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Abstract

The aim of this paper is to study properties of A-semi-closed sets and to
provide other decompositions of semi-continuity and irresoluteness. We
prove that a function f:(X,1)— (Y, 0) is semi-continuous (resp.

irresolute) if and only if f is gs-continuous and A-semi-continuous (resp.
pre gs-continuous and strongly A-semi-continuous).

1. Introduction and Preliminaries

As the decomposition of continuity is one of the many problems in
general topology, many authors [6, 13-16, 32, 33] used generalized
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concepts of closed (or, open) set to solve the problem. Recently,
Balachandran et al. [3] used ‘generalized’ closed (for example, g-closed,
sg-closed, semi-closed) sets to get generalized concepts of locally closed
set due to Bourbaki [7] and studied the relationship among those classes
and some of their topological properties. Dontchev and Ganster [12]
showed that the concept of semi-locally closed sets coincides with that of
simply-open sets and gave a decomposition of irresoluteness by the help
of pre sg-continuity. Dontchev and Maki [11] also solved Bhattacharyya
and Lahiri’s open problem (i.e., whether the intersection of sg-closed sets
is sg-closed) and introduced the concept of semi-A-closed sets, which
contains the concept of semi-locally closed sets and define semi-A-

continuous function to give a decomposition of semi-continuity.

In this paper, we first introduce the concept of a A-semi-closed set
which is strictly placed between the notions of A-closed and semi-A-closed
sets, and study its properties related to those of locally semi-closed sets.
Finally, using these concepts, we define A-semi-continuous and semi-A-
continuous functions and provide other decompositions of semi-continuity
and irresoluteness.

Let (X, t) be a topological space and A c X. The closure of A and
the interior of A with respect to t are denoted by cl(A) and int(A),

respectively. The kernel [22] of A is the intersection of all open supersets

of A and is denoted by ker(A). A subset A is said to be semi-open (resp.
semi-closed) [21] if A < cl(int(A)) (resp. int(cl(A)) = A). The intersection

of all semi-closed sets containing A is called the semi-closure [8] of A and
is denoted by scl(A). Dually, the semi-interior of A, denoted by sint(A),

is the union of all semi-open sets contained by A.
2. gs-closed Sets and A-semi-closed Sets

Definition 2.1. A subset A of a space (X, 1) is called
(a) sg-closed [4] if scl(A) c G whenever A c G and G is semi-open,

(b) gs-closed [2] if scl(A) ¢ G whenever A C G and G is open,
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(c) gs-open [2] if F < sint(A) whenever F C A and F'is closed,
(d) locally semi-closed [30] if A = G F where G is open and F is
semi-closed,

(e) semi-locally closed [30] if A = G () F where G is semi-open and F

1s semi-closed,

(O simply-open [27] if A = U U N where U is open and N is nowhere

dense.

In [18], Ganster et al. showed that the notions of semi-locally closed
and simply-open sets are same. Arya and Nour [2] pointed out that the
union (resp. intersection) of gs-open (resp. gs-closed) sets is not, in

general, gs-open (resp. gs-closed). But we have
Theorem 2.2. (a) If A and B are separated (i.e., A(\cl(B)=
cl(A)N B = @) gs-open sets, then A U B is gs-open.

(b) If A and B are gs-closed sets such that their complements are
separated, then A () B is gs-closed.

Proof. (a) Let F'be closed and F ¢ AU B. Then Fcl(A) c A and
hence F Ncl(A) c sint(A). Similarly, F () cl(B) c sint(B). Now, we

have
F=FN(AUB)c (FNcl(A)U (F NclB))
c sint(A) U sint(B)
c sint(A U B).
Hence A U B is gs-open.
(b) It follows from (a) by taking complements.

Theorem 2.3. Let (X, 1) be a space. Then a subset A of X is gs-closed
if and only if scl(A) < ker(A).

Proof. Let G be any open set with A — G. Since A is ¢gs-closed,
scl(A) c G and hence scl(A) < ker(A). Conversely, let G be any open
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set such that A c G. By hypothesis, scl(A) c ker(A) c G and hence A

1s gs-closed.

Definition 2.4. A subset A of (X, 1) is said to be

(a) A-set [22] if A is intersection of open sets,
(b) semi-A-set [11] if A is intersection of semi-open sets,

(c) A-closed [1] if A = G N F where G is a A-set and F'is closed,

(d) semi-A-closed [11] if A = G F where G is a semi-A-set and F'is

semi-closed,

(e) A-semi-closed if A = G F where G is a A-set and F is semi-

closed.

Remark 2.5. (a) Every locally semi-closed set is A-semi-closed (see
Example 2.6 (a)). Every A-closed set is A-semi-closed and every A-semi-
closed set is semi-A-closed (see Example 2.6(b)).

(b) In [11], Dontchev and Maki pointed out that the set SLC(X) of all
semi-locally closed sets of space (X, 1) is always a topology on X.
However, the set LSC(X) of all locally semi-closed sets is not, in general,
a topology (see Example 2.6). If (X, 1) is a 7T space, then the set
LSC(X) is the discrete topology on X. Moreover, if X is finite, then
LSC(X) is a base for a partition topology (i.e., open sets are closed) on X.

Example 2.6. (a) Let I\ be the set of all positive integers with the
cofinite topology. Then the set of all even integers is A-semi-closed but not
locally semi-closed.

(b) Let X ={a, b, c} with topology 1 ={X, d, {a}}. Then {c} is
A-semi-closed but not A-closed. Also, {a, ¢} is semi-A-closed but not

A-semi-closed.

Theorem 2.7. For a subset A of a space (X, 1), the following are

equivalent:

(a) A is A-semi-closed.
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() A = LN scl(A), where L is a A-set.

() A = ker(A)N scl(A).

(d) A is intersection of locally semi-closed sets.
Proof. The proofs are easy and hence omitted.

Theorem 2.8. For a subset A of (X, 1), the following are equivalent:

(a) A is semi-closed.
(b) A is gs-closed and locally semi-closed.
(c) A is gs-closed and \-semi-closed.

Proof. (a) = (b) = (c¢) are clear from the facts that every semi-closed
set 1s both gs-closed and locally semi-closed, and every locally semi-closed

set 1s A-semi-closed.

() = (a) Since A is gs-closed, scl(A) < ker(A). On the other hand,
since A is A-semi-closed, by Theorem 2.7, A = ker(A) N scl(A). Thus, we
have scl(A) < ker(A) (N scl(A) = A. This shows that A coincides with its
semi-closure, 1.e., A is semi-closed.

Definition 2.9. A space (X, 1) is SG-space [3] (resp. SC-space) if the

intersection of a semi-closed set with a g-closed (resp. closed) set is

g-closed (resp. closed).

Every SC-space is an SG-space but the converse is not true.

Example 2.10. Let X = {a, b, ¢} with topology t = {X, O, {a}, {a, b},
{a, c}}. Since {b, ¢} is semi-closed but not g-closed, (X, t) is an SC-space
which is not an SG-space.

Theorem 2.11. For a subset A of an SC-space (X, 1), the following
are equivalent:

(a) A is gs-closed,

(©) cl{ix} N A = O for each x € scl(A),

(c) scl(A)\ A contains no nonempty closed set.
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Proof. (a) = (b) Let x escl(A). If cl{x}N A=, then Ac
(X \ cl{x}) and so scl(A) = (X \ cl{x}), contradicting x € scl(A).

(b) = (c) Let F be a closed set such that F < scl(A)\ A. If there
exists an x € F, thenby (b), D # clfx} N A c FNA c (scl(lA)\ A)N A,

a contradiction. Hence, F = .

(0 = (a) Let Ac G and G be open in X. If scl(A) ¢ G, then
scl(A)N(X N\ G) 1is nonempty semi-closed. Since the space is an
SC-space, scl(A)N (X \ G) is a nonempty closed subset of scl(A)\ A, a
contradiction. Hence, scl(A) c G. This shows that A is gs-closed.

Corollary 2.12. Let A be a gs-closed set of an SC-space (X, t). Then
A is semi-closed if and only if scl(A)\ A is closed.

Proof. Since A is semi-closed, scl(A)\ A = & is closed. Conversely,
suppose scl(A) \ A is closed. Since A is gs-closed and scl(A) \ A is closed
subset of itself, by Theorem 2.11, scl(A) \ A = @. Hence, scl(A) = A.

Corollary 2.13. Let (X, t) be an SC-space.
(@) If A ¢ B c scl(A) and A is gs-closed, then B is gs-closed.
() If sint(A) =« B = A and A is gs-open, then B is gs-open.

Proof. (a) Since scl(B)\ B C scl(A)\ A and scl(A)\ A has no
nonempty closed subsets, neither does scl(B) \ B. Hence, B is gs-closed.

(b) It follows from (a) by taking complements.

Theorem 2.14. For a subset A of an SC-space (X, 1), the following

are equivalent:
(a) A is locally semi-closed.

(b) scl(A)\ A is closed.

() AU (X \ scl(A)) is open.
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Proof. (a) = (b) Since A is locally semi-closed, using Proposition 4.11
in [3], A =G scl(A) where G is open. Now scl(A)\ A = scl(A)\ G
=scl(A)N (X \ G) where scl(A) is semi-closed and X \ G 1is closed.
Since X is an SC-space, scl(A)N (X \ G) is closed, ie., scl(A)\ A is
closed.

(b) = (c) Since scl(A)\ A is closed, AU(X \scl(A))=X \(scl(A)\ A)
1s open.

() = (a) Since A = (X \ (scl(A)\ A))Nscl(A), by (¢) X \(scl(A)\ A)
1s open. Hence A is locally semi-closed.

Definition 2.15. A subset A of (X, 1) is called semi-dense [3] if
scl(A) = X.

Definition 2.16. A space (X, 1) is sg-submaximal [3] (resp.
submaximal [7]) if every semi-dense (resp. dense) subset is g-open (resp.
open) in (X, 1).

Every submaximal space is sg-submaximal but the converse is not
true [3].

Theorem 2.17. An SC-space (X, 1) is submaximal if and only if
every subset of X is locally semi-closed.

Proof. Let (X, t) be submaximal and A be any subset of X. Put
U=AU(X \scl(A)). Then scl(U) = X, i.e., Uis semi-dense in (X, 1).
By hypothesis, U is open and hence, by Theorem 2.14, A is locally

semi-closed.

Conversely, let A be dense in (X, 1) and suppose that every subset is

locally  semi-closed. Since A is locally semi-closed and
A=AU(X \scl(A)), by Theorem 2.14, A is open and hence X is

submaximal.
3. Decompositions of Semi-continuity and Irresoluteness

Definition 3.1. A function f : (X, 1) - (Y, o) is called
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(a) semi-continuous [21] (resp. irresolute [9]) if f_1 (V) is semi-open in

X for each open (resp. semi-open) set Vof Y,

(b) sg-continuous [31] (resp. pre-sg-irresolute [24]) if f_l(V) is

sg-closed in X for each closed (resp. semi-closed) set Vof Y,

(¢) gs-continuous [10] (resp. pre-gs-continuous [28]) if f1(V) is

gs-closed in X for each closed (resp. semi-closed) set Vof Y.

Definition 3.2. A function f : X — Y be a mapping is called

(a) simply-continuous [27], or SLC-continuous [3] (resp. strongly
simply-continuous [12]) if f~1(V) is simply-open in X for each closed

(resp. semi-closed) set Vof Y,

(b) LSC-continuous [3] (vesp. strongly LSC-continuous) if f1(V) is

locally semi-closed in X for each closed (resp. semi-closed) set Vof Y,

(¢) semi-\-continuous [11] (vesp. strongly semi-i-continuous) if f~1(V)

is semi-A-closed in X for each closed (resp. semi-closed) set Vof Y,

(d) A-semi-continuous (resp. strongly h-semi-continuous) if f_l(V) 1s
A-semi-closed in X for each closed (resp. semi-closed) set V of Y.

Theorem 3.3. (a) If f: (X, 1) — (Y, 6) is semi-A-continuous (resp.
strongly semi-\-continuous) and A is preopen in (X, 1), then
fla: (A, t4) = (Y, o), the restriction of f to A, is also semi-\-continuous
(resp. strongly semi-A-continuous).

® If f:(X,1)—> (Y,0) is A-semi-continuous (resp. strongly
L-semi-continuous) and A is preopen in (X, 1), then f|4: (A, 14)
— (Y, ©), the restriction of f to A, is also A-semi-continuous (resp. strongly

A-semi-continuous).

Proof. (a) We prove only in case f is semi-A-continuous. Let V be open

in Y. Since f_l(V) is semi-A-closed, there exist a semi-A-set G and a

semi-closed set F such that (f]4) (V)= (GNA)N(FNA). By Lemma
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2.2 1in [26], G A is semi-A-set in (4, T4) and F ) A is semi-closed in

(A, 14) since A is preopen. Hence, (f|4) (V) is semi-A-closed in

(A, t4). This implies that f|4 is semi-A-continuous.

(b) The proof is similar to (a) using Lemma 2.3 in [25].

Lemma 3.4. Suppose that a family of all semi-A-closed (resp.
L-semi-closed) sets in (X, 1) is closed under finite union. Let {G; | G; is
semi-A-closed (resp. \-semi-closed), i € I'} be a cover of X, where T is
finite. If AN G; is semi-A-closed (resp. h-semi-closed) in (A, T4) for each

i € I, then A is semi-A-closed (resp. h-semi-closed).

Proof. We prove in case of A-semi-closed sets. Let i€ I. Since
AN G; is h-semi-closed in (4, t4), ANG; = H; N K; for some A-set H;
and semi-closed set K; in (A, t4). Then there exist a A-set U; and a
semi-closed set V; [25, Lemma 2.1] in (X, 1) such that ANG; =
U; NG;))N(V: NG;). Since G; is semi-closed in (X, 1), ANG; =
U;N(G;NV;) is A-semi-closed. Using assumption we have A =
U{ANG;|ieT} tobe A-semi-closed.

Theorem 3.5. Suppose that a family of all semi-\-closed (resp.

A-semi-closed) sets in (X, t) is closed under finite unions. Let
X = Gy UGy where Gy, Gy are semi-closed in (X, 1) and f: (G, 1g,)

- (Y, 0) and g : (Gy, tg,) — (Y, o) be compatible functions.

(@) If f and g are semi-k-continuous (resp. strongly semi-h-
continuous), then fVg: (X, 1) = (Y, o) is also semi-A-continuous (resp.
strongly semi-\-continuous).

(b) If f and g are A-semi-continuous (resp. strongly h-semi-
continuous), then fVg: (X, 1) = (Y, o) is also A-semi-continuous (resp.
strongly \h-semi-continuous).

Proof. (a) We prove only the case of semi-A-continuous. Let V be open

in (Y, o). Then for each i e {I, 2}, (fVg) {(V)NG; = f"1(V) is semi-A-
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closed in (G;, 1g,;). Using Lemma 3.4, we have (fV9) (V) to be a semi-A-

closed in (X, 1). Hence, fVg is semi-A-continuous.

(b) The proof is similar to (a) using Lemma 2.3 in [25].

The proofs of the following results are immediate.

Theorem 3.6. Let f : (X, 1) > (Y, 0) and g : (Y, 6) = (Z, ®) be two
functions.

(a) If f is semi-Ah-continuous (resp. strongly semi-A-continuous) and ¢
is continuous (resp. semi-continuous), then gof is semi-A-continuous

(resp. strongly semi-A-continuous).

(b) If f is h-semi-continuous (resp. strongly A-semi-continuous) and g
is continuous (resp. semi-continuous), then gof is A-semi-continuous

(resp. strongly h-semi-continuous).

Remark 3.7. (a) Every LSC-continuous (resp. strongly LSC-
continuous) function is simply-continuous (resp. strongly simply-
continuous) and every A-semi-continuous (resp. strongly A-semi-
continuous) function is semi-A-continuous (resp. strongly semi-A-

continuous) but the converses are not true.

(b) Every LSC-continuous (resp. strongly LSC-continuous,
simply-continuous, strongly simply-continuous) function is A-semi-
continuous (resp. strongly A-semi-continuous, semi-A-continuous, strongly

semi-A-continuous) but the converses are not true.

(c) Suppose that (X, 1) is globally disconnected [14] (i.e., every set

which can be placed between an open set and its closure is open). Then
f:(X,1)—> (Y,0) 1is semi-A-continuous (resp. strongly semi-\-
continuous, sg-continuous, pre-sg-continuous) if and only if f is A-semi-
continuous (resp. strongly A-semi-continuous, ¢s-continuous, pre-gs-
continuous).

Example 3.8. (a) Let X ={a,b,¢}, 1={X, I, {a},{b, c}}] and
c =1{X, 9, {a}}. Let f:(X, 1) > (X, o) be the identity function. Then f
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is LSC-continuous but neither strongly LSC-continuous nor strongly
simply-continuous.

() Let X ={a, b, ¢}, 1 =1{X, D, {a}, {a, b}} and o = {X, O, {a}}. Let
f:(X, 1) > (Y, 6) be a function defined by f(a) =15, f(b)=a, f(c)=rc.
Then f is strongly simply-continuous but neither LSC-continuous nor
strongly LSC-continuous.

(¢ Let X={a,b,c},, t=1{X,9, {a}} and o ={X, J, {b}}. Let
f: (X, 1) > (X, o) be the identity function. Then f is simply-continuous
(and hence semi-A-continuous) but neither A-semi-continuous nor
LSC-continuous.

(d) Let NV be the set of all positive integers with the cofinite topology
7 and X = {a, b} with topology {X, &, {a}}. Let (N, rf) - (X, 1) be a
function defined by f(n) = a if n is odd, f(n) = b if n is even. Then f is
strongly  A-semi-continuous but neither simply-continuous nor
LSC-continuous.

Borsik and Dobos [6] gave decomposition of quasi-continuity: A
function f : (X, 1) — (Y, 0) is quasi-continuous if and only if f is almost
quasi-continuous and simply-continuous. Recently, Dontchev and Maki

[11] and Dontchev and Ganster [12] gave decompositions of

quasi-continuity and irresoluteness as follows:
Theorem 3.9. Let  : (X, t) — (Y, 6) be a function. Then

(a) f is quasi-continuous if and only if [ is sg-continuous and

semi-A-continuous.

(b) f is irresolute if and only if f is strongly simply-continuous and

pre-sg-continuous.

Note that quasi-continuous functions are wusually called
semi-continuous. From Theorem 2.8, we have other decompositions of
semi-continuity and irresoluteness.

Theorem 3.10. For a function f : (X, 1) = (Y, o), the following are

equivalent:
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(a) f is semi-continuous.
(b) fis gs-continuous and LSC-continuous.
(c) f is gs-continuous and A-semi-continuous.

Theorem 3.11. For a function f : (X, t) = (Y, o), the following are

equivalent:

(2]

(3]

(4]

(5]

(6]

(7
(8]
(9]

(10]

(11]

(12]

(a) fis irresolute.
(b) f is pre-gs-continuous and strongly LSC-continuous.

(c) f is pre-gs-continuous and strongly A-semi-continuous.
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