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Abstract 

Methods are developed for economical quality control which are       

taken into account adjustment, inspection and deviation costs. A 

generalization of the method is given when a unit product is rejected if 

one or more characteristics are out of control under hypothesis that the 

characteristics are independent. 

1. Introduction and Notation 

The need for process regulation arises when the quality process is 
afflicted with disturbances that cause it to wander off target if no action 
is taken. In developing a model for economical quality control, therefore, 
we need a reasonably realistic representation of the deviation from  
target tZ  that would occur if no adjustment action is taken and a good 

approximation for the costs generated by the control process. 

Consider a discrete production system where a multivariate quality 

process is monitored and where the control action is taken during a 

regular time interval. 



MEKKI HAJLAOUI 194

Given a quality degree ω, the quality of the tth observed item               

is denoted by ( ) ( ( ) ( ) ( ))....,,, 21 wXwXwXw tpttt =X  It is a result of       

the quality of all the p characteristics, ( ) ( ) ( )wXwXwX tptt ...,,, 21  

simultaneously for which the target mean vector is ( )....,,, 21 pµµµ=µ  

Centering this tth observation with respect to its target value defines a 

shift vector denoted by tZ  that affects all quality characteristics. The 

zero vector is the target vector that any quality process tries to realize, 

then 

,µ−= tt XZ  (1) 

where tt XZ ,  and µ are vectors of order .1×p  

2. Disturbance Model 

The need for process regulation is revealed when the system is 

exposed to disturbances that cause it to go off target if no action is taken. 

In developing a linear and multivariate control model, a realistic 

representation is needed for the shift off target tZ  of (1) with respect to 

its reference vector of values. 

The expression of multivariate white noise ( )tpttt aaa ...,,, 21=a      

is used to denote a sequence of random vectors iid of order .1×p  The 

vector ta  specifies the innovation vector that is normally distributed, 

( )at N Ω,0~a  such that 

( )
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where aΩ  is a positive definite and symmetrical matrix with order .pp ×  

The simplest model for disturbances of a process in a state of control 

assumes that the shift vector of means is a sequence of vectorial white 

noise. Therefore, 

.tt aZ =  (3) 
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A progressive tendency to go away from the reference vector implies 

dependence between successive shifts. A more general class of models for 

a disturbance, in which shifts are dependent can be written as weighted 

sum of these innovation vectors +ψ+ψ+= −− 2211 tttt aaaZ  and iψ  

is the ith coefficient matrix of order .pp ×  An important class of such 

models is stationary models for which the shift vector of means with 

respect to the reference is 0 and its covariance matrix is a finite matrix 

.ZΩ  Particular examples are vector autoregressive stationary models of 

order p, noted ( )pVAR  of the form ,2211 tptpttt aZZZZ +ϕ++ϕ+ϕ= −−−  

in which the coefficients matrices iϕ  are chosen to fulfill the preceding 

conditions of stationarity. These stationary disturbance models suffer 

from being impractical and unrealistic ones because if the quality 

processes are left to itself and no adjustments are made, then it would 

continue to vary about the same fixed reference vector of values. 

Conversely, if the process continuously moves away from the reference 

vector, such an assumption would generate unrealistic control procedures. 

A class of nonstationary models that can represent such shifting behavior 

is the vector autoregressive integrated moving average models noted 

VARIMA and discussed by Lutkepohl [5]. The simplest and most used of 

such models is the vector integrated moving average (VIMA) defined by 

the expression ( ) ( ) ,1 tt BB aZ Θ−=− I  where I is the identity matrix and 

B is the matrix lag operator. The eigenvalues, in absolute value, of the 

coefficient matrix Θ are smaller than the unit so that the process MA is 

invertible. As shown in Reinsel [6] and under the invertibility condition 

( )∑+∞
= −

− +ΘΘ−=
1

1 ,
i tit

i
t aZZ I  then 

,ˆ
ttt aZZ +=  (4) 

where tẐ  is independent of the innovation vector ta  and is a vector 

EWMA-exponentially weighted moving average - of past observations like 

   ( ).ˆ
3

2
21 +Θ+Θ+Λ= −−− tttt ZZZZ  (5) 

This vector is characterized by the matrix of nonstationarity coefficients 

Θ−=Λ I  defined on the basis of the smoothing matrix Θ. 
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Without loss of generality, Θ is a diagonal matrix whose entry values 

are such that 10 <θ≤ j  and hence Λ is a diagonal matrix whose entries 

are taking the values .10 ≤λ< j  The coefficients ...,,, 2ΛΘΛΘΛ  in 

equation (5) form a consistent series of diagonal matrices that sum to the 
identity matrix. This simplification is to avoid cointegration phenomena 
between the shift vector components .tZ  

At time ( )1−t  according to Reinsel [6], the value of tẐ  is an estimate 

of the minimum mean square error (MMSE) for one step. As a result tẐ  

is an estimate of location of the series at time t. In particular, tẐ  is the 

MMSE forecast, at time ( ),1−t  of .tZ  By algebraic manipulation of 

equations (4) and (5) we have 

ttt ZZZ ˆˆ
1 Θ+Λ=+   and  .ˆˆ

1 ttt aZZ Λ=−+  (6) 

If a new observation vector tZ  becomes available, then the forecast 

can be updated using the recursive preceding equations (6). Unless Θ is 
very close to the identity matrix, the coefficient matrices in (5) converge 
rapidly to zero and in practice an adequate approximation to the vector 
EWMA is obtained by suitably truncating the series. 

Moreover, it is possible to deduce from (4) and (5) that the 1st 
difference of the shift vector tZ  is the 1st order vector of moving average 

process 

.11 −− Θ−=− tttt aaZZ  (7) 

From this model the process (4) may be referred to as a vector integrated 
moving average process. 

If we go backward in time and the process is not initialized, then 
summing in equation (7) gives 

∑
−

=

Λ+=
1

1

,
t

i
itt aaZ  (8) 

with Λ is a diagonal matrix such that the elements take the values 

.10 ≤λ< j  A multivariate quality process is not initialized means an 
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adjustment or a setting of the production process is perfect generating a 

forecast for the shift vector .0ˆ
1 =Z  The vector process (8) can be thought 

as an interpolation between the white noise disturbance vector (3) 

obtained when Λ tends to a zero matrix and a random walk vector model 

defined by 

∑
=

=
t

i
it

1

,aZ  (9) 

obtained when Λ is an identity matrix. 

3. Linear Multivariate Control Procedure 

In many cases, the quality process depends on several variables that 

may wander away from the reference vector. However, maintaining these 

variables at a desired level may induce high production costs that make it 

unbearable, i.e., there is no incentive for the producer to continue 

processing. So, it is important as proposed by Taguchi [9] to consider 

production costs for inspection, adjustment and shift with respect to the 

reference. 

In what follows and to simplify the notations, the ranking index of 

the characteristics will be noted in exponent. 

The procedure begins by forecasting the vector shift in quality that 

results from the production process. As shown, the shift vector tZ  is 

dependent on the vector of white noise ,ta  disturbances generator, the 

specifications of tZ  will be used to calculate, ( ),, mdC  the quality control 

cost function. Minimizing the latter function determines the quality 

control parameters. Hence 

• variation tolerance limit for each characteristic ( )wX j
t  is such that 

( ) ,j
jj

t
j
t dwXZ ≤µ−=  

• and the intervention time expressed in terms of produced units m, 

at which the quality process is adjusted. 
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According to the shift vector, ,tZ  distribution the production process is 

adjusted to maintain the quality level as near as possible to a desired and 

a fixed reference. 

The nature of the function considered and the limiting positions are 

decided on the basis of relative costs and not on the basis of statistical 

test procedures significance, hence the economical qualification. 

3.1. Hypothesis 

The economical procedure for detecting a shift in a multivariate 

quality process is based on a vector IMA process defined in (8). In fact, 

each manufactured item is inspected and the production process needs to 

be adjusted only when the quality vector tX  wanders away from the 

reference vector µ. As specified by (1), centering gives a process defined 

by equation (3). 

The monitoring of the process helps in determining when to make    

an adjustment. Each adjustment is associated with a fixed cost noted   

AC  and each inspection is associated with a fixed cost noted .IC  The 

shift of the jth characteristic with respect to its reference jµ  generates    

a proportional cost which is measured by ( ) ,2j
tZδ  where δ is a 

proportionality factor. 

If the monitoring process detects any exceeding value of the 

acceptable limit for one characteristic j such that ( ) ,j
jj

t
j
t dwXZ ≥µ−=  

a decision will be made to adjust the production process, hence the 
proportional cost is calculated on the basis of a shift detected in one 
characteristic. The adjacent hypothesis is that if an item does not satisfy 
one customer’s requirement, then this item is considered defective, 
inducing a loss to the manufacturer proportional to the observed shift. 

3.2. Observation process 

The quality is observed directly, thus there are no measurement 

errors and the values of tZ  reflect real and precise shifts in the quality 

level. The observations are taken m units apart so the observed sample   

is ,imZ  where ti ...,,2,1=  or equivalently ....,,, 21 tmmm ZZZ  Having 
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observed these vectors, we can use adequate statistical methods to obtain 

an appropriate forecasted valued vector of the future observation vector 

( ) .1 mt+Z  This vector is denoted by tmẐ  whose components are mm 21 , ZZ  

....,, tmZ  The forecasted vector of the future observation ( )mt 1+Z  depends 

on the chosen model. Inspired of proceeding models that have been 

developed, the vector tZ  is a vector of integrated moving average process 

of order one, denoted by .VIMA1  For a 1VIMA  process, the best predicted 

vector tmẐ  of ( )mt 1+Z  that minimizes the mean squared error is an 

exponentially weighted moving average vector defined by equation (5) of 

past observation vectors ....,,, 21 tmmm ZZZ  Thus, an adjustment will be 

carried out as soon as the absolute value of the jth component of the 

forecasted vector tmẐ  exceeds its quality limit, say ,jd±  for that specified 

characteristic. In other words, the production process is regulated at the 

Tth observation, where 

{ ( ) },ˆthat such...,,...,,,,1min 21
j

j
t

p
t

j
tttt dZZZZZtT ≥=≥= Z  (10) 

defining a random variable. The equation (10) implies that if ,tT =  then 

the jth characteristic exceeds the acceptable limit so the quality process is 

out of statistical control for the 1st time at the tth inspection, and the 

process accomplishes a cycle of length .Tm  

It remains, not only, how to choose the control limit ,jd  but also how 

many times the production system is inspected, i.e., how to fix out the 

sampling interval m. In order to find out the optimum values of the 

parameters jd  and m, a loss function is considered. 

3.3. Loss function 

Inspired from the loss function proposed in Box and Jenkins [1], the 

economical procedure formulated by Taguchi [9] is generalized to control 

a multivariate quality process in the following form: 

( ) ( ) ( ) ( ) .,
1

2












δ++= ∑
=

Tm

i

j
i

AI ZE
TmETmE

C
m
C

mdC  (11) 
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This function is named so because it measures the controlling costs of 

multivariate quality and evaluates the loss due to quality variability. 

Minimizing the loss function (11) derives the best values of jd  and m. 

But to determine the optimum values of these parameters requires an 

evaluation of the average adjustment interval 

( )TmE=AAI  (12) 

and the mean squared shift 

( )

AAI
MSD

1
2








=
∑ =

Tm

i
j
iZE

 (13) 

during a production cycle. 

4. 1VIMA  Model of m-units Apart Observations 

After each adjustment of the production process, the 1VIMA  model is 

defined by 

,
1

1
0 ∑

−

=

Λ++=
t

i
itt aaZZ  (14) 

where Λ is a matrix that presents the nonstationarity coefficients with 

{ }pλλλ=Λ ...,,,diag 21  such that for all .10, ≤λ< jj  The disturbances 

ta  form a sequence of random walk vectors whose distribution is 

multivariate normal and according to (2) the mean vector is null and 

covariance matrix is .aΩ  This innovation vector ta  is independently 

distributed from ,0Z  which has an ( )0, Ω0N  distribution. If ,00 =Ω  

then 0Z =0  and the adjustment of the process is considered perfect as 

shown in (8) of an uninitialized 1VIMA  process. 

4.1. A characteristic j
tZ  model 

Knowing that the components of the disturbance ta  are independent, 
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each element j of the vector process (8) forms an IMA process of order 

one, characterized with equation 

∑
−

=

λ++=
1

1
0 .

t

i

j
ij

j
t

jj
t aaZZ  (15) 

When each produced item is inspected, the process is said to be 

uninitialized, then .00 =jZ  In this case, the process 1IMA  defined in 

equation (15) is identical to the jth equation of process (14). This process 

may, in analogous manner, be specified by the subsequent properties 

( ) ( )

( ) [ ( ) ]

( ( ) ) ( )

( ( ) )




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





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j
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j
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jjj
j
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with ( )⋅V  and ( )⋅Cov  indicate, respectively, the variance and covariance 

operators. We may note that there is no reason, a priori, to differently 

weigh the components of the disturbance, so λ=λ∀ jj,  and as a result, 

( ) ( )

( ) [ ( ) ]

( ( ) ) ( )

( ( ) ) 
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j
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j
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t

j
t

j
j
t
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 (16) 

Equation (16) above may be used to define an 1IMA  process with 

nonstationarity parameter λ and variance ( ) .22
ja j σ=σ  

In the considered monitoring system, observations of the jth quality 

component are taken m units apart, specifically we have ...,,, 21
j
m

j
m ZZ  

....,j
tmZ  In this case, we assume that the initial variable jZ0  is not    

null, has a small variance, such that ( ).,0~ 2
00 σNZ j  Consider parameters 
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( ),, 2
mm σλ  defined by 

( )
( )
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 (17) 

Moreover, the variance of jZ0  is considered small which has the following 

form: 

( ) ( ) .1 22
0 jm σλ−λλ−=σ  (18) 

Consider the observing produced unit interval above, inspecting each 

mth item according to the jth characteristic gives the sequence ,1
j
mZ  

....,...,,2
j
tm

j
m ZZ  Analogously to the work of Srivastava [7], this sequence 

is specified by 

( )

( ) [ ( ) ]

( ( ) ) ( )
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 (19) 

Hence the independence between disturbance components ( ,...,,, 21 j
ttt aaa   

)′p
ta...,  and the observation interval m stipulate that on the basis of the 

alternative definition (16), the sequence ...,,, 21
j
m

j
m ZZ  ...,j

tmZ  forms an 

1IMA  process with nonstationarity parameter mλ  and variance 2
mσ  as 

defined in equation (17). 

In other words, it is possible to write 

∑
−

=

λ+=
1

1

t

i

j
im

j
t

j
tm uuZ   such that ,1

jj
m uZ =  

with { }jiu  is iid ( )2,0 mN σ  sequence. 
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4.2. Linearized loss function 

It is shown by Srivastava [7] that the predicted value of ( )
j

mtZ 1+  is 

given by 

[ ( ) ],ˆ 1
1

j
m

t
m

j
mtm

j
tmm

j
tm ZZZZ −

− θ++θ+λ=  

( ) ,ˆˆ
1

j
mtm

j
tmm

j
tm ZZZ −θ+λ=  (20) 

where ,1 mm λ−=θ  defines an exponentially weighted moving average 

process of observations ....,...,,, 21
j
tm

j
m

j
m ZZZ  So j

tmẐ  is a random walk 

with mean zero and variance .2222
jmm m σλ=σλ  Standardizing this changes 

the variable defined in (10) to 

,
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que telle1min
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j
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2
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
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

λσ
=

j

j
j

d
h  denote the control limits 

crossing interval in terms of produced units. 

In order to obtain linear form of the cost function (11), the mean 
squared shift of (13) may be simplified using the result of Srivastava and 
Wu [8], as follows: 

( ) ( ) ( ) ( ) ( ) ( ),11
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where the approximations of ( )τE  and ( )2τE  are evaluated in Srivastava 

and Wu [8] by 
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with ,637.0,798.0,320.1,796.0,590.0,583.0 214321 =ε=ε=ρ=ρ=ρ=ρ  

375.03 =ε  and .907.04 =ε  Thus, including the simplified form of the 

squared shift alters the cost function of equation (11). According to Box 

and Jenkins [1] specifications, two types of cost function are obtained. 

4.2.1. 1st case: machine tool process where mhj ≥  

If the control limits crossing interval exceeds the inspection interval 

in terms of manufactured units, the loss function is linearized using the 

first approximations of the moments, ( )τE  and ( ),2τE  then 

( )
( ) mmhh

C
m
C

mdC
jj

AI

2
21

12
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m
j  (21) 

4.2.2. 2nd case: chemical process where mhj <  

If the control limits crossing interval does not exceed the inspection 

interval in terms of manufactured units, the loss function is linearized 

using the second approximations of the moments, ( )τE  and ( ),2τE  then 
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5. Optimum Values of the Control Parameters 

The optimum values of the control parameters ( )�� mdj ,  can be 

obtained by minimizing (11), using adequate numerical methods. But to 
get explicit expressions for these values, the approximation given in (21) 

or in (22) may generate good solutions. 
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Knowing that the derivative of the nonstationarity parameter defined 
in (17) is 

( ) 2
1
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14
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
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

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λ

λ−

m
 minimizing (21) or (22) leads to the required 

solution. 

5.1. The case of machine tool process 

Using the same procedure of Hajlaoui and Limam [4], minimizing (21) 
gives: 

• an optimal inspection interval 
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1
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• an optimal control limit 
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5.2. The case of chemical process 

As Hajlaoui and Limam [4], minimizing (22) gives: 

• an optimal inspection interval 
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• an optimal control limit 
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6. Conclusion 

Determining the optimal values of the control parameters yields 

considerable gains for the firm. These gains come from controlling the 

costs of quality control by considering the economical aspect of this 

control. This means to rationalize the intervention during processing 

items in either case to adjust or to inspect the production process. In 

order to control costs generated by inspection or by adjustment actions, 

the firm is warned out through the process (20) of a possible decrease in 

quality level of the jth characteristic. It is also told of how much to adjust 

the production process that it is necessary to do for the characteristic of 

concern in order to maintain the quality level as near as possible to the 

reference value. 

To avoid reiteration of outputs, the production process is monitored 

twice: 

• supervising the process according to the parameters ( ),, �� mdj  this 

is done by j
tm

Z �
ˆ  such that 

( )
( )

,ˆ1ˆ
1

j
mtm

j
tmm

j
tm

ZZZ ����� −
λ−+λ=  (27) 

• verifying the jth characteristic or marking operation through (10), 

{ ( ) }.ˆ:thatsuch...,,...,,,,1min 21
j

j
t

p
t

j
tttt dZZZZZtT ≥=≥= Z  

Hence, if j
tm

Z �
ˆ  exceeds �

jd±  at the tth inspection, the process is adjusted 

by j
tm

Z �
ˆ−  to maintain the jth characteristic of the multivariate quality in 

the limits. But if the jth marked characteristic changes, the process (27) 

must be reviewed. 
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