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Abstract

By applying upper and lower solution method, this paper deals with the
existence of positive solutions for a class of singular boundary value
problems. Sufficient conditions are obtained that guarantee the
existence of positive solutions. The interesting point is that the
nonlinear term fis involved with the first-order derivative explicitly.

1. Introduction

In this paper, we consider the following singular boundary value
problem:

{—x”(t) = o) f(t, x(t), x'(2)), t (0, 1),
(1.1)

ax(0) - bx'(0) = 0, cx(1)+dx'(1) = 0,
where £ :[0,1]x [0, ©)% — [0, ©) is continuous, ¢ : (0,1) - [0, ») is
continuous and may be singular with ¢ = 0, and/or £ =1, a, b,¢c,d >0

such that p = ac + ad + bc > 0.
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Boundary value problems arise from applied mathematical sciences,
and they received a great deal of attention in the literature. Most of the
available literature on singular boundary value problems (for instance
[1, 3-6]) discuss the case where f is either continuous or a caratheodory
function by using fixed point theorems and fixed point index theory and
so on. Recently some papers such as [1, 3, 5, 6], by using approximating
method or upper-lower solution approach, investigate the special case of
(1.1).

The aim of this paper is to investigate the existence of positive
solutions of BVP (1.1) in a Banach space. The interesting point is the
nonlinear term f involved with the first-order derivative explicitly. The
techniques used in this paper are a specially constructed cone, and the

fixed point theorem of cone expansion and compression.

This paper is organized as follows: In Section 2, some preliminaries

are given. In Section 3, we are devoted to our main results.

2. Preliminaries and Some Lemmas

Let G(¢, s) : [0, 1] x [0, 1] — [0, + ) is Green’s function for

-x"(t) =0,
(2.1)
ax(0) - bx'(0) = 0, cx(1)+dx'(1) = 0,
that is
b+as)(c+d—-ct), 0<s<t<l,
G(t, 5) = l{ 2.2)
Plo+at)(c+d-cs), 0<t<s<l.
Denote

f(l — 11msup f(t7 X, y)

, a=0, or a = oo,
|, 9)|>a | (25 )]

infM B=0, or p=oo

- 1 ,
fo = B ints Tee, )]

| (e, )| =Tx|+]|y]
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Clearly
G, s)>0, (¢ s)e][0,1]x]0,1]; (2.3)
G(t, s) < G(s, s), (¢, s)€]0,1]x]0, 1]; (2.4)
G(t, s) = MyGl(s, s), (¢, s)e[0,1-0]x][0,1]; (2.5)
where
S

Let X = C[0, 1] be a Banach space endowed with the norm
= t)|, () |}.
| %[ = max {max| x(t)], max|«'() [}
Definition 2.1. Let E be a real Banach space. Then a nonempty
convex closed set P < E 1is said to be a cone provided that
1) Mu e P forall u e P andall A >0 and
(1) u, —u € P implies u = 0.
Note that every cone P < E induces an ordering in E given by x < y
if y—x e P.

Definition 2.2. An operator is called completely continuous if it is

continuous and maps bounded sets into precompact sets.

Definition 2.3. A function x is said to be a solution of BVP (1.1) if
x e Co,1]N C%(0, 1) satisfies BVP (1.1), in addition, x is said to be a
positive solution if x(¢t) > 0 for ¢ € (0, 1) and x is a solution of BVP (1.1).

Definition 2.4. A function a(t) is called a lower solution, if al(t) e

C?(0, 1) N C'[0, 1] and satisfying

{— a”(t) < o) f(t, alt), o'(2)), ¢ € (0, 1),
(2.6)

aa(0) - ba'(0) < 0, ca(l) + da'(1) < 0.
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Upper solution is defined by reversing the above inequality signs. If there
exist a lower solution o(t) and an upper solution B(z) for the BVP (1.1)

such that a(t) < B(t), then (a(2), B(¢)) is called a couple of upper and
lower solutions for the BVP (1.1).

For convenience, we list the following assumptions:
1
(A7) ¢ € C((0,1), [0, + ©)) and 0 < -[0 G(s, s)o(s)ds < + ;

(AZ) f € C([07 1] x [07 + OO) X [07 + 00)7 [O’ + OO));

1 _1

(Ag) 0<f0 <Ly, L = (2 IO G(s, s)(p(s)dsj ;
(A4) There exist a positive constant o; and Lebesgue measurable
sets E; — [0, 1] such that a; < f, <+, uniformly for ¢t € E; < [0, 1]

a.e. and Mgale G(%, s)(p(s)ds >1, VE; [0, 1];
1

(Ap) 0<f” < Ly;
(Ag) There exist a positive constant ; and Lebesgue measurable

sets Ey [0, 1] such that By < fy < +oo, uniformly for ¢ € Ey < [0, 1]

a.e. and Meﬁle G(%, sj(p(s)ds >1, VE c E,.

Remark. By (A;), (Ay), there exists ¢; € (0, 1) such that ¢(¢) > 0.

1-6
Thus there exists 0 e (0, %) such that Ie G(%, s)(p(s)ds > 0.

Let

K={xeX:x(t)>0,t¢e]l0,1], t [%lilne]x(t) > Mg x|}
[0, 1~

It is easy to know that K is a cone of X. Define an operator B : K —
C[o, 1] by

Bx(t) = I: G(t, s)o(s)f(s, x(s), x'(s))ds, t e [0, 1].

Obviously, the existence of positive solutions for BVP (1.1) is equivalent
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to the existence of fixed points of the operator equation Bx = x, x €
clo, 1].

Lemma 2.1. Let X be a Banach space, and let P be a cone in X.
Assume that Q,, Qg are open subsets of X with 0 € Q;, Q; c Qq. Let

A:PN(Q\Q;) > P be a completely continuous operator, satisfying

either
G| Ax]<|x], xcPnoy, |As|>]x], xePnoy,
or

i) |Ax |z [x|, x e PNoYy, |Ax|<| x|, x e P NoQs.
Then A has a fixed point in P (Qg\Qy).

Lemma 2.2. Assume that (A1) and (Ag) hold, then A(K) < K and

A : K —» K is completely continuous.

Proof. By (2.4), for all ¢ € [0, 1], we get

(40)0) = [ 6lt, 505G, +(6), ¥(6)ds

< [ 6ls, )01 G x(6) (6)ds,
then
1
| Ax | < IO G(s, s)o(s)f(s, x(s), x'(s))ds.

For any x € K, we know by (2.5) that

1
tefg}f}e](Ax)(t) = min | G(t, s)o(s)f(s, x(s), x'(s))ds

te[6,1-0]J o

> Mejlol G(s, s)o(s)f(s, x(s), x'(s))ds

> My| Ax |,

therefore, A(K) c K.
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Now, let us prove A : K — K 1is completely continuous. For each
n > 1 define the operator A, : K — C[0, 1] by

n-1

(A,x) () = ILT G(t, s)o(s)f(s, x(s), x'(s))ds, x e K, t €[0,1]. (2.7)

By (A7), (Ag) and the Arzela-Ascoli theorem, we know that A4, : K —
C[0, 1] is completely continuous. By (2.4), we have

| (Ax)(2) - (Apx) (2) |

S
= [ 66, 5)6l6)16, x(5) £+ [, G, o). 3(5), 36

n

1
< .[on G(s, s)o(s)f(s, x(s), x'(s))ds + ;G(s, s)o(s)f(s, x(s), x'(s))ds,

n
and so

1
| Ax — Apx || < | " G(s, s)o(s)f(s, x(s), x'(s))ds
0

[ 1 GG, )ol6)f(s, +(s), xs))ds.

n

Assumptions (A1), (Ag) and the absolute continuity of integral imply that
lim || Ax — Apx || = 0,
then A is completely continuous.
3. Main Results

3.1. One positive solution

Theorem 3.1. Assume that (A1)-(A4) hold, then BVP (1.1) has at

least one positive solution.
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Proof. By (A3), there exist ¢, >0 and r > 0 such that for all
t e[0,1],

f@ x, y) <Ly —e))(|x|+|y]), O0<|x|+]|y|<n. (3.1)

Let Q) ={x € X :||x| <nr}. Then, by (3.1), for any x € o N K,

we get

1
| Ax] = max [ Gt $)ols)(s, x(s). '()ds

< Iol G(s, s)o(s)f(s, x(s), x'(s))ds
1
< (L - 81)]0 G(s, s)o(s) (| x(s) | + | x'(s)|)ds
1
< (Ly —e))| x| j | 26(s. s)ols)ds

1 1
= Ll’"lj. 2G(s, s)o(s)ds — 2817‘1.[ G(s, s)o(s)ds
0 0

<rn =|x].
By (Ay), there exist 1, > 0 and &9 > 0 such that

f(t7 X, y)2(82+a1)|(x, y)l’ |(x7 y)ler’ tEEl‘

Let ry > 1, Qo ={x € X :|(x, )| < r»}. By (Ay), for any x € 6Qy N K,

we have

| Ax | = Ax@ _ j ;G(% sjq)(s) £(s, x(s), '(s))ds
> -[El G(%, s)(p(s)f(s, x(s), x'(s))ds

2 (ez v 1) [ 655 )ole) (1 +66) | +] €6 s
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\%

My(eg + aq)ry JEl G(%, s)cp(s)ds

1 1
= rpnMgoy J.El G(E’ sj o(s)ds + rpMyeo IEI G(E, s) o(s)ds

> ry,

therefore, for any x € Q4 (1 K. From (3.3), (3.4) and Lemma 2.1, A has a
fixed point x € K such that 0 < <| x| <r. It is clear that x is a

positive solution of BVP (1.1).

Remark. From the above process of proof, we know that BVP (1.1)
has a positive solution under the assumptions (A;)-(Ay4).

Corollary 3.2. Assume that (A1), (Ag), (Ajs), and (Ag) hold, then
BVP (1.1) has at least one positive solution.
Proof. By (45), there exist r3 > 0 and ¢3 > 0 such that L; —e3 > 0,

thus for any ¢ < [0, 1],

£t x, ) < (Ly —e3)| (x, 3)|, | (x, )] =73

Set
M = sup f x, ),
0<| (x, y) [<7$,t€[0,1]
then
flt, x, y) < My +(Ly —e3)| (%, 9)|. (x, ) [0, ©)x[0, »), ¢ <[0,1]

(3.2)
Let rg3 > max{ré, é‘f—l}, Qg ={x:||x| <r3}. By (38.2), for any x € 6Qg
3

NK, t €0, 1], we have

Ax(0) = [ Glt, s)olo)1, +(s), (6)ds

< [ . 910(5) 0 + (L~ 53)) (| 5(5) |+ ¥(6) s
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IA

1 1
(Ly —eg)r3 .[0 2G(s, s)o(s)ds + My .[0 G(s, s)o(s)ds

1 1
r3L1I 2G(s, s)o(s)ds + (M, - 27‘383)J‘ G(s, s)o(s)ds
0 0

IA

r3 =[x,
therefore, we get
| Ax | <[lx].
By (Ag), there exist 7, > 0 and g4 > 0 such that
ft %, 5) 2 By +e4)| (x, ¥)|, 0<|(x, y)| <1y, teEy.
Let ry <ry Qp = fx e Xt x| <)

For any x € Q4 N K, we have

| Ax | = Ax(%) = J‘OIG(%, s)(p(s)f(s, x(s), x'(s))ds
> (ea B [ G55 )0(6) ( 566) ] 56 )

> (e + 0 [, 65 5)ol6) 12| + | (s) s

[\

Mpilx [ G5 s )oe)ds + Mosall x| |65 s ols)ds

= r4B1M9j‘E G(%, s)(p(s)ds + r4M9£4IE G(%, sj o(s)ds

\Y

ry = x|,
hence

| Ax | =],

then, by Lemma 2.1, A has a fixed point x € K such that 0 <ry < | x|

< rg. It is clear that x is a positive solution of BVP (1.1).
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3.2. A priori estimate

Next, we give a priori estimate for positive solutions of BVP (1.1).

Theorem 3.3. If
£t x, x')

lim
\ xx)\_mte[o 1] |(x x') |

(3.3)

then there exists Cy > 0 such that || x | < Cy, for all positive solutions x

of BVP (1.1).

Proof. Assume that by contradiction there exists a sequence of
solution {x,} < K of BVP (1.1) such that x, — o. Without loss of

generality, we may assume that | x, | - «. From the assumption (3.3),

we can take a sequence of real numbers o, — « such that

fs, x,5) % (5))

% (8) + 27,(s)

n.

1

I > 3 3) = [ 6(5 5)ole)te. x(o) xi)ds

[\

J.le_e G(é’ S)‘P(S)f(s, %, (8), x5,(s))ds

y J. 16_9 G@ ’ S) 9(s) f(inf;)(i)xz?s(; D (s)ds

> Mol 63 )ole) [ Enlol xaD g,

AOREAC)

which together with (3.4), implies that

N Mej G(%, sj(p(s)ds > 0,
1-6

Ap

which is a contradiction.
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