Advances in Differential Equations and Control Processes
Volume 1, Number 1, 2008, Pages 13-23
Published Online: April 16, 2008
This paper is available online at http://www.pphmj.com © 2008 Pushpa Publishing House

POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR SECOND ORDER TWO POINT BOUNDARY VALUE PROBLEMS

YAN SUN
Department of Mathematics
Shanghai Normal University
Shanghai 200234
People's Republic of China
e-mail: ysun@shnu.edu.cn

Abstract

By applying upper and lower solution method, this paper deals with the existence of positive solutions for a class of singular boundary value problems. Sufficient conditions are obtained that guarantee the existence of positive solutions. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.

1. Introduction

In this paper, we consider the following singular boundary value problem:

$$
\left\{\begin{array}{l}
-x^{\prime \prime}(t)=\varphi(t) f\left(t, x(t), x^{\prime}(t)\right), \quad t \in(0,1), \tag{1.1}\\
a x(0)-b x^{\prime}(0)=0, c x(1)+d x^{\prime}(1)=0,
\end{array}\right.
$$

where $f:[0,1] \times[0, \infty)^{2} \rightarrow[0, \infty)$ is continuous, $\varphi:(0,1) \rightarrow[0, \infty)$ is continuous and may be singular with $t=0$, and/or $t=1, a, b, c, d \geq 0$ such that $\rho:=a c+a d+b c>0$.

2000 Mathematics Subject Classification: 34A34, 34B15, 45G15, 45J05, 34K30.
Keywords and phrases: existence, fixed point, upper and lower solutions, positive solution.

Boundary value problems arise from applied mathematical sciences, and they received a great deal of attention in the literature. Most of the available literature on singular boundary value problems (for instance [1,3-6]) discuss the case where f is either continuous or a caratheodory function by using fixed point theorems and fixed point index theory and so on. Recently some papers such as $[1,3,5,6]$, by using approximating method or upper-lower solution approach, investigate the special case of (1.1).

The aim of this paper is to investigate the existence of positive solutions of BVP (1.1) in a Banach space. The interesting point is the nonlinear term f involved with the first-order derivative explicitly. The techniques used in this paper are a specially constructed cone, and the fixed point theorem of cone expansion and compression.

This paper is organized as follows: In Section 2, some preliminaries are given. In Section 3, we are devoted to our main results.

2. Preliminaries and Some Lemmas

Let $G(t, s):[0,1] \times[0,1] \rightarrow[0,+\infty)$ is Green's function for

$$
\left\{\begin{array}{l}
-x^{\prime \prime}(t)=0, \tag{2.1}\\
a x(0)-b x^{\prime}(0)=0, c x(1)+d x^{\prime}(1)=0,
\end{array}\right.
$$

that is

$$
G(t, s)=\frac{1}{\rho} \begin{cases}(b+a s)(c+d-c t), & 0 \leq s \leq t \leq 1, \tag{2.2}\\ (b+a t)(c+d-c s), & 0 \leq t \leq s \leq 1 .\end{cases}
$$

Denote

$$
\begin{aligned}
& f^{\alpha}=\lim _{|(x, y)| \rightarrow \alpha} \frac{f(t, x, y)}{|(x, y)|}, \quad \alpha=0, \text { or } \alpha=\infty, \\
& f_{\beta}=\liminf _{|(x, y)| \rightarrow \beta} \frac{f(t, x, y)}{|(x, y)|}, \quad \beta=0, \text { or } \beta=\infty, \\
& |(x, y)|=|x|+|y| .
\end{aligned}
$$

Clearly

$$
\begin{align*}
& G(t, s) \geq 0, \quad(t, s) \in[0,1] \times[0,1] \tag{2.3}\\
& G(t, s) \leq G(s, s), \quad(t, s) \in[0,1] \times[0,1] \tag{2.4}\\
& G(t, s) \geq M_{\theta} G(s, s), \quad(t, s) \in[\theta, 1-\theta] \times[0,1] \tag{2.5}
\end{align*}
$$

where

$$
M_{\theta}=\min \left\{\frac{d+\theta c}{c+d}, \frac{b+\theta a}{a+b}\right\}<1
$$

Let $X=C[0,1]$ be a Banach space endowed with the norm

$$
\|x\|=\max \left\{\max _{0 \leq t \leq 1}|x(t)|, \max _{0 \leq t \leq 1}\left|x^{\prime}(t)\right|\right\}
$$

Definition 2.1. Let E be a real Banach space. Then a nonempty convex closed set $P \subset E$ is said to be a cone provided that
(i) $\lambda u \in P$ for all $u \in P$ and all $\lambda \geq 0$ and
(ii) $u,-u \in P$ implies $u=0$.

Note that every cone $P \subset E$ induces an ordering in E given by $x \leq y$ if $y-x \in P$.

Definition 2.2. An operator is called completely continuous if it is continuous and maps bounded sets into precompact sets.

Definition 2.3. A function x is said to be a solution of BVP (1.1) if $x \in C^{1}[0,1] \cap C^{2}(0,1)$ satisfies BVP (1.1), in addition, x is said to be a positive solution if $x(t)>\theta$ for $t \in(0,1)$ and x is a solution of BVP (1.1).

Definition 2.4. A function $\alpha(t)$ is called a lower solution, if $\alpha(t) \in$ $C^{2}(0,1) \cap C^{1}[0,1]$ and satisfying

$$
\left\{\begin{array}{l}
-\alpha^{\prime \prime}(t) \leq \varphi(t) f\left(t, \alpha(t), \alpha^{\prime}(t)\right), \quad t \in(0,1) \tag{2.6}\\
a \alpha(0)-b \alpha^{\prime}(0) \leq 0, c \alpha(1)+d \alpha^{\prime}(1) \leq 0
\end{array}\right.
$$

Upper solution is defined by reversing the above inequality signs. If there exist a lower solution $\alpha(t)$ and an upper solution $\beta(t)$ for the BVP (1.1) such that $\alpha(t) \leq \beta(t)$, then $(\alpha(t), \beta(t))$ is called a couple of upper and lower solutions for the BVP (1.1).

For convenience, we list the following assumptions:
$\left(\mathbf{A}_{1}\right) \varphi \in C((0,1),[0,+\infty))$ and $0<\int_{0}^{1} G(s, s) \varphi(s) d s<+\infty$;
$\left(\mathbf{A}_{2}\right) f \in C([0,1] \times[0,+\infty) \times[0,+\infty),[0,+\infty))$;
($\left.\mathbf{A}_{3}\right) 0 \leq f^{0}<L_{1}, L_{1}=\left(2 \int_{0}^{1} G(s, s) \varphi(s) d s\right)^{-1} ;$
(\mathbf{A}_{4}) There exist a positive constant α_{1} and Lebesgue measurable sets $E_{1} \subset[0,1]$ such that $\alpha_{1}<f_{\infty} \leq+\infty$, uniformly for $t \in E_{1} \subset[0,1]$ a.e. and $M_{\theta} \alpha_{1} \int_{E_{1}} G\left(\frac{1}{2}, s\right) \varphi(s) d s \geq 1, \forall E_{1} \subset[0,1]$;
$\left(\mathbf{A}_{5}\right) 0 \leq f^{\infty}<L_{1} ;$
(\mathbf{A}_{6}) There exist a positive constant β_{1} and Lebesgue measurable sets $E_{2} \subset[0,1]$ such that $\beta_{1}<f_{0} \leq+\infty$, uniformly for $t \in E_{2} \subset[0,1]$ a.e. and $M_{\theta} \beta_{1} \int_{E} G\left(\frac{1}{2}, s\right) \varphi(s) d s \geq 1, \forall E \subset E_{2}$.

Remark. By $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$, there exists $t_{1} \in(0,1)$ such that $\varphi\left(t_{1}\right)>0$. Thus there exists $\theta \in\left(0, \frac{1}{2}\right)$ such that $\int_{\theta}^{1-\theta} G\left(\frac{1}{2}, s\right) \varphi(s) d s>0$.

Let

$$
K=\left\{x \in X: x(t) \geq 0, t \in[0,1], \min _{t \in[\theta, 1-\theta]} x(t) \geq M_{\theta}\|x\|\right\} .
$$

It is easy to know that K is a cone of X. Define an operator $B: K \rightarrow$ $C[0,1]$ by

$$
B x(t)=\int_{0}^{1} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s, \quad t \in[0,1] .
$$

Obviously, the existence of positive solutions for BVP (1.1) is equivalent
to the existence of fixed points of the operator equation $B x=x, x \in$ $C[0,1]$.

Lemma 2.1. Let X be a Banach space, and let P be a cone in X. Assume that Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$. Let A : P $\cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ be a completely continuous operator, satisfying either
(i) $\|A x\| \leq\|x\|, \quad x \in P \cap \partial \Omega_{1}, \quad\|A x\| \geq\|x\|, \quad x \in P \cap \partial \Omega_{2}$,
or
(ii) $\|A x\| \geq\|x\|, \quad x \in P \cap \partial \Omega_{1}, \quad\|A x\| \leq\|x\|, \quad x \in P \cap \partial \Omega_{2}$.

Then A has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Lemma 2.2. Assume that $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ hold, then $A(K) \subseteq K$ and $A: K \rightarrow K$ is completely continuous.

Proof. By (2.4), for all $t \in[0,1]$, we get

$$
\begin{aligned}
(A x)(t) & =\int_{0}^{1} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{1} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s,
\end{aligned}
$$

then

$$
\|A x\| \leq \int_{0}^{1} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s .
$$

For any $x \in K$, we know by (2.5) that

$$
\begin{aligned}
\min _{t \in[\theta, 1-\theta]}(A x)(t) & =\min _{t \in[\theta, 1-\theta]} \int_{0}^{1} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq M_{\theta} \int_{0}^{1} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq M_{\theta}\|A x\|,
\end{aligned}
$$

therefore, $A(K) \subseteq K$.

Now, let us prove $A: K \rightarrow K$ is completely continuous. For each $n \geq 1$ define the operator $A_{n}: K \rightarrow C[0,1]$ by

$$
\begin{equation*}
\left(A_{n} x\right)(t)=\int_{\frac{1}{n}}^{\frac{n-1}{n}} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s, \quad x \in K, t \in[0,1] . \tag{2.7}
\end{equation*}
$$

By $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ and the Arzela-Ascoli theorem, we know that $A_{n}: K \rightarrow$ $C[0,1]$ is completely continuous. By (2.4), we have

$$
\begin{aligned}
& \left|(A x)(t)-\left(A_{n} x\right)(t)\right| \\
= & \int_{0}^{\frac{1}{n}} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s+\int_{\frac{n-1}{n}}^{1} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
\leq & \int_{0}^{\frac{1}{n}} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s+\int_{\frac{n-1}{n}}^{1} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s
\end{aligned}
$$

and so

$$
\begin{aligned}
\left\|A x-A_{n} x\right\| \leq & \int_{0}^{\frac{1}{n}} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& +\int_{\frac{n-1}{n}}^{1} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s
\end{aligned}
$$

Assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ and the absolute continuity of integral imply that

$$
\lim _{n \rightarrow \infty}\left\|A x-A_{n} x\right\|=0
$$

then A is completely continuous.

3. Main Results

3.1. One positive solution

Theorem 3.1. Assume that $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$ hold, then BVP (1.1) has at least one positive solution.

Proof. By $\left(\mathrm{A}_{3}\right)$, there exist $\varepsilon_{1}>0$ and $r_{1}>0$ such that for all $t \in[0,1]$,

$$
\begin{equation*}
f(t, x, y) \leq\left(L_{1}-\varepsilon_{1}\right)(|x|+|y|), \quad 0 \leq|x|+|y| \leq r_{1} . \tag{3.1}
\end{equation*}
$$

Let $\Omega_{1}=\left\{x \in X:\|x\|<r_{1}\right\}$. Then, by (3.1), for any $x \in \partial \Omega_{1} \cap K$, we get

$$
\begin{aligned}
\|A x\| & =\max _{t \in[0,1]} \int_{0}^{1} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{1} G(s, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \leq\left(L_{1}-\varepsilon_{1}\right) \int_{0}^{1} G(s, s) \varphi(s)\left(|x(s)|+\left|x^{\prime}(s)\right|\right) d s \\
& \leq\left(L_{1}-\varepsilon_{1}\right)\|x\| \int_{0}^{1} 2 G(s, s) \varphi(s) d s \\
& =L_{1} r_{1} \int_{0}^{1} 2 G(s, s) \varphi(s) d s-2 \varepsilon_{1} r_{1} \int_{0}^{1} G(s, s) \varphi(s) d s \\
& <r_{1}=\|x\| .
\end{aligned}
$$

By $\left(\mathrm{A}_{4}\right)$, there exist $r_{2}>0$ and $\varepsilon_{2}>0$ such that

$$
f(t, x, y) \geq\left(\varepsilon_{2}+\alpha_{1}\right)|(x, y)|, \quad|(x, y)| \geq r_{2}, \quad t \in E_{1} .
$$

Let $r_{2}>r_{1}, \Omega_{2}=\left\{x \in X:\|(x, y)\|<r_{2}\right\}$. By (A_{4}), for any $x \in \partial \Omega_{2} \cap K$, we have

$$
\begin{aligned}
\|A x\| & \geq A x\left(\frac{1}{2}\right)=\int_{0}^{1} G\left(\frac{1}{2}, s\right) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq \int_{E_{1}} G\left(\frac{1}{2}, s\right) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq\left(\varepsilon_{2}+\alpha_{1}\right) \int_{E_{1}} G\left(\frac{1}{2}, s\right) \varphi(s)\left(|x(s)|+\left|x^{\prime}(s)\right|\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \geq M_{\theta}\left(\varepsilon_{2}+\alpha_{1}\right) r_{2} \int_{E_{1}} G\left(\frac{1}{2}, s\right) \varphi(s) d s \\
& =r_{2} M_{\theta} \alpha_{1} \int_{E_{1}} G\left(\frac{1}{2}, s\right) \varphi(s) d s+r_{2} M_{\theta} \varepsilon_{2} \int_{E_{1}} G\left(\frac{1}{2}, s\right) \varphi(s) d s \\
& \geq r_{2}
\end{aligned}
$$

therefore, for any $x \in \partial \Omega_{2} \cap K$. From (3.3), (3.4) and Lemma 2.1, A has a fixed point $x \in K$ such that $0<r_{1}<\|x\|<r_{2}$. It is clear that x is a positive solution of BVP (1.1).

Remark. From the above process of proof, we know that BVP (1.1) has a positive solution under the assumptions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$.

Corollary 3.2. Assume that $\left(\mathrm{A}_{1}\right)$, $\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{5}\right)$, and $\left(\mathrm{A}_{6}\right)$ hold, then BVP (1.1) has at least one positive solution.

Proof. By $\left(A_{5}\right)$, there exist $r_{3}^{\prime}>0$ and $\varepsilon_{3}>0$ such that $L_{1}-\varepsilon_{3}>0$, thus for any $t \in[0,1]$,

$$
f(t, x, y) \leq\left(L_{1}-\varepsilon_{3}\right)|(x, y)|, \quad|(x, y)| \geq r_{3}^{\prime} .
$$

Set

$$
M_{1}=\sup _{0 \leq|(x, y)| \leq r_{3}^{\prime}, t \in[0,1]} f(t, x, y),
$$

then

$$
\begin{equation*}
f(t, x, y) \leq M_{1}+\left(L_{1}-\varepsilon_{3}\right)|(x, y)|, \quad(x, y) \in[0, \infty) \times[0, \infty), \quad t \in[0,1] \tag{3.2}
\end{equation*}
$$

Let $r_{3}>\max \left\{r_{3}^{\prime}, \frac{M_{1}}{2 \varepsilon_{3}}\right\}, \Omega_{3}=\left\{x:\|x\|<r_{3}\right\}$. By (3.2), for any $x \in \partial \Omega_{3}$ $\cap K, t \in[0,1]$, we have

$$
\begin{aligned}
A x(t) & =\int_{0}^{1} G(t, s) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \leq \int_{0}^{1} G(s, s) \varphi(s)\left(M_{1}+\left(L_{1}-\varepsilon_{3}\right)\right)\left(|x(s)|+\left|x^{\prime}(s)\right|\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(L_{1}-\varepsilon_{3}\right) r_{3} \int_{0}^{1} 2 G(s, s) \varphi(s) d s+M_{1} \int_{0}^{1} G(s, s) \varphi(s) d s \\
& =r_{3} L_{1} \int_{0}^{1} 2 G(s, s) \varphi(s) d s+\left(M_{1}-2 r_{3} \varepsilon_{3}\right) \int_{0}^{1} G(s, s) \varphi(s) d s \\
& \leq r_{3}=\|x\|
\end{aligned}
$$

therefore, we get

$$
\|A x\| \leq\|x\|
$$

By $\left(\mathrm{A}_{6}\right)$, there exist $r_{4}>0$ and $\varepsilon_{4}>0$ such that

$$
f(t, x, y) \geq\left(\beta_{1}+\varepsilon_{4}\right)|(x, y)|, \quad 0 \leq|(x, y)| \leq r_{4}, \quad t \in E_{2}
$$

Let $r_{4}<r_{3}, \Omega_{4}=\left\{x \in X:\|x\|<r_{4}\right\}$.
For any $x \in \partial \Omega_{4} \cap K$, we have

$$
\begin{aligned}
\|A x\| & \geq A x\left(\frac{1}{2}\right)=\int_{0}^{1} G\left(\frac{1}{2}, s\right) \varphi(s) f\left(s, x(s), x^{\prime}(s)\right) d s \\
& \geq\left(\varepsilon_{4}+\beta_{1}\right) \int_{0}^{1} G\left(\frac{1}{2}, s\right) \varphi(s)\left(|x(s)|+\left|x^{\prime}(s)\right|\right) d s \\
& \geq\left(\varepsilon_{4}+\beta_{1}\right) \int_{E_{2}} G\left(\frac{1}{2}, s\right) \varphi(s)\left(|x(s)|+\left|x^{\prime}(s)\right|\right) d s \\
& \geq M_{\theta} \beta_{1}\|x\| \int_{E} G\left(\frac{1}{2}, s\right) \varphi(s) d s+M_{\theta} \varepsilon_{4}\|x\| \int_{E} G\left(\frac{1}{2}, s\right) \varphi(s) d s \\
& =r_{4} \beta_{1} M_{\theta} \int_{E} G\left(\frac{1}{2}, s\right) \varphi(s) d s+r_{4} M_{\theta} \varepsilon_{4} \int_{E} G\left(\frac{1}{2}, s\right) \varphi(s) d s \\
& \geq r_{4}=\|x\|
\end{aligned}
$$

hence

$$
\|A x\| \geq\|x\|
$$

then, by Lemma 2.1, A has a fixed point $x \in K$ such that $0<r_{4}<\|x\|$ $<r_{3}$. It is clear that x is a positive solution of BVP (1.1).

3.2. A priori estimate

Next, we give a priori estimate for positive solutions of BVP (1.1).
Theorem 3.3. If

$$
\begin{equation*}
\lim _{\left|\left(x, x^{\prime}\right)\right| \rightarrow \infty} \max _{t \in[0,1]} \frac{f\left(t, x, x^{\prime}\right)}{\left|\left(x, x^{\prime}\right)\right|}=+\infty \tag{3.3}
\end{equation*}
$$

then there exists $C_{0}>0$ such that $\|x\| \leq C_{0}$, for all positive solutions x of $B V P(1.1)$.

Proof. Assume that by contradiction there exists a sequence of solution $\left\{x_{n}\right\} \subseteq K$ of BVP (1.1) such that $x_{n} \rightarrow \infty$. Without loss of generality, we may assume that $\left\|x_{n}\right\| \rightarrow \infty$. From the assumption (3.3), we can take a sequence of real numbers $\alpha_{n} \rightarrow \infty$ such that

$$
\begin{gather*}
\frac{f\left(s, x_{n}(s), x_{n}^{\prime}(s)\right)}{x_{n}(s)+x_{n}^{\prime}(s)} \geq \alpha_{n} \tag{3.4}\\
\left\|x_{n}\right\| \geq x_{n}\left(\frac{1}{2}\right)=\int_{0}^{1} G\left(\frac{1}{2}, s\right) \varphi(s) f\left(s, x_{n}(s), x_{n}^{\prime}(s)\right) d s \\
\geq \int_{1-\theta}^{\theta} G\left(\frac{1}{2}, s\right) \varphi(s) f\left(s, x_{n}(s), x_{n}^{\prime}(s)\right) d s \\
\geq \int_{1-\theta}^{\theta} G\left(\frac{1}{2}, s\right) \varphi(s) \frac{f\left(s, x_{n}(s), x_{n}^{\prime}(s)\right)}{x_{n}(s)+x_{n}^{\prime}(s)} x_{n}(s) d s \\
\geq M_{\theta}\left\|x_{n}\right\| \int_{1-\theta}^{\theta} G\left(\frac{1}{2}, s\right) \varphi(s) \frac{f\left(s, x_{n}(s), x_{n}^{\prime}(s)\right)}{x_{n}(s)+x_{n}^{\prime}(s)} d s
\end{gather*}
$$

which together with (3.4), implies that

$$
\frac{1}{\alpha_{n}} \geq M_{\theta} \int_{1-\theta}^{\theta} G\left(\frac{1}{2}, s\right) \varphi(s) d s>0
$$

which is a contradiction.

References

[1] R. P. Agarwal and D. O'Regan, Singular boundary value problems for superlinear second order ordinary and delay differential equations, J. Differential Equations 130(2) (1996), 333-355.
[2] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin 1985.
[3] L. H. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal. 46 (2001), 974-986.
[4] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc., New York, 1988.
[5] Y. H. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus, J. Differential Equations 174(2) (2001), 420-441.
[6] R. Y. Ma, Positive solutions of singular second-order boundary value problems (in Chinese), Acta Math. Sinica (Chin. Ser.) 41(6) (1998), 1225-1230.

