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Abstract 

This paper explores some basic properties of mixture periodic 
autoregression with periodic ARCH errors (MPAR-ARCH), extending 
the MAR-ARCH model of Wong and Li [10], to capture the periodicity 
feature in the autocorrelation structure exhibited by many nonlinear 
time series. Our main focus is to provide the first and second moment 
periodic stationary conditions of this model. Furthermore, conditions for 
the existence of the fourth moments are established for some particular 
interesting cases. Closed-forms of these moments are obtained. MLE is 
carried out via the iterative EM algorithm, performance of which is 
shown via a simulation. 

1. Introduction 

It is recognized that autoregressive conditionally heteroskedastic 
(ARCH) models introduced by [5] and their generalized GARCH version 
[1] are the most used representations for modeling time-varying volatility 
exhibited by many financial time series. Various extensions of ARCH-
type models have been proposed in the econometric literature in order to 
capture different additional features such as long memory and change in 
regime, while keeping stationarity. Other formulations intend to account 
for non stationarity by allowing the ARCH parameters to be time-varying 
[3]. In particular, the class of GARCH models with periodic time-varying 
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parameters (PGARCH) introduced by [2] has shown to be appropriate for 
capturing periodicity in the stochastic conditional variance, a property 
that cannot be explained neither by the classical linear ARMA nor by the 
GARCH formulations. Franses and Paap [6] have combined the periodic 
AR (PAR) characterization with the PGARCH one to capture the 
periodicity in both the conditional mean and conditional variance, leading 
to the so-called PAR-PGARCH model which they successfully applied it to 
financial data. However, these models are shown to be inconsistent with 
other features exhibited by many time series with periodic structure, in 
particular the financial one, such as high kurtosis, outliers and extreme 
events. In order to capture these phenomena, Wong and Li [10] have 
proposed their mixture AR-ARCH. In the spirit of Wong and Li’s 
formulation [10], our aim is to propose a model that is able to represent 
time series with periodicity as well as the mentioned features in both the 
conditional mean and conditional variance. Specifically, we propose a 
mixture of periodic autoregression with periodic ARCH error (MPAR-
ARCH). Our model extends the mixture periodic autoregressive (MPAR) 
model proposed by [8] in which the conditional mean follows a mixture 
periodic AR. We then study some probabilistic properties of the proposed 
model such as second-order periodic stationarity, the existence of the 
finite moments and maximum likelihood estimation via the iterative EM 
algorithm. 

The rest of this paper is organized as follows. In Section 2, we propose 

the class of mixture periodic AR-ARCH models. Section 3 studies the first 
and second moment stationary conditions. The explicit forms of these 

moments are, under these conditions, derived. In Section 4, conditions for 
the existence of the fourth moments are established for some particular 

interesting cases and the explicit forms of these fourth moments are 
obtained. In Section 5, parameter estimation is carried out by the 

maximum likelihood via the iterative EM algorithm. The performance of 

this algorithm is shown via simulation study in the last section. 

2. Mixture Periodic AR-ARCH Model 

Recall that a stochastic process { }Z∈tyt ;  is said to have a periodic 

AR representation with periodic ARCH error of orders p and q and period 
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S (denoted by )),,(- qpARCHPAR S  if it is given by 
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where { }Z∈ζ tt ,  is a sequence of independent and identically normally 

distributed (i.i.d.) random variables, with mean zero and unit variance, 

and where tF  denotes, as usual, the σ-algebra representing the available 

information up to time t. The parameters ti,φ  and tj,β  are periodic in t, 

with period S, i.e., pitirSti ...,,0,,, =φ=φ +  and ,,, tjrStj β=β +  qj ...,,0=  

such that 0,0 >β t  and .,,...,,1,0, Z∈∀=≥β rtqjtj  

The model MPAR-ARCH that we propose may be seen as mixture of 

models of type (2.1). The stochastic process { }Z∈tyt ;  is then said to 

have a mixture of K-component PAR-ARCH with period S and orders 

,...,,,;...,,, 2121 KK qqqppp  denoted by ( ;,...,,;- 21 KS pppKARCHMPAR  
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where ( ).Φ  and ( )1. −tF F  are, respectively, the cumulative distribution 

function of the standard Gaussian distribution and the conditional 

cumulative distribution of ty  given the past information. As in (2.1), the 

parameters ( )k
ti,φ  and ( )k

tj,β  are periodic in t, with period S, i.e., ( ) =φ +
k

rSti,  

( ),,
k
tiφ  kpi ...,,0=  and 

( ) ( ) Kkqj k
k
tj

k
rStj ...,,1,...,,0,,, ==β=β +  and ., Z∈rt  
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To avoid the possibility of zero or negative conditional variances, the 

ARCH parameters are set to be nonnegative, that is, ( ) 0,0 >β k
t  and 

( ) Kkqj k
k
tj ...,,1,...,,1,0, ==≥β  and .Z∈t  The constants ,kλ  ,...,,2,1 Kk =  

are strictly positive real numbers such that ∑ =
=λ

K
k k1

.1  

For mathematical purposes kp  and kq  can be taken as constants in k 

merely set ,max kk
pp =  kk

qq max=  and take ( ) 0, =φ k
ti  for kpi >  and 

( ) 0, =β k
tj  for .kqj >  

3. First and Second Moment Stationary Conditions 

A standard problem which usually arises in studying the recurrence 

equations (2.2) is to search conditions for the existence of a first and/or 

second moment stationary solution. We first discuss conditions on the 

coefficients kλ ’s and ( )k
ti,φ ’s which guarantee the existence of a stationary 

solution to equations (2.2) with finite first moments. 

A. First moment stationary condition 

It is easily seen that the unconditional mean, ( ),tyE  of the process 

{ }Z∈tyt ,  satisfying the model (2.2), is given by 

( ) ( ) ( )∑ = −µ+==µ
p

i ititt tatayE
10 ,:  (3.1) 

where  

( ) ( )∑ =
=φλ=

K

k
k
tiki pita

1 , ....,,1,0,  

Thus, the unconditional periodic mean satisfies a periodic 

nonhomogeneous linear difference equation of order p. 

In this subsection, we establish a necessary and sufficient condition 
for the linear difference equation (3.1) to have a finite solution. That is 

the first moment stationary condition for a general ( ,;- 1pKARCHMPAR S  



MIXTURE PERIODIC AUTOREGRESSION WITH PERIODIC … 223

)KK qqqpp ...,,,;...,, 212  model. For this purpose, defining the following 

pp ×  matrices TA ,0  and TA ,1  given by 

( ) ( )
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and letting S  be a positive integer such that Sp  is the least common 

multiplier of p and the S, one can see that the matrices TA ,0  and TA ,1  

are periodic, in T, with period .S  Using these notations, we are able to 

state the following result. 

Proposition 3.1. The process { }Z∈tyt ;  satisfying the   

( )KKS qqqpppKARCHMPAR ,...,,;...,,,;- 2121  

model is periodically stationary in the first moment if and only if the roots 

of the determinantal equation (of degree )max kk
pp =  

,,0 C∈=Ψ− zIz  
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1
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Furthermore, the closed-form expression of the first moment, under this 

condition, is given by 
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( ) ( ) ( )( )′+−−== − 1...,,1,, 000,1
1
,0 ppTapTapTacAAB TTTT  

and where empty product is set equal to identity. 
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Proof. (a) Necessary and sufficient condition. Defining, for 

,Z∈T  the p-variate periodic vectors ( ( ) )
′µµµ=µ −−− 11 ...,,, ppTpTpTT
 

and ( ) ( ) ( )( ) ,1...,,1, 000
′+−−= ppTapTapTacT  one can rewrite 

equation (3.1) in the p-variate S -periodic first order linear difference 

equation 

,,
1

Z∈+µ=µ
−

TCB TTTT
 (3.4) 

where the matrix TTT AAB ,1
1
,0
−=  and the vector column ,1

,0 TTT cAC −=  

with TA ,0  and TA ,1  are given by (3.2). It is worth noting that TB  and 

TC  are S -periodic such that .1 S≤≤ S  In the particular case where ,1=S  

equation (3.4) becomes a classical nonhomogeneous difference equation 

,,
1

Z∈+µ=µ
−

TCB
TT

 where B is clearly equal to .1,1
1
1,0 AA−=Ψ  A 

necessary and sufficient condition for this last nonhomogeneous 
difference equation to have a finite solution is that the roots of the 

determinantal equation (of degree p) ,0=Ψ−Iz  lie inside the unit 

disc. 

Defining, for the general case where ,1 S≤< S  for each ,Z∈T  the 

Sp -variate vectors columns 

( )′µ′µ′µ′=
τ+τ+τ+τ SSSS ...,,,

21
µ  

and 

( ) ,,...,,, 21 ZSSSS ∈τ′′′′= τ+τ+τ+τ CCCC  

one can rewrite (3.4) in the equivalent form 
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1
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where the SS pp ×  matrices V  and W  are given as follows: 
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and 
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Since the matrix V  is regular, we can rewrite (3.5) in the following 

classical nonhomogeneous difference equation of order 1 
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Therefore, a necessary and sufficient condition for this nonhomogeneous 

difference equation to have a finite solution is that the roots of the 

determinantal equation ,01 =− − WVIz  lie inside the unit disc. One can 

easily verify that the matrix WV 1−  is given by 
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It is worth noting that this condition is equivalent to that established, 

in Theorem 2.1, by [8], for a mixture PAR of order p, which corresponds to 

our particular model ( ).0...,,0,0;...,,,;- pppKARCHMPAR S  

(b) Explicit moment expression. By 1−S  consecutive replacements 

in (3.4) and taking into account the periodicity of the matrix TB  and the 

vector column ,TC  we find 
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Therefore, the periodic vector 
T

µ  is, under the condition established in 

Proposition 3.1, given by (3.3). 

Corollary 3.1. The process { }Z∈tyt ;  satisfying the  

( )KS qqqKARCHMPAR ...,,,;1...,,1,1;- 21  



MOHAMED BENTARZI and FAYÇAL HAMDI 226

is periodically stationary in the first moment if and only if 
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Proof. In this particular case where ,1=p  we have ,S=S  and the 

matrices TA ,0  and TA ,1  reduce to the scalars 1 and ( ),1 Ta  respectively. 

Consequently ( )TaBT 1=  is periodic with period S, hence the necessary 

and sufficient condition is reduced to ( ) .1
1 1 ,1 <
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same condition obtained in Theorem 2.2 by [8], for a mixture PAR of order 

1, which corresponds to our particular model SARCHMPAR- ( ,1,1;K   

).0...,,0,0;1...,  On the other hand, after 1−S  successive replacements 

in (3.1), with ,1=p  we obtain (3.6). 

B. Second moment stationary condition 

(1) Second moment stationary condition for ( ,1,1;- KARCHMPAR S  

)Kqqq ...,,,;1..., 21  process: It is easy to show that the unconditional 
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where tµ  is the unconditional mean of ,ty  and the expectation ( ( ) )2k
jtE −ε  

is given as 
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Equation (3.8) is an S-periodic nonhomogeneous linear difference equation 

of order .1+=∗ qq  To obtain a necessary and sufficient condition for this 

equation to have a finite solution, we follow the same way used in 
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obtaining periodically first-order stationary condition (Proposition 3.1). 

Indeed, let TG ,0  and TG ,1  be ,∗∗ × qq  S -periodic matrices, where S  is 

such that S∗q  is the least common multiplier of ∗q  and S, defined as 

follows: 
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Thus, a necessary and sufficient condition for a process satisfying an 

( )KS qqqKARCHMPAR ...,,,;1...,,1,1;- 21  model to be periodically 

stationary in the second moment is given by the following proposition. 
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Proof. The proof is similar to that of Proposition 3.1, and will be 

omitted. 

(2) Second moment stationary condition for ( ,2,2;- KARCHMPAR S  

)Kqqq ...,,,;2..., 21  process: In this paragraph, we establish a necessary 

and sufficient condition for the process { }Z∈tyt ,  satisfying (2.2), with 

.2max == kk
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In this last equation, our aim is to eliminate 
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For this purpose, it is clear that 

( ) ( ) 101 −−−−− µ−= jtjtjt jtayyE  

( ) ( ) ( ) ( ),212
2

11 −−−−−− −+−+ jtjtjt yyEjtayEjta  



MOHAMED BENTARZI and FAYÇAL HAMDI 230

and by 1−S  consecutive replacements in this expression and taking into 

account the periodicity, we find 
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 (3.12) 
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t,0ϕ  
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and 

( ) ( ) ( )∑ =
==φφλ=
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k
tj

k
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1 ,,, ...,,1;...,,1,,  and ,Z∈t  

( ) ( )∑ =
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k
k
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k
k
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k
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K

k
k
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k
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k
tiklji Kkqlpjihtv

1 ,,,,, ...,,1;...,,1;...,,1,,,  

and ., Z∈ht  

Therefore, we can rewrite the nonhomogeneous linear difference equation 
(3.12) as 

( ) ( ) ( )∑ −

= −ϕ+ϕ=ϕ−
1

1
2

,,0
2

, ,1
S

i ittitttS yEyE  (3.12) 

where the coefficients Siti ...,,1,, =ϕ  are given according to values’ of S 

and q. It is worth noting that these coefficients are periodic, in time, with 
period S. Consequently, equation (3.12) is an S-periodic nonhomogeneous 

linear difference equation of order .1−=∗ Sq  

Let TG ,0  and TG ,1  be ,∗∗ ×qq  S-periodic matrices, defined as follows: 

( )
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jiT

   ....,,2,1, ∗= qji  

To obtain a necessary and sufficient condition for this equation to have a 
periodically stationary solution, we are able to state the following result. 

Proposition 3.3. Suppose that the process { }Z∈tyt ;  follows an 

( )KS qqqKARCHMPAR ...,,,;2...,,2,2;- 21  model, with ,2≥S  is 

periodically first-order stationary. 
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If ( )∏ =
≠ϕ−

S
s sS1 , 01  and ,01 2 ≠Φ−  then a necessary and sufficient 

condition for the process to be periodically stationary in the second 

moment is that the roots of the determinantal equation (of degree 

)1−=∗ Sq  

C∈=Ψ− zIz ,0  

lie inside the unit disc, where .1,1
1
1,01,1

1
1,0,1

1
,0 GGGGGG SSSS

−
−

−
−

−=Ψ  

Furthermore, the closed-form expression of the second moment, under this 

condition, is given by 
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−
∗∗∗∗ qTqTqTqTTTT cGGD  

Proof. The proof is similar to that of Proposition 3.1, hence it is 
omitted. 

Now we turn to the classical case, i.e., ,1=S  where the periodic 

coefficients difference equation (3.12) reduces to the following constant 
coefficient difference equation: 

( ) ( )∑ +

= − ϕ=ϕ−
2

1 0
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i itit yEyE  

where the coefficients ,2...,,1, +=ϕ pii  are given by 
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and 
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Corollary 3.2. A necessary and sufficient condition for a first moment 

stationary process { }Z∈tyt ;  satisfying the ( ,2...,,2,2;- KARCHMAR  

)Kqqq ...,,, 21  model, such that ( )∑ =
≠φλ

K
k

k
k1 2 ,1  to be second-order 

stationary is that the roots 221 ...,,, +qzzz  of the equation 

∑ +

=
−++ =ϕ−

2

1
22 ,0

q

i
iq

i
q zz  

lie inside the unit disc, where .max kk
qq =  Furthermore, the closed-form 

expression of the second moment is, under this condition, given by 
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Proof. The second-order stationary condition is an immediate 

consequence of (3.21). Moreover, under this condition, an expression for 

the second-order moment is given by 

( ) .1
2

10
2 






 ϕ−ϕ= ∑ +

=

q

i ityE  

Since, the mean of process, ( ),tyE=µ  can be obtained from equation 

(3.1) which reduces, for 2=p  and ( )∑ =
=φλ=

K
k

k
iki ia

1
,2,1,0,  to a 

constant coefficients equation ,021 aaa =µ−µ−µ  hence, we have 

( ).1 210 aaa −−=µ  Finally, the proof of the expression of ( )2
tyE  can be 

carried out by replacing µ by its value in the expression of .0ϕ  

Corollary 3.2 extends the result of the ( ;1...,,1,1;- KARCHMAR  

)Kqqq ...,,, 21  case to the ( )KqqqKARCHMAR ...,,,;2...,,2,2;- 21  case. 

It is worth noting that this corollary is reduced, for ( ) ,...,,1,02 Kkk ==φ  

to the well-known condition for the stationary of the second order given 

by [10] in Theorem 2. 

4. Fourth Moment Stationary Condition 

Like its counterpart for periodically second moment stationary 

condition, a necessary and sufficient condition for the existence of the 

fourth moment, ( ),4
tyE  of a second moment stationary SARCHMPAR-  

( )2...,,2,2;0...,,0,0;K  process is similar to the condition in Proposition 

3.3 but with the periodic coefficients ,...,,0,, Siti =ϕ  of matrices TG ,0  

and TG ,1  are replaced by 
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where 
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s

K

k
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sk1 1 ,22 ,  

( ) ( ) 2,1,0,
1 , =βλ= ∑ =

itd
K

k
k
tiki  
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( ) ( ) ( )∑ =
=ββλ=
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k
k
tj

k
tikji jitu

1 ,,, .2,1,0,,  

Using these notations, we are able to state the following result. 

Proposition 4.1. A necessary and sufficient condition for a        

second moment periodically stationary process { }Z∈tyt ;  satisfying an 

( )2...,,2,2;0...,,0,0;- KARCHMPAR S  model, such that 

( )∏ =
≠Ψ≠ϕ−

S

s sS1 2, 1,01   and  ,2>S   

to have a finite fourth moment is that the roots of the determinantal 

equation (of degree )1−=∗ Sq  

,,0 C∈=Ω− zIz  

lie inside the unit disc, where .1,1
1
1,01,1

1
1,0,1

1
,0 GGGGGG SSSS

−
−

−
−

−=Ω  
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Furthermore, the closed-form expression of the fourth moment, under 

this condition, is given by 

( ) ∑ ∏−
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= −
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and .,1
1
,0 TTT GGF −=  

Proof. The proof can be easily done in the same way as we did in the 

corresponding part of the proof of Proposition 3.1. 

Remark. If ,2=S  then it can be verified that 

( ) ( ) ( ) ,1 ,0
4

1,1
4

,2 ttttt yEyE ϕ+ϕ=ϕ− −  (4.1) 

where the 2-periodic coefficients ti,ϕ  are given by 
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From equation (4.1), the necessary and sufficient condition for a second 

moment periodically stationary ( )2...,,2,2;0...,,0,0;- 2 KARCHMPAR  

process to have a finite fourth moment, can be easily derived in the same 

way as we did in the proof of Proposition 3.1, where we get 

( ) ( ) .111 1,22,21,12,1 <ϕ−ϕ−ϕϕ  
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Hence, the fourth-order moment of ( )2...,,2,2;0...,,0,0;- 2 KARCHMPAR  

process is, under this condition, given by 

( ) [ ( ) ] [( ) ( ) ].111 1,1,11,2,2,01,21,0,1
4

−−−− ϕϕ−ϕ−ϕ−ϕϕ−+ϕϕ= tttttttttyE  

Corollary 4.1. A necessary and sufficient condition for a             

second moment periodically stationary process { }Z∈tyt ;  satisfying an 

( )1...,,1,1;0...,,0,0;- KARCHMPAR S  model to have a finite fourth 

moment is that 

( )∏ ∑= =
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3
1  (4.2) 

Furthermore, the closed-form of the fourth moment is, under this 

condition, given by 
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where ( )0tγ  as defined in (3.9). 

Proof. In the simple particular case where ,1=q  we have 

( ) ( ) ( ) ( ) ( ) ( ).2
3
1 4

11,1
2

11,00,0
4

−− ++= ttt yEtuyEtutuyE  

After 1−S  successive replacements, in the last equation, we obtain 
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Using (4.4), we can easily show that a necessary and sufficient condition 

for a second moment periodically stationary ( ;0...,,0,0;- KARCHMPAR S  

)1...,,1,1  process to have a finite fourth moment is as given by (4.2). 

Therefore, under the condition (4.2) we can find (4.3). 
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The following corollary establishes in one side, a necessary and 

sufficient condition for a second moment stationary classical mixture 

( )2...,,2,2;0...,,0,0;- KARCHMAR  process to have a finite fourth moment 

and in the other side the closed-form of this fourth moment. 

Corollary 4.2. A necessary and sufficient condition for a             

second moment periodically stationary process { }Z∈tyt ;  satisfying the 

( )2...,,2,2;0...,,0,0;- KARCHMAR  model, such that ( )∑ =
≠βλ

K
k

k
k1 2 ,1  to 

have a finite fourth moment is that the roots 1z  and 2z  of the equation 
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lie inside the unit disc. Furthermore, the closed-form expression of the 

fourth moment is, under this condition, given by 
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Proof. The proof is similar to that of Corollary 4.1, where it suffices 

to write ( )4
tyE  as 

( ) ( ) ( ) ,0
4
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4 ϕ+ϕ+ϕ= −− ttt yEyEyE  
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where the coefficients rϕ ’s are given by 
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5. Expectation-maximization Algorithm 

The parameters of ARCHMPAR-  model can be easily estimated 

using the EM algorithm [4], which is a broadly applicable approach to the 

iterative computation of maximum likelihood estimates. Within the 

incomplete-data framework of the EM algorithm, we let ( ...,,, 21 yyy =  

)NSNS ZZZy ...,,,, 21  and ( )NSZZZZ ...,,, 21=  denote the vector 

containing, respectively, the complete data and the missing data, where 

( )tKttt ZZZZ ,,2,1 ...,,,=  is a K-dimensional vector with component tkZ ,  

equal to 1 if the observation ty  comes from the k-th component of the 

conditional distribution function, and 0 otherwise. 
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where  x  denotes the largest integer less than or equal to x. 
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Following [9], [10], [11] and [8], for a given realization 
( )NSyyyy ...,,, 21=  of model (2.2), the log conditional likelihood 

function of the parameter vector θ  can be expressed as follows: 

( ) ( ) ( ) ( )
( )

( )∑∑
= = τ+

τ+
τ+τ+



























 ε
+−λ

π−+−
=

S

ss

K

k
k

Ss

k
Ssk

SskSskn
h

hz
NSqp

0 0

0
00

1

2

, ln
2
1ln

2
2lnθL  

( )
( )

( )∑ ∑∑
−

+τ=τ = = τ+

τ+
τ+τ+ 


























 ε
+−λ+

1

1 1 1

2

,

0

.ln
2
1ln

N S

s

K

k
k

Ss

k
Ssk

SskSsk
h

hz  (5.1) 

Let τ+τ Ssk,  denote the conditional expectation of k-th component of 

τ+SsZ  given the past information, for the current estimate ( ).iθ  Then 

τ+τ Ssk,  can be expressed, for ,...,,1 Kk =  Ss ...,,1=  and Z∈τ  as 
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where ( ).φ  is the probability density function of the standard normal 

random variable. Now we turn to the second step of the EM algorithm, 

where we suppose that the messing data are known. Then the parameter 

estimates can be obtained by equating ( ) ( ) ( )k
sinkn ,, φ∂∂λ∂∂ θθ LL  and 

( ) ( )k
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The first-order derivatives of (5.1), with respect to ( )k
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where 
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Hence the parameter estimates of λ are then given by 

∑ ++=−−
=λ

NS

qpt tkk z
qpNS 1 , ,1ˆ    for .1...,,1 −= Kk  

For sk,φ ’s and sk,β ’s, there are no explicit solutions of ( ) 0, =φ∂∂ skn θL  

and ( ) .0, =β∂∂ skn θL  For this reason, we propose to use the Newton-

Raphson method, where we need to evaluate the second derivative of the 

log-likelihood ( ).θnL  Similarly to [10], it is easy to show that the second-
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This suggests that starting with an initial value ( )0
, skΦ  and ( ) ,0

, skθ  the 

values of sk,Φ  and sk,θ  in the subsequent iterations can be given for 

Kk ...,,2,1=  and Ss ...,,2,1=  as 
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where ( )i
sk,Φ  and ( )i

sk,θ  are the values in the i-th iteration. The parameter 

estimates sk,Φ̂  and sk,θ̂  in a particular M-step iteration are obtained by 

iterating (5.2) and (5.3) until convergence. In practice, the τ+Sskz , ’s are 

set equal to the τ+τ Ssk, ’s from the previous E-step of the EM procedure. 

6. Simulation Studies 

In this section, the performances of the EM algorithm are studied.  
We have assessed on many different time series, generated from 

SPARCHMPAR-  models of different orders and periods for a variety of 

sample sizes. For each model, we consider 1000 Monte Carlo replications. 

We report here only two of these simulation studies. The true values of 

parameters of each of the considered MPAR-ARCH data-generating 

processes, the mean and standard errors of their estimates for the 1000 
replications are reported in Tables 6.1 and 6.2. 

From Tables 6.1 and 6.2, one can easily note that the EM estimation 

method has small bias. It can be also observed that the empirical 
standard errors, of parameters estimations, have reasonable values. 

Thus, the performances of the EM algorithm, in the MAR-ARCH model 

case [10], and in the MPAR model case [8], are also met in our MPAR-

ARCH case. 
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Table 6.1. Results of simulation study for an ( )1,1;1,1;2- 2ARCHMPAR  

model, with sample size 1000=NS  and number of replications equal 

to 1000 

True value  0.2500  .7500 

Mean of estimates 1λ  0.2509 2λ  .7491 
Empirical s.e.  0.0231  .0231 

True value  .6000  1.6000 

Mean of estimates ( )1
1,0φ  .6217 ( )2

1,0φ  1.5996 

Empirical s.e.  .2714  .0735 

True value  .9000  −.9000 

Mean of estimates ( )1
1,1φ  .8879 ( )2

1,1φ  −.8994 

Empirical s.e.  .1075  .0172 

True value  1.0000  .6000 

Mean of estimates ( )1
1,0β  1.0805 2

1,0β  .5926 

Empirical s.e.  .5194  .0967 

True value  .7000  .4000 
Mean of estimates ( )1

1,1β  .7126 ( )2
1,1β  .3958 

Empirical s.e.  .2662  .0326 

True value  .9000  2.0000 

Mean of estimates ( )1
2,0φ  .9037 ( )2

2,0φ  2.0023 

Empirical s.e.  .3362  .0889 

True value  .3000  .7000 
Mean of estimates ( )1

2,1φ  .3015 ( )2
2,1φ  .6994 

Empirical s.e.  .1171  .0191 

True value  1.4000  .9000 

Mean of estimates ( )1
2,0β  1.3690 ( )2

2,0β  .8890 

Empirical s.e.  .7495  .1560 

True value  .5000  .8000 
Mean of estimates ( )1

2,1β  .4986 ( )2
2,1β  .7999 

Empirical s.e.  .1285  .0009 
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Table 6.2. Results of simulation study for an ( )1,1;1,1;2- 4ARCHMPAR  

model, with sample size 2000=NS  and number of replications equal 

to 1000 

True value  0.3000      .7000 

Mean of estimates 1λ  0.3008     2λ  .6992 

Empirical s.e.  0.0226      .0226 

True value  .9000  −.9000  .7500  1.5000 

Mean of estimates ( )1
1,0φ  .9214 ( )1

2,0φ  −.9028 ( )1
3,0φ  .7282 ( )1

4,0φ  1.4782 

Empirical s.e.  .2731  .3216  .2781  .4248 

True value  .9000  .7000  −.6000  .7500 

Mean of estimates ( )1
1,1φ  .8904 ( )1

2,1φ  .6982 ( )1
3,1φ  .5998 ( )1

4,1φ  .7577 

Empirical s.e.  .0944  .0909  .1294  .1717 

True value  1.0000  5.0000  1.4000  10.0000 

Mean of estimates ( )1
1,0β  1.1353 ( )1

2,0β  4.8693 ( )1
3,0β  1.3574 ( )1

4,0β  9.9534 

Empirical s.e.  .6689  1.2082  .6867  2.0317 

True value  .5000  .4000  .9000  .3200 

Mean of estimates ( )1
1,1β  .4742 ( )1

2,1β  .3926 ( )1
3,1β  .9063 ( )1

4,1β  .3084 

Empirical s.e.  .1541  .1639  .2010  .1596 

True value  −1.0000  .2500  1.2000  −.7000 

Mean of estimates ( )2
1,0φ  −1.0083 ( )2

2,0φ  .2482 ( )2
3,0φ  1.2040 ( )2

4,0φ  −.6995 

Empirical s.e.  .1086  .1039  .0770  .1058 

True value  .3000  −.7000  .6500  .5000 

Mean of estimates ( )2
1,1φ  .3050 ( )2

2,1φ  −.6989 ( )2
3,1φ  .6498 ( )2

4,1φ  .4996 

Empirical s.e.  .0549  .0527  .0303  .0402 

True value  .9000  1.0000  .4000  .7000 

Mean of estimates ( )2
1,0β  .9163 ( )2

2,0β  1.0026 ( )2
3,0β  .4062 ( )2

4,0β  .7039 

Empirical s.e.  .2200  .1922  .0942  .1436 

True value  .7500  .4500  .5000  .9000 

Mean of estimates ( )2
1,1β  .7153 ( )2

2,1β  .4508 ( )2
3,1β  .5000 ( )2

4,1β  .8997 

Empirical s.e.  .1161  .0401  .0025  .0044 
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