels that the shapes of the curves for the two treatment
groups differ too much to be considered clinically equivalent, then there
is no point in performing a statistical TEA. Using the MLEs of the
exponential distribution parameters, the Figure gives the survival curves
for the acute myelogenous leukemia survival data. The survival curves
appear to be very close. Note that at the time of publication by Vogler et
al. [19], the authors did feel that the survival curves appear to be
clinically equivalent, but no statistical assessment was available to them
at that time.

Figure. Exponential ML S(t) for leukemia survival data

The maximum clinically insignificant difference in median survival
times for the two treatment groups, smed  has been specified by one

of the Vogler et al. [19] authors, Dr. George A. Omura (private
communication), to be 3 months. The fiducial probability of therapeutic
equivalence with 3sme =d  months is 0.919 and the credibility of

therapeutic equivalence is 0.796. The first consideration for a patient is
whether or not an approximately 92% or 80% “chance” of “equivalent”
survival is acceptable.

The subject matter expert has also specified 63 sme << d  to be a

clinical “gray area”. Therefore, further flexibility for individual clinical
decision making is derived by examining the fiducial probability and
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credibility through this gray area. For an additional conservative
consideration, one may examine the fiducial probability and credibility
below the subject expert’s specification as well. Results are given in the
Table.

Table. Exponential TEA for leukemia survival data

smed Fiducial probability Credibility

2.0 0.75248 0.50549

2.5 0.85300 0.66835

3.0 0.91915 0.79685

3.5 0.95889 0.88628

4.0 0.98068 0.94174

4.5 0.99160 0.97262

5.0 0.99661 0.98815

5.5 0.99873 0.99527

For instance, if an individual is only willing to consider a difference of
2 months in median survival times to be clinically insignificant, then the
fiducial approach indicates a 75.3% “chance” of “equivalent” survival,
while the Bayesian approach indicates 50.6%. All of this information, in
conjunction with all other information regarding the treatments (e.g.,
quality of life), may be used by an individual patient with his or her
physician to make a treatment decision.

Additionally, the subject matter expert has also specified the
minimum clinically significant difference in median survival times for
the two treatment groups to be 6 months. The probability of a clinically
significant difference (here, at least 6 months) may also be calculated
from the asymptotic fiducial and Bayesian posterior distributions. These
probabilities are essentially fiducial and Bayesian analogs to classical
likelihood ratio testing with the exception that these probabilities pertain
to both statistically and clinically significant differences, while likelihood
ratio testing pertains only to statistically significant difference.
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