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Abstract

The numerical Monte Carlo method for finding the solution of a linear
system has the cost of computations based on the necessary length of
applied Markov chains. In this paper, by resuming the previous work
[4], we show under the covering property in our Markov chain that we
can increase the efficiency of the Monte Carlo method in comparison to

the standard Monte Carlo method introduced previously.

1. Introduction

As in the previous paper [4], we consider the linear system

Bx = f, (1)
where B is a given nonsingular matrix, f = (£, fa, ..., fn)t is a known
vector and x = (xq, Xg, ..., X, )t is the solution vector that we are looking

for. If we consider matrix M™" such that MB =1 -T, Mf =c, then
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the linear system (1) is converted to
B+ o) 2)
where T™" is a given nonsingular matrix. It is well known that
P <|T] <1, 6)

where p(T') is the spectral radius of matrix 7 and |7 |, = maxj<;<,

n
Z| tij |, the x® tends to the exact solution x = (I - T)_lc [1]. The inner
=1

product of x and h = (hy, hy, ..., h,)e R" is defined by (h, x) = hx;

+hgxg + -+ + h,x,. This inner product when h =(0,0,...,0,1,0,...,0) is
%‘/—1
13

xj, i.e., (h, x) = xj, which is the ith element of the solution vector. With
Markov chain iy — i; — -~ — i}, of the sample state S = {1, 2, ..., n}

which it will select the rows of columns indices of the matrix A, with

initial distribution p; = P (Markov chain starts at iy<S), and for
mef{l,2,..,n—1} one step transition probability function 1is
pij = P(ips1 = jliy = 1) [2]. For solving the linear system (1) by Monte
Carlo method, we consider transition probability matrix P = [p;]; ;.

Under the following conditions:

n
Z p;i =1,
i=1

n

Zpl]:1’ i:1,2,...,n
j=1

piZO,pijZO, i’j:1’2"“’n

hi¢0—>pi>0, i:1,2,...,n

T; #0->p; >0, i,j=12..,n
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T T T T, .
We define W, = —00°0%2 " “mlim anq oo, Smelim oy
Digiy Pirig -+ Pipy i, Pipy im,

bk
Np(h) = pl.o > Wyb; . It has been proved that E[n(h)] = <h ZTmb>

0 m=0 m=0
= (h, x(k+1)> [4]. Since ny(h) is an unbiased estimator of (A, x(k+1)), we
can introduce the Monte Carlo estimator based on i(()s) _ i{s) _ igs) _

RN i,(es), s=1,2,...,N. We have 0,(h)= N Zn (h) (h, x(k+1)>
s=1

k
& S W, h W) _
m’ 0 wit m

ios) m=0

where for s=1,2, ..., N, n;f)(h) =

T T -+ To) 60 ) )
2=l W' =1 and @ (h) = 57 Zn (R) 3. E[ny(h)]

p(s) P ) - Pils) ) ’

= fim E[n,(h)] = lim (h, D) = (b, x). O4le)) = N Zﬂ(s)(e~) =

—>w
s=1

~ x;. For obtaining the element x; of solution vector x, we simulate N

random paths j — i{s) N i;s) S i}(f), s=1,2 ..., N. Then we have
T. \Ts)s) - Tiis) (s
W) = 3 WOBE wich wl) = A B gy
p )
et PP s) - Pfo) )

above Monte Carlo method is called standard (or basic) Monte Carlo

method.

2. Optimized Monte Carlo Method
It has been discussed in [4] that how we can reduce the nIN random
paths to N paths. We just have a quick review of the concept of this aim.
Definition 1. For a Markov chain with sample state S ={1,2,...,n},
the random path l(s) - il(s) T ig) is called covering if each state

Jj € S can be visited at least once.
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Definition 2. Let j € S be an arbitrary state of a Markov chain.
Then the first time that Markov chain visit j, i.e., R; = min,{¢:i, = i}, is
called the hitting time to state j. In this way, for j =1, 2, ..., n, we can
reach to the all unbiased estimators my(e;). We first consider the

covering  path: iy > i = > ig, > > ip > gy, where

R = max {R;} = max min{¢:i, = j} and & is an integer number. For every
1<j<n 1<j<n

j=1,2,...,n, we consider a subpath with length % as
Rj+k

iRj - iRjJrl - iRjJrk, now we set T(e;)= Zmeim, where
m:Rj

T.

leiRj+lTiRj+liRj+2 o T%m—lim

W, =

W, =1.
lelej+1lej+lle+2 e Piy i,

Theorem 1. Under the above conditions, we have E[nk(e )] = x(}”rl)

[4].

N
Theorem 2. var[©;(e;)] = var[(:)k(ej)], where Op(e;) = Z S)(e

N
and C:)k(ej) = Z (s)(e )for j=1,2,...,n [4].

3. Increasing the Efficiency of the Method

In this section, we compare the efficiency of two methods and discuss
here based on [3, 4]. For simplicity of this comparison and bringing them
to our analysis, the method of the Monte Carlo without covering property
(usual Monte Carlo method) is considered as method (1) and the Monte
Carlo method based on covering property is considered as method (2). We

remember that the method (1) has ©y(e;) = Zn (e ), as the Monte

Carlo estimator and the method (2) has @k(e )= — N ZE[(n(s)(ej ))2(ej)
s=1

as the Monte Carlo estimator for X; of the solution vector x.
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Definition 1. Let ©(e;) and O(e ;) are two Monte Carlo estimators

for the parameter 6. Then the efficiency of ©(e i) respect to @y(e;) is
t MSE[@k(e])]

= = , where t, 7 show the necessary length of

defined by ¢ =

Markov chains to reach the estimation for x;. We recall that for any

estimator Y of 0, we have MSE[Y]= E[Y - 0]” = var[Y]+[E[Y]- 6. Then

we have

Definition 2. For two unbiased estimators ®;(e;) and (:)k(ej) of x;,
t var(@p(e;))

the efficiency of @k(ej) respect to O (e;) is defined by & = ———=——,
t var(O(e;))

where ¢t and 7 are the necessary lengths of Markov chains to reach the

Monte Carlo estimation for x ; using methods (1) and (2), respectively.

Without loss of generality, we consider N =1, then with regards to

¢

Theorem 1, var (0y(e;)) = var (C:)k(ej )) therefore, we have ¢ = =. In this

Nll

case in method (1), we use n paths with length %, then the total lengths
used in these paths is equal to nk. But, in method (2), we use only one
path with length (max{R;})+% with average E[max{R;}]+k. For
1<j<n 1<j<n
n>1, we prove that the inequality nk > E[1n<1a<x{Rj}]+k is valid. To
<j<n

prove this inequality we prove that nk-k > E[max{R;}] or k> E
1<j<n

[max {R;}]/n —1. Tt proves that whenever k is bigger than E[max
1<j<n 1<j<n

{Rj}]/n 1, the method (2) is more efficient than the method (1).

Selecting a suitable starting point of the Markov chain and using in
method (2), we can reduce the cost of computation. In needs just, we
select the starting point of chain iy =/ such that R = E[max {R;}|ij = (]

1<j<n

. 1 ig=1
= min E|lmax{R;}|iyp = [|. In this manner, we set p; = . .
1<ig<n [ WBydlio = 1] Piy {0 ig # 1

Then we prove the following theorem:
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Theorem 3. In a covering Markov chain (as discussed above), if

k > E[max {R;}]/n -1, then the covering method is more efficient than
1<j<n

the standard Monte Carlo method.

4. Conclusion

The method (2) in Theorem 3 is more efficient than the basic Monte

Carlo method. Then to reduce the Monte Carlo computation using

covering Markov chain we use the second algorithm discussed in [4] and

this paper.
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