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Abstract

This paper explores some basic properties of mixture periodic
autoregression with periodic ARCH errors (MPAR-ARCH), extending
the MAR-ARCH model of Wong and Li [10], to capture the periodicity
feature in the autocorrelation structure exhibited by many nonlinear
time series. Our main focus is to provide the first and second moment
periodic stationary conditions of this model. Furthermore, conditions for
the existence of the fourth moments are established for some particular
interesting cases. Closed-forms of these moments are obtained. MLE is
carried out via the iterative EM algorithm, performance of which is

shown via a simulation.
1. Introduction

It is recognized that autoregressive conditionally heteroskedastic
(ARCH) models introduced by [5] and their generalized GARCH version
[1] are the most used representations for modeling time-varying volatility
exhibited by many financial time series. Various extensions of ARCH-
type models have been proposed in the econometric literature in order to
capture different additional features such as long memory and change in
regime, while keeping stationarity. Other formulations intend to account
for non stationarity by allowing the ARCH parameters to be time-varying
[3]. In particular, the class of GARCH models with periodic time-varying

2000 Mathematics Subject Classification: Primary 62M10; Secondary 91B84.

Keywords and phrases: mixture periodic autoregressive conditionally heteroskedastic
models, periodically correlated process, periodically stationary condition, EM algorithm.

Received October 6, 2007



220 MOHAMED BENTARZI and FAYCAL HAMDI

parameters (PGARCH) introduced by [2] has shown to be appropriate for
capturing periodicity in the stochastic conditional variance, a property
that cannot be explained neither by the classical linear ARMA nor by the
GARCH formulations. Franses and Paap [6] have combined the periodic
AR (PAR) characterization with the PGARCH one to capture the
periodicity in both the conditional mean and conditional variance, leading
to the so-called PAR-PGARCH model which they successfully applied it to
financial data. However, these models are shown to be inconsistent with
other features exhibited by many time series with periodic structure, in
particular the financial one, such as high kurtosis, outliers and extreme
events. In order to capture these phenomena, Wong and Li [10] have
proposed their mixture AR-ARCH. In the spirit of Wong and Li’s
formulation [10], our aim is to propose a model that is able to represent
time series with periodicity as well as the mentioned features in both the
conditional mean and conditional variance. Specifically, we propose a
mixture of periodic autoregression with periodic ARCH error (MPAR-
ARCH). Our model extends the mixture periodic autoregressive (MPAR)
model proposed by [8] in which the conditional mean follows a mixture
periodic AR. We then study some probabilistic properties of the proposed
model such as second-order periodic stationarity, the existence of the
finite moments and maximum likelihood estimation via the iterative EM
algorithm.

The rest of this paper is organized as follows. In Section 2, we propose
the class of mixture periodic AR-ARCH models. Section 3 studies the first
and second moment stationary conditions. The explicit forms of these
moments are, under these conditions, derived. In Section 4, conditions for
the existence of the fourth moments are established for some particular
interesting cases and the explicit forms of these fourth moments are
obtained. In Section 5, parameter estimation is carried out by the
maximum likelihood via the iterative EM algorithm. The performance of
this algorithm is shown via simulation study in the last section.

2. Mixture Periodic AR-ARCH Model

Recall that a stochastic process {y;; t € Z} is said to have a periodic

AR representation with periodic ARCH error of orders p and ¢ and period
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S (denoted by PAR-ARCHg(p, q)), if it is given by

D
Y=o + zizl b;1Yi-i + &, teEL,
& = \/Egt’ @1

2 q 2
hy = E(e; /Fy—1) = Bo.s + ijlﬁj,tﬁt—jr telZ,

where {{;,t € Z} is a sequence of independent and identically normally

distributed (i.1.d.) random variables, with mean zero and unit variance,

and where F, denotes, as usual, the c-algebra representing the available
information up to time ¢. The parameters ¢; ; and B;, are periodic in ¢,
with period S, i.e., ¢; ;1,5 = ;1 =0,..., pand Bj ;.5 =Bj ] =0, ..., q
such that By, > 0 and Bj: 20, j=1,..,q, Vt, r € Z.

The model MPAR-ARCH that we propose may be seen as mixture of
models of type (2.1). The stochastic process {y;;t € Z} is then said to

have a mixture of K-component PAR-ARCH with period S and orders
D1, P9»-- PK; 91599, - A » denoted by MPAR-ARCHg(K; p1, p9,---, PK;

q1,99, .-, 4K ), if it is given by

e (k)
F(y,/Fi1) = Zkzlxkq)[ Sé(k) },

t

o =y —al) -3 Wy, e, 2.2)
UG YT

where ®(.) and F(./F,_;) are, respectively, the cumulative distribution
function of the standard Gaussian distribution and the conditional

cumulative distribution of y; given the past information. As in (2.1), the

parameters ¢§kt) and Bg.kt) are periodic in ¢, with period S, i.e., ¢§kt)+rs =

"), i=0,.., ppand ) o =p*). j=0,., g k=1, Kandt,r c Z



222 MOHAMED BENTARZI and FAYCAL HAMDI

To avoid the possibility of zero or negative conditional variances, the

ARCH parameters are set to be nonnegative, that 1is, Bg’g >0 and

pY)>0,j=1,...,q5,k=1,...K and t e Z The constants 1;, k=12,... K,

are strictly positive real numbers such that z}ilk =1

For mathematical purposes p; and qj can be taken as constants in %

merely set p = ml?x DPr, Q@ = m}gx q; and take ¢§fet) =0 for i > p, and

ngz =0 for j>qy.

3. First and Second Moment Stationary Conditions

A standard problem which usually arises in studying the recurrence
equations (2.2) is to search conditions for the existence of a first and/or

second moment stationary solution. We first discuss conditions on the

coefficients A, ’s and ¢5kt)’s which guarantee the existence of a stationary
solution to equations (2.2) with finite first moments.
A. First moment stationary condition

It is easily seen that the unconditional mean, E(y,), of the process

{v;, t € Z} satisfying the model (2.2), is given by

b= E() = ao)+ D O, 3.1)

where

K AN
)= 3 rl i 00

Thus, the wunconditional periodic mean satisfies a periodic

nonhomogeneous linear difference equation of order p.

In this subsection, we establish a necessary and sufficient condition
for the linear difference equation (3.1) to have a finite solution. That is
the first moment stationary condition for a general MPAR-ARCHg(K;p;,
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D32, s PK; 415 925 ---» Qi ) model. For this purpose, defining the following
p x p matrices Ay p and A; 7 given by

1, if i = j,

(AO,T)i,j = —aj_i(pT—i+1), if 1< j, i, ] = 1, 2, e D,

0, ifi>j,
ap_i+j(pT—i+1), if i > ],

(A7) j = (3.2)
0, if i<j

and letting S be a positive integer such that pS is the least common

multiplier of p and the S, one can see that the matrices Ay 7 and A; p

are periodic, in T, with period S. Using these notations, we are able to

state the following result.

Proposition 3.1. The process {y;;t € Z} satisfyingthe
MPAR'ARCHS(K, P1s P2, s PKs 915 925--» qK)

model is periodically stationary in the first moment if and only if the roots

of the determinantal equation (of degree p= m}?.ka)
|Iz-¥|=0, zeC,

lie inside the unit disc, where V¥ = A(},ISALSAG’IS,IALS,I~~A5’11A1,1.

Furthermore, the closed-form expression of the first moment, under this
condition, is given by

_ S-1 r-1
ET = (I - \P) lzr:() [szo BT—jJCT—V’ T e7Z, (33)

where

’

-1
My = (Hp7s MpT 15 s BpT—(p-1))»  Cr = Ap gcr,

’

B = Ag'rArp,  cp = (ag(pT), ap(pT ~1), ..., ag(pT - p +1))

and where empty product is set equal to identity.
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Proof. (a) Necessary and sufficient condition. Defining, for

T e Z, the p-variate periodic vectors By = (Mpr> Hpr-1s -oor Hpr(pfl))

and cp = (ag(pT), ag(pT - 1), ..., ag(pT - p + 1))’, one can rewrite
equation (3.1) in the p-variate S-periodic first order linear difference

equation

By = BTET_1 +Cp, T eZ, (3.4)

where the matrix Bp = A5,1TA1,T and the vector column Cp = A(}}TCT,
with Ay 7 and A; p are given by (3.2). It is worth noting that By and

Crp are S-periodic such that 1 <S < S. In the particular case where S = 1,
equation (3.4) becomes a classical nonhomogeneous difference equation
By = BET—l +C, T € Z, where B is clearly equal to ¥ = A6,11A1,1- A
necessary and sufficient condition for this last nonhomogeneous

difference equation to have a finite solution is that the roots of the
determinantal equation (of degree p) | Iz — ¥ | =0, lie inside the unit

disc.
Defining, for the general case where 1 < S < S, for each T € Z, the
pS -variate vectors columns

— ! ! ’
Bo= W Wy e Wy g)

and

’

C.=(Cise Clorser v Clsise) s TEZ,
one can rewrite (3.4) in the equivalent form

KE‘E - EEr—l +C

=1

1 e 7, (3.5)

where the pS x pS matrices V and W are given as follows:
1, if i =,
V. =<-B

—U i’

ifi=j+1, i,j=12 .S

0, otherwise,
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and
B, ifi=1landj=S5,
W, = i,j=12,..5S.
0, otherwise,

Since the matrix V is regular, we can rewrite (3.5) in the following

classical nonhomogeneous difference equation of order 1
p =Viwp +ViCc, ez
2t — =Dl — TP ’

Therefore, a necessary and sufficient condition for this nonhomogeneous

difference equation to have a finite solution is that the roots of the

determinantal equation | Iz — Z_lﬂ/ | = 0, lie inside the unit disc. One can

easily verify that the matrix Z_lw 1s given by

1—1
1 B_., ifj=S§, ..
(Z E)ij: g 8 i,j=12,..,8S
0, otherwise,

and hence we have

S-1
-1 Bs s | =1z -] =o0.

It is worth noting that this condition is equivalent to that established,
in Theorem 2.1, by [8], for a mixture PAR of order p, which corresponds to
our particular model MPAR-ARCHg(K; p, p, ..., p; 0, 0, ..., 0).

(b) Explicit moment expression. By S — 1 consecutive replacements

in (3.4) and taking into account the periodicity of the matrix By and the

vector column Crp, we find

S-1 r-1
(I — \P)ET = zr:() (szo BT—j)CT—r" T (S Z

Therefore, the periodic vector o is, under the condition established in
Proposition 3.1, given by (3.3).

Corollary 3.1. The process {y;; t € Z} satisfying the

MPAR-ARCHg4(K; 1,1, ..., 1, 1, 932, - 4K)
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is periodically stationary in the first moment if and only if

K
(k)
‘Hsl k=1 k¢ j

Furthermore, the closed-form of the first moment, under this condition, is

given by

_ zi—g[nzz(z bl JD(Z - rj, s=1,2,.., 5. (3.6)
N IR

Proof. In this particular case where p =1, we have S = S, and the

S

matrices Ay p and A; 7 reduce to the scalars 1 and a;(T'), respectively.

Consequently By = a;(T') is periodic with period S, hence the necessary

T 2 |
same condition obtained in Theorem 2.2 by [8], for a mixture PAR of order
1, which corresponds to our particular model MPAR-ARCHg (K; 1,1,

and sufficient condition is reduced to <1. It is the

., 1; 0,0, ..,0). On the other hand, after S —1 successive replacements

in (3.1), with p =1, we obtain (3.6).
B. Second moment stationary condition

(1) Second moment stationary condition for MPAR-ARCHg(K; 1, 1,
» 1 g1, g9, ..., g ) process: It is easy to show that the unconditional
second moment of the process {y,, t € Z} satisfying (2.2), with max p;, =1,

is given by
K
E(7) =D (B} + 007 + 200 0{ 1)

K
s M PEGE)

s 2

€M), tez, (3.7)
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where , is the unconditional mean of y,, and the expectation E(ayf)f)

is given as
E@M?) =08 - 200) ey + 208 04)_; —ao(t— Mwe-jr + BOE ;)

+ ¢§f”})7,~[¢§l,?fj ~2ay(t - NE(Y?;4), j=1..q andt e Z.

Therefore, replacing E(s(k )2) by its expression in (3.7), we obtain
qg+1
E(ytZ) = AO,t + szl A],tE(ytz—])v teZ, (88)
where
£ k k)2 L k), (k)2
Nt = STl - )+ TS g2,
k=1 k=1 j=1
K K
+2Z TG0\ ey ZZZk ﬁ(k) SkZ M=
k=1 k=1 j=1
& k). (k k
+22°3 1B FN0)_08F)_; - a0t - Mig-ja
k=1 j-1
and
X k
Z%k(cbit)z +p), if j=1,
k=1
K 5 K 0
Nji = kk{ﬁg B( -1, tq)lt ]+1[¢1t —j+ _2Zkl¢1,t—j+l}}’ if2<j<gq,
=1

k=1
N (

D nibY ¢1tq[1tq 2Zxk¢tq} it j=g+l.
k=1

Equation (3.8) is an S-periodic nonhomogeneous linear difference equation

of order ¢* = g + 1. To obtain a necessary and sufficient condition for this

equation to have a finite solution, we follow the same way used in
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obtaining periodically first-order stationary condition (Proposition 3.1).

Indeed, let G 7 and Gy be ¢" xg", S-periodic matrices, where S is

such that ¢*S is the least common multiplier of ¢* and S, defined as

follows:
1’ 1f l = j,
(Go, 1), = _Ajfi,q*Tfiﬂ’ if i <j,
0, if i > j, i,j=12..qg".
Grr); i = Aq*—i+j,q*T—i+1’ if iz,
S o, if i<,

Thus, a necessary and sufficient condition for a process satisfying an
MPAR-ARCHg4(K; 1,1, ..., 1; ¢4, q9, .-, g ) model to be periodically

stationary in the second moment is given by the following proposition.
Proposition 3.2. A necessary and sufficient condition for a
periodically first-order stationary process {y;;t e Z} satisfying an
MPAR-ARCHg4(K; 1,1, ..., 1; ¢1, q9, .-, ) model to be periodically
stationary in the second moment is that the roots of the determinantal

equation (of degree q¢* = max q;,+ 1)
k
|Iz-¥|=0, zeC

lie inside the unit disc, where Y = G6,ISG1,SG6,IS—1G1,S—1"'G6,11G1,1-

Furthermore, the closed-form expression of the second moment, under this

condition, is given by

-1 S-1 r-1
sy =@ Y ([ Doty Tez @)

where

_ 2 2 2 '
ET - (E(yq*T)’ E(yq*T—l)’ see E(yq*T—q*+1))’

-1 -1
Hyp = Grioer, Dp = GorpGyr,

Ao g o AO,q*T—q*+1)’

CT = (Ao’q*Ta
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Proof. The proof is similar to that of Proposition 3.1, and will be

omitted.

(2) Second moment stationary condition for MPAR-ARCHg(K; 2, 2,

w2,91,99,..,9g ) process: In this paragraph, we establish a necessary

and sufficient condition for the process {y;, t € Z} satisfying (2.2), with

p= m]?x P = 2. In this case, it is easy to show that the unconditional

second moment of y;, is given by

K
BOZ) =Y 101 + 200000, + 26000 o +BY))

where

K
+ Zk:l kk(¢§]f,:)2E(yif2—1) + ¢(2}522E(yt2—2) + 2¢§'f2¢gf3E(yt_1yt_z )

K qk k k
DI ZH G (3.10)

>

EEM2) = o) - 200 ey + 20808 i+ 208 0% i

+E(y7 i)+ ¢§]ft)_2jE(yt2— i)+ ¢(2kt)_2 jE(ytZ— i—2)— 2¢§ﬁ)_ B jja)

+ 2¢§]ft)_j¢(2]?2_jE(yt—j—lyt—j—2) - 2¢(2l?2_jE(yt—jyt—j—2)-

In this last equation, our aim is to eliminate

and

E(yt,jyt,jfl)i E(yt—jyt—j—z)

E(yt—j—1yt—j—2 )-

For this purpose, it is clear that

E(yi—jyi-j1) = aolt = )wy—ja

+ay(t - )EWE ;1) + ag(t = E_j 15— j-2),
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and by S —1 consecutive replacements in this expression and taking into

account the periodicity, we find

E(yt—jyt—j—l)

=1 @22 H ag(t —Jj—Daglt —j-1)M—jra

ST aat i - Dare— i - NEGE ), B1D)

1—@2

where

o -TT" a0 -T. [Zlexkq)(z’fl j

To calculate E(yt—j—lyt—j—z), it is enough to replace ¢ by ¢t —1 in (3.11).

On the other hand, we can easily show that
E(yt—jyt—j—Z)

=ag(t—j)e—jg +a2(t—j)E(yt2—j—2)

al(t—J)z H ot —j—-1-Daglt —j-r=Dp_j_,_9

1- @,

L alt-j) Z H’ Yaglt—j—1-1)ayt - j—r —1)E(y2 " jor-2)-

1-d,

Thus, from (3.10) we find, after some algebraic manipulation and taking

into account the periodicity, that
2
E(y;)

= 9o,; + b1 (O)E(E ) + by o () E(yE 2)

£ dOEGE ) + va, j(t =3, OB 1)

Jj=1

q . . .
+2 an (=, 0) = 2e 50— J, st~ DEGT j-2)
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Y a0 22 )
_2ZJ 12 H aglt = j—1) 1,]'(15—1i t_)(;)lz(t—J—r)E(yizjrl)
+22 _12 H St—j—1-1) 1z](t—j,ltziéit—j—r—l)E(ytz_j_r_z)

o et (t-j)ay(t-j-r-1)
_ZZ, 12 H az(t—J—l 1) o, E(y? ;s),

(3.12)

where

Do,

= by, o(t) + dp(t) + ijl V0,0, = J, 1)+ 2bg 1 () sy + 260 2(t)1y_g
- 22311 eo, it —J, huy_j + 22311 vo,1,; — J, - j1
_2Z] 12 H = 1) .5 jit_)(g)z(t_j_r)ut—j—r—l
+2Zk lz B(k 00,1 j¢ _jMe-j2 22 92, —Jjst)ag(t = j)uej-s

Z Hr : Z(t—l—l)blQ(t)%(t_r_l)ut_r_z

vy g j(t—j, t)agt—j-r-1)

~ \e2,j(t=i.t)ar (t-j)aglt—j-r-1)
ZZ] 12 H 2(t-j-1-1) 1-0, Hi—j—r-2
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and
b j(t) = Zle o) i j =1, pi k=1, K and t€Z,
d;(t) = Zszl Bl =1 ..qgk=1.,Kandtez
ei,j(t,h)=ZkK=1kk¢§ﬁ)B§.’f}L, i=1.p;j=L..q;k=1..,K and t,heZ
v j,1(t, h) = Z;xk¢§ﬁ)¢g’ft’ﬁ§f2, Lj=l.opl=1.,qk=1.,K

and ¢, h € Z.

Therefore, we can rewrite the nonhomogeneous linear difference equation
(3.12) as

S-1
2 2
(- 05,0 EGD) = 000+ D, 05 B, (3.12)
1=1
where the coefficients ¢; ;, i =1, ..., S are given according to values’ of S

and q. It is worth noting that these coefficients are periodic, in time, with
period S. Consequently, equation (3.12) is an S-periodic nonhomogeneous

linear difference equation of order ¢* = S — 1.

Let Go 1 and Gy be ¢ xq", S-periodic matrices, defined as follows:

1_(ps’t’ 1fl:.]’
(GO,T)i,j =170 i if i < j,
0, ifi>j, i,j=12 ..,q"
@ L kLo if i > ],
—i+j,q T—i+1
(Gyp),j =1 ¢ irhaToin? =m0
0, if i < j,

To obtain a necessary and sufficient condition for this equation to have a

periodically stationary solution, we are able to state the following result.
Proposition 3.3. Suppose that the process {y;;t € Z} follows an

MPAR-ARCHg4(K; 2, 2, ..., 2, q1, Q9, ---» qg) model, with S > 2, is

periodically first-order stationary.
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If Hil(l—(ps’s);to and 1 - ®q = 0, then a necessary and sufficient

condition for the process to be periodically stationary in the second
moment is that the roots of the determinantal equation (of degree
q¢"=S-1

|Iz-¥|=0, zeC

lie inside the unit disc, where Y = G6,ISG1,SG6,IS—1G1,S—1 -~-G6’11G171.

Furthermore, the closed-form expression of the second moment, under this

condition, is given by

~1 S-1 r-1
ap = -¥) Zr:O(Hj:O DT,j)HTfr, T eZ,

where

Tp = (E(yz* )9 E(y2 )’ eeey E(y2

’, Hp = Giloc ,
T ST Toqte1) T = Gr,0¢T

’

1
Dy = Go/rGyr,  cr = ((po,q*T’ Po,q*r1 7 (PO,q*T—q*+1)'

Proof. The proof is similar to that of Proposition 3.1, hence it is
omitted.

Now we turn to the classical case, 1.e., S =1, where the periodic

coefficients difference equation (3.12) reduces to the following constant

coefficient difference equation:

2 p+2 2
EGP) =Y wEG) = o,

where the coefficients ¢;, i = 1, ..., p + 2, are given by
b1 +dy, ifi=1,
bio—e11 o
b22+0111+d2+2—a1, 1fl=2,
B sdy 1_(1)2
01,2"_2 —62"_2(11 —e]_’ -1 . .
_ di +U11,i-1 TV2,2,i-2 *262,1'_202 +2 : : : a, if 3<i<q,
0; = 1-d,
U1,2,g-1 —€2,q-191 —€1,¢4 o
Ul,l,q + 0272,‘1_1 *26‘27[]_1(12 +2 1-o Qap, if i = q +1,
— P2
U1,2,g —€2,q%1 o
Ug 9,q — 269,409 +2—"—"""—aqy, ifi=qg+2,
a a 1-,
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and

q by o
Py = bo’o + dO + Zj:l UO,O,j + 2(1)0,1 +bO,2 + 1= (1)2 aoJu

+2Z v R i S N N Y
j=1 Vo,1,j — 02] l_q)z 2,7 |40 |H-

Corollary 3.2. A necessary and sufficient condition for a first moment
stationary process {y;;t € Z} satisfying the MAR-ARCH(K; 2, 2, ..., 2,

q1, 99, -, Q) model, such that szzlkkd)(Qk);tl, to be second-order

stationary is that the roots zy, zg, ..., 24,9 of the equation

q+2 s
29+2 _Z' ) (Pi2q+2 i_o,
1=

lie inside the unit disc, where q = m;:lx qy. Furthermore, the closed-form

expression of the second moment is, under this condition, given by

E(y})
PNV SeR IR S ST o
1- Zp+2 o;
X 12“ a6+ 1>B<k’)(zz‘_mk¢sk>)
(-2 - f 3 el - o)
+2(2K OO0 + o ﬂ(Zk -1 (k)) 22} 1zk1 B} (z;}‘kq’gk)jz
3 (EIRNCL —¢<2k>>)
+2(Zf_lk NG j(sz17‘ ¢(k)] _22 Zk 1 ¢(k)B(k)(Z,§17\k¢gk))2
(*Ziﬂk% j(l_zf:(pi)(l_z RECE (k)))

([ o) (et B )
WS Y W




MIXTURE PERIODIC AUTOREGRESSION WITH PERIODIC ... 235

Proof. The second-order stationary condition is an immediate
consequence of (3.21). Moreover, under this condition, an expression for

the second-order moment is given by

E(y}) = (Po/(l Sy (Pij-

Since, the mean of process, u = E(y,), can be obtained from equation
3.1) which reduces, for p =2 and a; = >~ a0, i=01,2 t
(3.1) which reduces, for p =2 an ai_zk=1 r0; 510=0,1,2, to a
constant coefficients equation p-aqpu—agu = ay, hence, we have
n=ay/(1-a; —ay). Finally, the proof of the expression of E(y?) can be
carried out by replacing p by its value in the expression of @g.

Corollary 3.2 extends the result of the MAR-ARCH(K;1,1,..,1;
q1, 99, -, Qi ) case to the MAR-ARCH(K; 2, 2, ..., 2; q1, q9, -.., g ) case.

It is worth noting that this corollary is reduced, for ¢(2k) =0,k=1,.. K,

to the well-known condition for the stationary of the second order given

by [10] in Theorem 2.
4. Fourth Moment Stationary Condition

Like its counterpart for periodically second moment stationary

condition, a necessary and sufficient condition for the existence of the
fourth moment, E(yt4), of a second moment stationary MPAR-ARCHg
(K;0,0,...,0;2,2,...,2) process is similar to the condition in Proposition
3.3 but with the periodic coefficients ¢; ;, i = 0, ..., S, of matrices Gg 7

and Gy r are replaced by
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Bug,o () + 6ug 1 (¢) E(y7 1)+ 6ug 2 () E(y72)
S r-1 . -
e u1,2(t)zr:1(Hj:1 dalt - ])) do(t-r)E(y2,,) Hi=0
1- ¥, ’
[ 8-1 _
u1,2(t)d1(t)l_[._ dy(t - J)
B () +2 - , ifi=1,
’ 1- ¥,
Pit=yr
’ 1,5 (0)d1 (¢ 1) N
3_uZ’2(t)+ 2T , ifi= 2,
. i-2 .
u1,2(t)d1(t_H‘l)Hj:ldz(t—]) -
6 1_\}12 ’ 1f3SlSS—1,
S-2 .
ul,z(t)(H 4_1d2(t —]))dl(t +1)
6 5 ifi=S
1_\{12 ’ ’
where
S K
= (%)
Y2 = Hs=1 (Zkzl }LkBZ,s)’
dit) =3 ap®, i-0,12
l(t) - Zk:l kBi,t’ 1=0,1,
and

K Kalk)
u; j(t) = Zkzl kkﬁg,t)ﬁg',t)’ i,j=0,1 2.
Using these notations, we are able to state the following result.

Proposition 4.1. A necessary and sufficient condition for a
second moment periodically stationary process {y;;t € Z} satisfying an

MPAR-ARCHg4(K; 0, 0, ..., 0; 2, 2, ..., 2) model, such that

S
- # 0, 21 an > 2,
||1(1 Ss)#0, ¥y #1 and S > 2

S=

to have a finite fourth moment is that the roots of the determinantal
equation (of degree ¢* = S —1)
|Iz-Q|=0, zeC,

lie inside the unit disc, where Q = Ga,lsGl,SG(;,lelGl,Sfl G6,11G1,1-
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Furthermore, the closed-form expression of the fourth moment, under

this condition, is given by

_ S-1 r-1
§T = (I — Q) lzrzo (H]:O FT—j)DT—r’ T e Z,

where

Ep = Coops oo g oo Eopgrig) s & = EG),

’

_ -1 —
DT = GO,TQT’ QT = (‘Po’q*T, (PO,q*Tfl’ ceey (PO,q*qu*Jrl)

and FT = G(;,ITGI,T'

Proof. The proof can be easily done in the same way as we did in the

corresponding part of the proof of Proposition 3.1.

Remark. If S = 2, then it can be verified that

a- (Pz,t)E(ny) = (P1,tE(yt4—1) + 904> (4.1)

where the 2-periodic coefficients ¢; , are given by

Uy, 9(t)do(t — 1)
s o)+ 6 20 g 20| E07)
2 if i =0,
Uy, 9(t)dg(t —1)dy(t)
+ 6{ L Y + 1 1(t) E(y}y),
- ¥y
Pit =
' 6uy o(t)dy(t —1)dy (t) + 3y 1 (1) i1
1- ¥, L5 v
6uy o(t)dy (t — 1) o
W - 3u2’2(t), lf 1= 2.

From equation (4.1), the necessary and sufficient condition for a second
moment periodically stationary MPAR-ARCH4(K; 0,0, ..., 0; 2, 2, ..., 2)
process to have a finite fourth moment, can be easily derived in the same

way as we did in the proof of Proposition 3.1, where we get

| 01,2011/ —9g2)1—0g7)] <1.
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Hence, the fourth-order moment of MPAR-ARCH,4(K;0,0,...,0;2,2, ..., 2)

process is, under this condition, given by

4
E(y;) = [(Pl,t(PO,t—l +(1- (Pz,t—l)(PO,t]/[(l - (Pz,t)(l - (PZ,tfl) - (Pl,t(Pl,t—l]'
Corollary 4.1. A necessary and sufficient condition for a
second moment periodically stationary process {y;; t € Z} satisfying an
MPAR-ARCHg4(K;0,0,...,0;1,1,...,1) model to have a finite fourth

moment is that

H;(Z B<k)2j (;)S (4.2)

Furthermore, the closed-form of the fourth moment is, under this

condition, given by

§3r*l[r_12x @2}][2% B(k)z [

-0 =0 k=1
E(y})=" :

ARl B ,]vmm)}

k=1

T St

j=1 \ k=1

(4.3)

where v,(0) as defined in (3.9).
Proof. In the simple particular case where ¢ = 1, we have

S B = o,0(0) + 2001 (VEGE 1) + 1 1 (0BG ).

After S — 1 successive replacements, in the last equation, we obtain

S
I:]. - H 3u1’1(s)
s=1

E(y})

S-1 r-1
= z 3r+1[H up 1 (t - J')J [uo,0(t = 1)+ ug 1 (t = 1) E(y{ 1)) (4.4)

r=0 j=0

Using (4.4), we can easily show that a necessary and sufficient condition
for a second moment periodically stationary MPAR-ARCHg(K;0,0,...,0;
1,1,...,1) process to have a finite fourth moment is as given by (4.2).

Therefore, under the condition (4.2) we can find (4.3).
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The following corollary establishes in one side, a necessary and
sufficient condition for a second moment stationary classical mixture
MAR-ARCH(K;0,0,...,0;2,2,...,2) process to have a finite fourth moment

and in the other side the closed-form of this fourth moment.

Corollary 4.2. A necessary and sufficient condition for a

second moment periodically stationary process {y;;t € Z} satisfying the
MAR-ARCH(K; 0, 0, ..., 0; 2, 2, ..., 2) model, such that Z]Ie{:17‘kﬁ(2k) #1, to

have a finite fourth moment is that the roots z; and zy of the equation

K K
DRSS D)
2 _ K (k)2 _ kK (k)2 ( k=1 k=1 ~
‘ 3(2k=17¥k61 jz 3 Zk=1}%62 * 1 ZK 2 B(k) =0
T L P2

lie inside the unit disc. Furthermore, the closed-form expression of the

fourth moment is, under this condition, given by

3
K (k)j( K ) (k)j
1-3 EK (B2 4 )2 (Zkzlkkﬁl > BB
(BT By )+ 2
- 1‘ZK 2By
k=1

K K
ZK p2 4o (Zkzl xkﬁgk)j (ZH xksg’*)(ﬁﬁ’“) 4 B(Zk))j
X k +
k=1 0 1 Zszl xk(ﬁﬁk) + B(2k))

E(y!) =

(Zszl Kkﬁgk)f(zk[{:l kkng)B(zk)j
(S RTr) ( ra|

Proof. The proof is similar to that of Corollary 4.1, where it suffices

+2

to write E(y}') as

E(y}) = 01E(y 1) + 02E(yi2) + 90,
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where the coefficients ¢, ’s are given by

uy, 2do .
3u00+6u01+u02+—y(0), 1fr:0,
: A

P, = 3u1’1, if r= ].,

Bug g + —— if r=2.

5. Expectation-maximization Algorithm

The parameters of MPAR-ARCH model can be easily estimated
using the EM algorithm [4], which is a broadly applicable approach to the

iterative computation of maximum likelihood estimates. Within the

incomplete-data framework of the EM algorithm, we let y = (V15 Y9» ves
YNSs Z1, Zo, -y Zng) and  Z =(Zy, Zy, ..., Zys) denote the vector

containing, respectively, the complete data and the missing data, where

Zy =(Zy4» Zoy, - Zg ) is a K-dimensional vector with component Z,
equal to 1 if the observation y; comes from the k-th component of the

conditional distribution function, and O otherwise.
Let Q = (L’, (Di’]_, 9'1’1, ceey q)i,S’ 6'1’3, @’271, 6'2,1, veey q)’z’s, 6'2,8, ceey

@k 1, 0% 1, ... Px. 5, 0% g) such that

(Dk,s = ((I)g?)s’ ¢§_}i2’ ey ¢(k) )'9 ek,s = (Bgf)s’ Bg_]iz’ ey B(k) )

Pk, s qk, S

and
L=, Ag)s

let also t=s+1S for s=1,..,8,t=0,1,.., N-1 and p+q+1
=5y +710S for 1 < s <8,

Lp +g+1J, ifSO =S 0, if s > 505
0T prg+1 and Tl:{ 1, if
LTJ—l, ifSO =S To + L s <38,

where [x] denotes the largest integer less than or equal to x.
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Following [9], [10], [11] and [8], for a given realization
y =(y1, ¥2, -» ¥yNg) Of model (2.2), the log conditional likelihood

function of the parameter vector 6 can be expressed as follows:

S K (k)2
- _ NS)In(2 1 S5t
£, ()= P+a . )In(2n) 33 zk,s+&0[1nxk —E[lnhg’?&o + ?Z) OD

5=5( k=1 S+S‘E0

N-1 S K \ £(1)2
DI S+S{ln o, ——[m h® +§+)STD (5.1)
t=19+1 s=1 k=1 S+S‘E

Let tj g, denote the conditional expectation of k-th component of

Zg,s. given the past information, for the current estimate B(i) Then

1, s+5: can be expressed, for k=1, ..., K, s=1,..,S and t € Z as

2 { o) } / 20) { &M ]
Tk, s+St = Z
, i i k= v !
\/hgj-)Sr 0( \/hs+Sr 0( ! \/hs+Sr 9( )) \/hs+Sr 9( ))

where ¢(.) is the probability density function of the standard normal

random variable. Now we turn to the second step of the EM algorithm,
where we suppose that the messing data are known. Then the parameter

estimates can be obtained by equating 0L,(0)/0A, 8£n(Q)/8d)§ks) and

8£n(9)/855~ki tozerofor i = 0,1, ..., pp, j=0,1, ..., qpand k =1, ..., K.

The first-order derivatives of (5.1), with respect to ij, (I)Eks) and Bg-kg,

constrained by Zle Ap =1, are, respectively, given for s =1, ..., S by

NS
oL,,(0) _ Z (Zk_,t 3 ZK,t} k=1 .., K-1,

A"
- k
aﬁn(g) _ Nzlzk s+t h.glj—)S‘r {Sg}j—)é‘t _ 1\] _ Fk,s+5t¢ .(9+)Sr agglj—)S‘r
k k k k k ’
o) Senllse ool (nls Ml

k=1 .,K;i=0,.. pp,

k k)2
_ Zk S+S‘C .§+)S‘|: 1- Sng)S‘E =1 .. K: _] —
aB B2 o) | nll)

i,s =71 s+S1: s+St

O, s qps
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where
on®) v as®)
s+St _ 2: koo(k) ““s+St=j (k) =
=9 BY fori =1, ..., pp,
k i—1"Js k s+St—j
oy I ]
k k k
ah.§+)S‘r -1 asg+)S‘r 1 asg+)S‘c _ fori=1
(k) - L (k) - ) (k) - yS+ST—L B pk
aB s a(b ,S a(l)i,s
and
AL
s+St _ (k)2 -
—22T — ¢ . for j =1, .., q.
k s+St—j
0B

Hence the parameter estimates of A are then given by

A NS
kk:;E zpy, for k=1,.., K-1.
NS — p — q &=t=p+q+1 ™

For ¢, ;’s and B ¢’s, there are no explicit solutions of 9L, (0)/8¢; s = 0
and 0L,(0)/By s = 0. For this reason, we propose to use the Newton-

Raphson method, where we need to evaluate the second derivative of the
log-likelihood £, (0). Similarly to [10], it is easy to show that the second-

order derivatives of the log-likelihood with respect to the parameters ¢Eks)
and Bﬁkl can be approximated, for £k =1,..., K and s =1, ..., S, by the

following quantities:

k k k k
azﬁn(g) ~ _ZN_I 2k 548 1 ah‘gﬁ-)Sr ah’g+)S‘r " 1 68.(9+)Sr a£g+)Sr
k k = »S+OT k)2 k k k k k ’
R P IR
., J=0,.. pp,
k k
62[,”@) ~ _ZN_l Zk,s+St ah’ng)S-c ah’g+)S‘c i,j=0 ap
k k = k)2 k k) ’ > ’
opleps) ol opl opf)
0L, (0 : .
—”L)~0 1=0,..,pp, J=0,..q

aon)
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This suggests that starting with an initial value CDggo)s and 95{0)8, the

values of ®; ; and 0j ; in the subsequent iterations can be given for

k=12 ..,K ands=1,2,..., S as

o) = o) + %J o aﬁnJ . 5.2)
ot g | [ 7ne Lo
and
-1
o) = o) | e J o M"J PR ANCE
R W e YR

where CDS) . and Gg) ; are the values in the i-th iteration. The parameter

estimates @ ks and ék,s in a particular M-step iteration are obtained by
iterating (5.2) and (5.3) until convergence. In practice, the zj ¢, g ’s are

set equal to the t; ¢, g;’s from the previous E-step of the EM procedure.

6. Simulation Studies

In this section, the performances of the EM algorithm are studied.
We have assessed on many different time series, generated from
MPAR-PARCHg models of different orders and periods for a variety of

sample sizes. For each model, we consider 1000 Monte Carlo replications.
We report here only two of these simulation studies. The true values of
parameters of each of the considered MPAR-ARCH data-generating
processes, the mean and standard errors of their estimates for the 1000

replications are reported in Tables 6.1 and 6.2.

From Tables 6.1 and 6.2, one can easily note that the EM estimation
method has small bias. It can be also observed that the empirical
standard errors, of parameters estimations, have reasonable values.
Thus, the performances of the EM algorithm, in the MAR-ARCH model
case [10], and in the MPAR model case [8], are also met in our MPAR-
ARCH case.
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Table 6.1. Results of simulation study for an MPAR-ARCH,(2;1,1;1,1)

model, with sample size NS = 1000 and number of replications equal
to 1000

True value 0.2500 .7500
Mean of estimates M 0.2509 Aoy 7491
Empirical s.e. 0.0231 .0231
True value .6000 1.6000
Mean of estimates ¢$)1)1 6217 ¢E)2)1 1.5996
Empirical s.e. 2714 .0735
True value .9000 -.9000
Mean of estimates ¢§1)1 8879 ¢§2{ _.8994
Empirical s.e. .1075 .0172
True value 1.0000 .6000
Mean of estimates 38)1 1.0805 B2 1 5926
Empirical s.e. 5194 .0967
True value .7000 .4000
Mean of estimates B§1)1 7126 [352{ 3958
Empirical s.e. .2662 .0326
True value .9000 2.0000
Mean of estimates ¢8)2 9037 ¢§)2)2 2.0023
Empirical s.e. .3362 .0889
True value .3000 .7000
Mean of estimates ¢g1)2 3015 4)52% 6994
Empirical s.e. A171 .0191
True value 1.4000 .9000
Mean of estimates Bg)z 1.3690 BE)2)2 8890
Empirical s.e. 7495 .1560
True value .5000 .8000
Mean of estimates 13%1)2 4986 B?% 7999

Empirical s.e. .1285 .0009




MIXTURE PERIODIC AUTOREGRESSION WITH PERIODIC ... 245

Table 6.2. Results of simulation study for an MPAR-ARCH 4(2;1,1;1,1)

model, with sample size NS = 2000 and number of replications equal
to 1000

True value 0.3000 .7000
Mean of estimates  A;  0.3008 Ao  .6992
Empirical s.e. 0.0226 .0226
True value .9000 —-.9000 .7500 1.5000
Mean of estimates (1) 9914 ¢}, _og028 ¢l 7282 ¢V, 1.4782
Empirical s.e. 2731 .3216 .2781 .4248
True value .9000 .7000 —-.6000 .7500
Mean of estimates (1) g904 (1) 6982 ¢l 5998 o) 7577
Empirical s.e. .0944 .0909 .1294 1717
True value 1.0000 5.0000 1.4000 10.0000
Mean of estimates  g(1) = 1 13553 gll) 48693 B, 1.3574 B, 9.9534
Empirical s.e. .6689 1.2082 .6867 2.0317
True value .5000 .4000 .9000 .3200
Mean of estimates  g(l) 4749 (1) 3996 Bl 9063 B 3084
Empirical s.e. .1541 .1639 .2010 .1596
True value -1.0000 .2500 1.2000 —-.7000

Mean of estimates  4(2) _j o083 ¢{2) 2482 {2, 1.2040 ¢Z), 6995

Empirical s.e. .1086 .1039 .0770 .1058

True value .3000 —-.7000 .6500 .5000
Mean of estimates 2 2 2) 2
o 3050 ¢} 6089 o2 6498 ¢} 4996

Empirical s.e. 0549 0527 0303 0402
True value .9000 1.0000 .4000 .7000
Mean of estimates  (2) 9163 B2, 1.0026 B} .4062 B} .7039
Empirical s.e. .2200 .1922 .0942 .1436
True value .7500 .4500 .5000 .9000
Mean of estimates  g(2) 7153 B3) 4508 pZ 5000 B, 8997

Empirical s.e. 1161 .0401 .0025 .0044
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