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Abstract 

In the frictional market, contingent claims usually cannot be completely 
hedged, and this hedging problem can be regarded as a portfolio 
problem. Recently, people are studying the portfolio problem under the 
frictional market, but just studying the problem of the fixed rate of 
transaction costs. As far as we know, the research about the variable 
rate is still open. This paper poses a jump rate of transaction costs 
according to the real market, and based on this, we get an optimal model 
of minimizing risk. For this model, we use the Calculus of Variation to 
prove the existence of the optimal strategy. 
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1. Introduction 

In 1952, Markowitz [6] proposed the Mean-Variance Model under 
assumptions that the investors use the expect return to measure the real 
return, the variance of the return to measure the risk and the investors 
are risk aversion. In 1958, Modigliani and Miller [7] introduced the No-
arbitrage Equilibrium method. In 1964, 1965 and 1966, Sharpe [9], 
Lintner [5] and Mossin [8] all proposed the CAPM model independently. 
In 1990, three American economics: Markowitz, Sharpe and Miller 
obtained the Economic Nobel Prize, and this also represented the Modern 
Portfolio Theory was coming maturity and accepted by the world’s people. 
The classical models mentioned above do not consider the market 
frictions, but in the real market, the frictions exist everywhere, and the 
frictions make a long distance between the real market and the classical 
models. We introduce frictions to the financial problem to make the 
problem more close to the real market. There are all kinds of frictions 
such as tax, transaction costs, the bid-ask price and so on. Recently, many 
scholars are focusing on the portfolio problem of the transaction costs. In 
our country, Wang Shouyang and Li Zhongfei [4, 10-11] mainly study and 
character the No-arbitrage under the frictions’ market. There are many 
scholars aboard paying much interesting on the portfolio problem with 
frictions, and proposed their views respectively. In 2002, Paolo Guasoni 
[1] obtained the risk minimization model under the transaction costs 
when the risk asset is a semi-martingales. In 2004, Paolo Guasoni and 
Walter Schachermayer [3] give the existent condition of solution of utility 
maximization problem under the transaction costs. In 2006, Paolo 
Guasoni [2] proposed the No-arbitrage definition of the friction Brown 
motion under the proportional transaction costs. But all these scholars 
only considered the proportional frictions, that is, the rate of transaction 
costs is a constant. In the real market, the rate of transaction costs 
usually is variable, for example, (1) in 1975, the corrected American Bond 
Rule cease the fixed transaction costs, and the middleman can decide the 
transaction costs by himself. (2) The bond trade may be having a 
favourable measurement just like the supermarket taking a promote sale. 
(3) Some economic events, the change of the rule and any other reasons 
can all make the rate of transaction costs alternative. For example, on 
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30th, May, 2007, the justification of the rate of the stamp-tax is a real 
example, and this justification lead to the alteration of the rate of 
transaction costs directly. So, consider the portfolio problem with variable 
rate of transaction costs is meaningfulness. In this paper, we mainly 
study the risk minimization problem with the variable rate of transaction 
costs according to the situation (2) and (3). 

2. The Portfolio Value Model Under the Variable 
Rate of Transaction Costs 

As usual in Mathematical finance, we consider a filtered probability 
space ( ( ) ),,,, 0 PTtt ≤≤Ω FF  where the filtration tF  satisfies the usual 

assumptions, and tT FFF .=  contains all informations, the investors 
can obtain at time t. In this market, we have a risk free asset and a risky 
asset. The risk free asset is used as numeraire, hence, it is assumed 
identical equal to 1. The price of the risky asset is given by a process ,tX  
adapted to the filtration .tF  An agent starts with some initial capital c, 
and faces some contingent liability ( ),, BX HHH =  at time T, which 
requires the payment of XH  shares of the risky asset, and BH  units of 
the numeraire. Her goal is to set up a portfolio, which minimizes the total 
risk at time T. The self-financing condition implies that a trading strategy 
is uniquely determined by the number of shares tθ  invested in the risky 
asset at time t. 

2.1. The gain process 

In any reasonable market model, it is generally accepted that trading 
gains should be finite almost surely. Introducing the transaction costs, it 
is then natural to assume that the trading volume remains finite almost 
surely, in order to avoid the possibility of infinitely negative wealth. 

Definition of Gain Functions as follows: 

[ ]∫ θ=
t

ss
c
t dXG

,0
,  

where θ represents the shares investor in the risky asset, XH  represents 

the price of the risky asset and tθ  is a cadlag function. 
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2.2. The costs process 

In the real market, the rate of transaction costs is not a constant. 
When the economy is depressed, the country can reduce the rate of 
transaction costs to irritate the stock market, for example, in October, 
1991, Shengzhen trading post reduced the stamp-tax from 0.6% to 0.3% 
in order to irritate the stock market. And when the economy inflates, 
then the country can raise the rate to control the stock market. On 30th, 
May, 2007, the stamp-tax raised from 0.3% to 0.6%, and this lead to stock 
point drop 500 points. This adjustment of stamp-tax is one kind of the 
variable rate. This measurement has an advantage that the effect is 
direct and quick. But the investor cannot know when the rate will 
change, and we assume that the change number satisfies the Poisson 
distribution according to the stochastic behavior of the change. And this 
jump-rate of transaction costs is an improvement of the constant rate. 
The jump-rate model: 

(1) In the usual case, tk  is equal to k, so ;0=tdk  

(2) If the rate has a change, that is, the jump is occurred, then 
,tt dNdk Φ=  where ( )tN  represents the total number that the rate has 

changed and it satisfies the Poisson distribution with the parameter ( ).tλ  

When the jump occurs, the probability is ( ) ,dttλ  and ;1=tdN  when it 

does not occur, the probability is ( ) ,1 dttλ−  and Φ= .0tdN  is a random 

variable representing the altitude of the jump. Assume that, 

( ),...,,, 21 tNΦΦΦ  are independent to each other and have the same 

distribution to ΦΦ.  and ( )tN  are independent to each other, and 

.1−>Φ  Solving the jump-rate, we get an expression: 

( )
( )

( )
( )

∏∑
==

Φ+=












Φ+=
tN

t
t

tN

t
tt kkk

00
.1ln1lnexp  

The jump-rate consider more widely than the constant rate. When in 
the time [ ],,0 T  the jump does not occur, then the jump-rate is the same 

to the constant rate, and when at the moment ,tτ  the jump occur, then 
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the rate is changed into ( ),1 k
kk kk Φ+=

−ττ  then the investor pay the 

costs using the new rate until the next jump occur. Assume the investor 
can trade continually, and denoting by tt ML ,  respectively, the 

cumulative number of shares purchased and sold at time t, then we have: 

,ttt ML −=θ  

where tθ  is a finite variation and can be integrated path by path. 

It is well known that any function of the bounded variation can be 
represented as a difference between two increasing functions, given by: 

[ ]( ) [ ]( ),,0,,0 tDMtDL tt
−+ θ=θ=  

where +θD  and −θD  are respectively, the positive and negative parts of 
the Radon measure .θD  The increasing processes tL  and tM  are 

uniquely determined under the assumption that they do not 
simultaneously increase. From the financial point of view, this is a 
natural condition, since it prevents opposite transactions from taking 
place at the same time. 

Assume that the rate associated to the purchase and sale of the risky 
asset are equal. With the convention that 0=θt  when 0<t  and 

.lim tTtT θ=θ
↑

 

Definition of Cost Functions given by: 

( )
[ ]

( )

[ ]∫ ∏ ∫
=

θ=θΦ+=
t

tN

i t
sssi

c
t DdDdXkC

,0 0 ,0
.1ln  

Remark 2.1. The pointwise definition of variation can be modified 
into the following (much less intuitive), which is invariant up to sets of 
Lebesgue measure zero: 

( )
( )

( ) ( )
[ ]∫ φ′ωθ=ωθ

≤∞φ
∈φ T

s
TC

dssD
c

,0,0
.sup

1
1
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2.3. The value process model 

The market value of the portfolio at time t is given by the initial 
capital, plus the trading gain, minus the transaction cost, namely: 

( ) ( ) ( ).θ−θ+=θ tt
c
t CGcV  

At the terminal date T, the payment of the liability H and the 
liquidation of the remaining portfolio will give a payoff equal to 

( ) .BXTXTTT
c

T HHXHXkVV −−−θ−θ=  

3. The Problem of Risk Minimization Under the Variable 
Rate of Transaction Costs 

3.1. Space of strategies 

In order to make sure that the market is no-arbitrage, we should keep 
the gain process is coherent integral, the following spaces of strategies 
are often considered: 

{ ( ) ( )}.,epredictabl: PLG p
tt

p ∈θ−θθ=Θ F  

The presence of the transaction costs in face forces a much narrower 

set of admissible strategies than .pΘ  It leads us to define the following 
spaces: 

{ ( ) ( )},, PLC p
T

pp
c ∈θΘ∈θ=Θ  

endowed with the norm: 

[ ]

pp

pT
t

p

p

T
tt DdkdXp

c

1

,00
:.














θ+θ→θ ∫∫Θ  

( ( ) ( ) ) .
1
pp

pT
p
pT CG θ+θ=  

Lemma 3.1.1. The set ( )p
tG Θ  is a linear subspace of ,pL  and if X is 

a continuous martingale, then it is also closed. 
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Theorem 3.1.1. Let X be a continuous local martingale, and k be a 
continuous, adapted process, such that ( )

[ ]
0min

,0
>=ω

∈
ttTt

XkK  for almost  

every ω. Then p
cΘ  is a Banach space for all .1≥p  

Lemma 3.1.2 [1]. Let X be a continuous local martingale, and 
( ) ( )θ→θ T

n
T GG  in the pL -norm. Then there hold 

(i) If ,1>p  up to a subsequence nθ  such that θ→θn  for almost 
every ( );ωdPXd t   

(ii) If ,1=p  there exists some convex combinations nη  of ,nθ  such 

that θ→ηn  almost every .dPXd t   

Lemma 3.1.3 [1]. For a fixed ω, let ( ) ( )tt
n ωθ→ωθ  for almost every t, 

and ( ) [ ]( ) CTD n <ωθ ,0  uniformly. Then ( )nD ωθ  converges to ( )ωθD  in 

the weak star topology of Radon measures. 

Theorem 3.1.2. If nθ  is bounded in p
cΘ  and t

n
t θ→θ  almost every 

in dtdp, then 

( ) ( ) ,..inflim ωθ≤θ
∞→

saCC n
TnT  

and for all ,1≥p  there holds 

( ) ( ) .inflim p
n

TnpT CC θ≤θ
∞→

 

Proof. By assumption, for almost every t
n
t θ→θω,  for almost every 

t. For all subsequences jn  for which ( ( ))ωθ jn
TC  converges, we have 

If ( ( )) ,∞→ωθ jn
TC  then ( )( ) ( ( ))ωθ≤ωθ

∞→
jn

TjT CC lim  is trivial; 

If not, then for all j, the following formula ( ( )) ( )ω<ωθ MC jn
T  is 

tenable. Since, ( ( )) ( ( )) ( )
[ ]∫ ω<ωθ=ωθ

T t
n

tt
n

T MDdXkC jj
,0

,  that is, 
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there holds 

( ( )) [ ]( ) ( )
( )

.,0
ω
ω<ωθ

k
MTD jn  

By Lemma 3.1.3 and Theorem A.4, we obtain 

( )( ) ( )
[ ]∫ ωθ=ωθ

T tttT DdXkC
,0

 

( ) ( ( ))
[ ]∫ ωθ=ωθ≤

∞→∞→ T

n
Tj

n
ttj

jj CDdXk
,0

.limlim  

And so, ( )( ) ( ( ))ωθ≤ωθ
∞→

jn
TjT CC lim  follows. By Fatou’s Lemma and 

the boundedness of nθ  in ,p
cΘ  we arrive at 

( )( ) ( )
[ ] 


















 ωθ=ωθ ∫
p

T
tt

p
pT DdXkEC

,0
 

( )
[ ] 


















 ωθ≤ ∫∞→

p

T
n

ttn
DdXkE

,0
inflim  

( )
[ ] 


















 ωθ= ∫∞→

p

T
n

ttn
DdXkE

,0
inflim  

( ( )) .inflim ∞<ωθ=
∞→

p
p

n
Tn

C  

This ends the proof of Theorem 3.1.2. 

3.2. The existence of optimal strategies 

This chapter mainly contains the existence results of the optimal 
strategies with the transaction costs under the assumption that the risky 
asset is a martingale. In general, the existence of a minimum requires 
two basic ingredients: relative compactness of minimizing sequences, and 
lower semi-continuity of the functional. 

Definition 3.2.1. We define a convex decreasing risk functional as a 

function { },: ∞→ρ ∪RpL  satisfying the following properties: 
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(i) ρ is convex; 

(ii) If ( ) ( )ω≤ω YX  for a.e. ω, then ( ) ( ),YX ρ≥ρ  that is ρ is 

decreasing; 

(iii) ρ has the Fatou property. Namely, if XXn →  a.e., then 

( ) ( ).inflim nn
XX ρ≤ρ

∞→
 

Theorem 3.2.1. Let ρ be a convex decreasing functional, and .0>c  
We denote by 

( ) ,BXTXTT HHXHkH ++−θ=θ  

( ( ) ( )).: θ−θρ→θ HVF c
T  

if θ→θn  a.e. in ( ),ωddtP  then we have 

(i) F is convex; 

(ii) F is l.s.c. with respect to a.s. convergence in ( ).ωddtP  

Proof. It is not hard to derive that there holds the following: 

( ) ( )22112211 θλ+θλ−θλ+θλ HV c
T  

( ) ( )
[ ]∫ ∫ θλ+θλ−θλ+θλ+=

T

T
ts DdkdXc

0 ,0
22112211  

( ) BXTXTTT HHXHk −−λ+λ−θλ+θλ− 212211  

[ ]∫ ∫ ∫ θλ−θλ+θλ+≥
T T

T
tss DdkdXdXc

0 0 ,0
112211  

[ ]∫ −θλ−θλ−
T

XTTt HkDdk
,0

1122  

BXTXTT HHXHk −−−θλ− 22  

[ ( ) ( )] [ ( ) ( )] ( ).1, 21222111 =λ+λθ−θλ+θ−θλ= HVHV c
T

c
T  
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This implies that HV c
T −  is a concave functional. On the other hand, 

one arrives, by virtue of the fact, that ρ is a convex decreasing function, at 

( ( ) ( ))22112211 θλ+θλ−θλ+θλρ HV c
T  

( ( ) ( ) ( ) ( ))22221111 θλ−θλ+θλ−θλρ≤ HVHV c
T

c
T  

( ) ( ).2211 θρλ+θρλ≤  

This means that F is of a convex function. 

By using Theorem 3.1.2, one gets c
TV  is u.s.c (upper semicontinuity). 

At the same time, since ρ is decreasing and ( )θH  is integrable, then we 
have 

( ( ) ( )) ( ( ( ) ( )))nnc
T

n

c
T HVHV θ−θρ≤θ−θρ

∞→
suplim  

( ( ( ) ( ))).inflim nnc
Tn

HV θ−θρ≤
∞→

 

According to Fatou’s Lemma, one has 

( ( ) ( )) ( ( ) ( )).inflim nnc
Tn

c
T HVHV θ−θρ≤θ−θρ

∞→
 

This ends the proof of Theorem 3.2.1. 

Lemma 3.2.1 [1]. For +∈ RC  and ,1>p  the set 

{ ( ) ( ) }DCCGB pTpTDC ≤θ≤θθ= ,:,  

is pΘ  weak compact for { }.∞+∈ + ∪RD  

Theorem 3.2.2. Let ρ be a convex decreasing functional, 0>c  and 

( ) ( )PLHkHXH T
p

XTXTb ,,, FΩ∈+  with .1>p  For any ,0>M  let 
us denote by 

{ ( ) }.,, MG pT
p
C

p
MC ≤θΘ∈θ=Θ  

Then the following minimum problem: 

( ( ) ( ))θ−θρ
Θ∈θ

HV c
Tp

MC,

min  

admits a solution. 
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Proof. Let nθ  be a minimizing sequence, so that ( ) ( ).inf
,

θ→θ
Θ∈θ

FF
p

MC

n  

Since p
MC,Θ  is a weakly compact by Lemma 3.2.1, up to a subsequence, 

we can assume that p
MC

n
,Θ∈θθ  weakly. Then by Theorem A.1, there 

exists a sequence of convex combinations ,∑
∞

=
θα=η

nk

kk
n

n  such that, 

θ→ηn  in the strong topology. By Lemma 3.1.2, we can assume up to a 

subsequence that θ→ηn  in the dPXd t  a.s., and hence, dtdP -a.e. by 

hypotheses. By Jensen’s inequality, we have 

( ) ( ) ( )∑
∞

=
≤

θ≤θα≤η
nk

k
kn

kk
n

n FFF .max  

Passing to the limit 

( ) ( ) ( ).limmaxlimlim n
n

k
knn

n
n

FFF θ=θ≤η
∞→≤∞→∞→

 

Finally, by the lower semicontinuity of F, we obtain 

( ) ( ).lim n
n

FF θ≤θ
∞→

 

Hence, θ is a minimizer. This completes the proof of Theorem 3.2.2. 

We now turn to the case .1=p  That is to say, there holds the 
following: 

Theorem 3.2.3. Let ρ be a convex decreasing functional, 0>c  and 

( ) ( ).,,, 1 PLHkHXH TXTXTb FΩ∈+  For any ,0>M  the following 

minimum problem: 

( ( ) ( )),min
1

,

θ−θρ
Θ∈θ

HV c
T

MC

 

admits a solution. 
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Proof. Let nθ  be a minimizing sequence. By A.2, there exists a 

convex combination ∑
=

θα=η
nM

nk

kn
k

n  such that ( ) ξ→ηn
TG  in .1L  By A.3, 

there exists 1Θ∈θ  such that ( ).θ=ξ TG  To see that, ,1Θ∈ξ  we apply 

firstly, Lemma 3.1.2 to obtain ( )∑
=

ηβ=ξ
n

nj
M

nj

Tjn
j

n ,  such that θ→ξn  a.e., 

then by Theorem 3.1.2, we have 

( ) ( ).1 PLCT ∈θ  

By Jensen’s inequality, we have 

( ) (( ) ) (( ) ),max ,,∑
=

≤
η≤ηβ≤ξ

n
njnj

M

nj

Tj
jn

Tjn
j

n FFF  

( ) ( ) ( )∑
=

≤
θ≤θα≤η

nM

nj

k
kn

kn
k

n FFF .max  

Passing to the limit, there hold 

( ) (( ) ) ( ),limmaxlimlim , n
n

Tj
jnn

n
n

FFF nj η=η≤ξ
∞→≤∞→∞→

 

( ) ( ) ( ).limmaxlimlim n
n

k
knn

n
n

FFF θ=θ≤η
∞→≤∞→∞→

 

Finally, by the lower semicontinuity of F, we obtain 

( ) ( ).lim n
n

FF θ≤θ
∞→

 

Hence, θ is a minimizer. This ends the proof of Theorem 3.2.3. 

Example 3.2.1 (Utility maximization). Let U be a concave bounded 
increasing function. The utility maximization problem 

[ ( ( )) ( )]θ−θ
Θ∈θ

HVUE c
T

C
1

max  

admits a solution. 



THE PORTFOLIO PROBLEM UNDER THE VARIABLE RATE …  243 

Proof. We can change this maximization problem to the 
minimization problem as follows: 

[ ( ( ) ( ))] [ ( ( ) ( ))],minmin
11

θ−θ−=θ−θ−
Θ∈θΘ∈θ

HVUEHVUE c
T

c
T

CC

 

and it satisfies Definition 3.2.1. At last, similar to the proof of Theorem 
3.2.3 one can derive the existence of the optimal strategies. 
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Appendix 

Theorem A.1 [1]. Let nx  be a relatively weakly compact sequence in 

a Banach space V. Then, there exists a sequence of convex combinations 

∑
∞

=
α=

ni
n

n
in xy  converges in the norm topology of V. 

Theorem A.2 [1]. Let nx  be a sequence of random variables, such 

that .sup ∞<n
n

xE  Then, there exists a subsequence nx ′  and a random 

variable 1Lx ∈  such that for each subsequence nx ′′  of ,nx ′  we have 

∑
=

→′′
n

i
i eaxxn

1
..1  

Theorem A.3 [1]. Let X be a continuous local martingale, nθ  is a 
sequence of X-integrable predictable stochastic processes such that the 

sequence ∫
∞

θ
0 s

n
s dX  converges to a random variable G in the norm 

topology of .1L  Then, there is an XF -predictable stochastic process θ  

such that ∫ θ
t

s
n
s dX

0
 is a bounded martingale, and there holds 

∫ =θ
t

s
n
s GdX

0
.   

Theorem A.4 [1]. Let ,µ→µn  where µµ ,n  are Radon measures on 

I, respectively, and the convergence is meant in the weak star sense. Then, 
one arrives at 

.inflim n
n

µ≤µ
∞→

 

g 


