ON SUMS OF TWO OR THREE PENTAGONAL
 NUMBERS

NEVILLE ROBBINS

Mathematics Department
San Francisco State University
San Francisco, CA 94132, U. S. A.

Abstract

Let $P_{j}(n)$ denote the number of representations of n as a sum of j pentagonal numbers. We obtain formulas for $P_{j}(n)$ when $j=2$ and $j=3$.

1. Introduction

The pentagonal numbers are defined for $n \in Z$ by $\omega(n)=n(3 n-1) / 2$. They occur frequently in the theory of partitions, notably in Euler's recurrence for the partition function $p(n)$ for $n \geq 1$, which may be written as

$$
\sum_{k=-\infty}^{\infty}(-1)^{k} p(n-\omega(k))=0
$$

The first few pentagonal numbers (corresponding to $n=0, \pm 1, \pm 2, \pm 3, \pm 4$) are: $0,1,2,5,7,12,15,22,26$. If the integers $j \geq 1$ and $n \geq 0$, let $P_{j}(n)$ denote the number of representations of n as a sum of j pentagonal numbers. Representations that differ only in the order of terms are considered distinct, that is, we are counting compositions of n whose
summands are pentagonal numbers. In this note, we obtain formulas for $P_{j}(n)$, where $j=2,3$.

2. Preliminaries

Let the integers $n \geq 0, k \geq 0, j \geq 1, m \geq 2,0 \leq i \leq m-1$.
Definitions. $d_{i, m}(n)$ is the number of positive integers d such that $d \mid n$ and $d \equiv i(\bmod m)$
$r_{j}(\alpha)$ is the number of representations of α as a sum of j squares of integers if α is a non-negative integer (and is zero otherwise)
$s_{j}(n)$ is the number of representations of n as a sum of j squares of integers that are coprime to 6 .

$$
\left.t_{k}=k(k+1) / 2 \quad \text { (the } k \text { th triangular number }\right)
$$

$t_{j}(n)$ is the number of representations of n as a sum of j triangular numbers.

Proposition 1. $\frac{1}{4} r_{2}(n)=d_{1,4}(n)-d_{3,4}(n)$.
Proposition 2. Let

$$
n=2^{a} \prod_{i=1}^{r} p_{i}^{e_{i}} \prod_{j=1}^{s} q_{j}^{f_{j}}
$$

where $a \geq 0$, all primes $p_{i} \equiv 1(\bmod 4)$, all primes $q_{j} \equiv 3(\bmod 4)$. Then

$$
\frac{1}{4} r_{2}(n)= \begin{cases}\prod_{i=1}^{r}\left(e_{i}+1\right) & \text { if all } f_{j} \equiv 0(\bmod 2) \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 3. $t_{2}(n)=d_{1,4}(4 n+1)-d_{3,4}(4 n+1)$.
Proposition 4. Let a, b be positive integers such that $(a, b)=1$. Let $n \geq 0$. Then the sequence $\{a n+b\}$ contains infinitely many primes.

Remarks. Proposition 1 is attributed to Jacobi. (See [5, p. 15, Theorem 2].) Proposition 2 is equivalent to Proposition 1. (See [6, p. 166, Theorem 3.22], where a slightly different notation is used.) Proposition 3 appears in both [2] and [7]. Proposition 4 is Dirichlet's celebrated theorem on primes in arithmetic progressions.

3. The Main Results

We begin with a lemma that links representations of non-negative integers as sums of pentagonal numbers to representations of nonnegative integers as sums of squares.

Lemma 1. Let $k \geq 1, n \geq 0$. Then $P_{k}(n)=s_{k}(24 n+k)$.
Proof.
$n=\sum_{i=1}^{k} \frac{x_{i}\left(3 x_{i} \pm 1\right)}{2} \leftrightarrow 24 n=\sum_{i=1}^{k}\left(36 x_{i}^{2} \pm 24 x_{i}\right) \leftrightarrow 24 n+k=\sum_{i=1}^{k}\left(6 x_{i} \pm 1\right)^{2}$.
Our next result is a formula for $P_{2}(n)$.

Theorem 1.

$$
P_{2}(n)=\frac{1}{4} r_{2}(12 n+1)=d_{1,4}(12 n+1)-d_{3,4}(12 n+1)
$$

Proof. Lemma 1 implies $P_{2}(n)=s_{2}(24 n+2)$. Now

$$
24 n+2=x^{2}+y^{2} \rightarrow x^{2}+y^{2} \equiv 2(\bmod 4) \rightarrow(x, 2)=(y, 2)=1
$$

Also

$$
24 n+2=x^{2}+y^{2} \rightarrow x^{2}+y^{2} \equiv 2(\bmod 3) \rightarrow(x, 3)=(y, 3)=1
$$

Therefore $(x, 6)=(y, 6)=1$, so $s_{2}(24 n+2)=\frac{1}{4} r_{2}(24 n+2)$. But Proposition 1 implies $r_{2}(24 n+2)=r_{2}(12 n+1)$, so we are done.

The next theorem states a property of $\frac{1}{4} r_{2}(n)$ that seems not to have been previously noticed, although it follows from Proposition 2. We offer a proof that is based instead on Proposition 1.

Theorem 2. $\frac{1}{4} r_{2}(n)$ is a multiplicative function.

Proof. Let

$$
\chi_{2}(n)= \begin{cases}1 & \text { if } n \equiv 1(\bmod 4) \\ -1 & \text { if } n \equiv 3(\bmod 4) \\ 0 & \text { otherwise }\end{cases}
$$

Then $\chi_{2}(n)$ is a Dirichlet character $(\bmod 4)$, and is therefore multiplicative. (See [1, Theorem 6.15, p. 138].) Let $u(n)=1$ be the unit function. Invoking Proposition 1, we have

$$
\frac{1}{4} r_{2}(n)=d_{1,4}(n)-d_{3,4}(n)=\sum_{d \mid n} \chi_{2}(d)=\sum_{d \mid n} \chi_{2}(d) u(n / d)=\left(\chi_{2} * u\right)(n)
$$

where * denotes the Dirichlet product. Since each of $\chi_{2}(n), u(n)$ is multiplicative, it follows that $\left(\chi_{2} * u\right)(n)$ is multiplicative. (See [1, Theorem 2.14, p. 35].)

We now present an alternate proof of Theorem 1, based on a connection between sums of pentagonal numbers and sums of triangular numbers.

Lemma 2. $P_{2}(n)=t_{2}(3 n)$.

Proof.

$$
n=\frac{x(3 x \pm 1)}{2}+\frac{y(3 y \pm 1)}{2} \leftrightarrow 3 n=\frac{3 x(3 x \pm 1)}{2}+\frac{3 y(3 y \pm 1)}{2},
$$

that is, n is a sum of two pentagonal numbers if and only if $3 n$ is a sum of two triangular numbers that are multiples of 3 . But if t_{i} is a triangular number, then we must have $t_{i} \equiv 0,1(\bmod 3)$. Therefore if $t_{i}+t_{j} \equiv$ $0(\bmod 3)$, it follows that $t_{i} \equiv t_{j} \equiv 0(\bmod 3)$. Thus there are no representations of $3 n$ as a sum of two triangular numbers that are not both multiples of 3 . The conclusion now follows.

Alternate Proof of Theorem 1. This follows immediately from Lemma 2 and Proposition 3.

The next theorem concerns solutions of the equation $P_{2}(n)=k$, where k is a given non-negative integer.

Theorem 3. For every non-negative integer k, there are infinitely many n such that $P_{2}(n)=k$.

Proof.

Case $1 k=0$. By Proposition 4, there are infinitely many primes, q, such that $q \equiv 7(\bmod 12)$. For each such pair q_{1}, q_{2} of distinct primes, let $n=\left(\left(q_{1} q_{2}\right)-1\right) / 12$. Then, by Theorem $1, P_{2}(n)=\frac{1}{4} r_{2}\left(q_{1} q_{2}\right)=0$.

Case $2 k=1$. By Proposition 4, there are infinitely many primes, q, such that $q>3$ and $q \equiv 3(\bmod 4)$. For each such prime, q, let $n=$ $\left(q^{2}-1\right) / 12$. Then $P_{2}(n)=\frac{1}{4} r_{2}\left(q^{2}\right)=1$.

Case $3 k \geq 2$. By Proposition 4, there are infinitely many primes, q, such that $q \equiv 1(\bmod 4)$. For each such prime, q, and each $k \geq 2$, let $n=\left(q^{k-1}-1\right) / 12$. Then $P_{2}(n)=\frac{1}{4} r_{2}\left(q^{k-1}\right)=k$.

We now present a formula for sums of three pentagonal numbers.

Theorem 4.

$$
P_{3}(n)=\frac{1}{8}\left\{r_{3}(24 n+3)-r_{3}\left(\frac{8 n+1}{3}\right)\right\}
$$

Proof. Lemma 1 implies $P_{3}(n)=s_{3}(24 n+3)$. Let $24 n+3=x^{2}+y^{2}+z^{2}$. Clearly, x, y, z are all odd, and either all of them or none of them are multiples of 3 . If $n \not \equiv 1(\bmod 3)$, then $x^{2}+y^{2}+z^{2} \equiv \pm 3(\bmod 9)$, so $x y z \not \equiv 0(\bmod 3)$. Therefore $s_{3}(24 n+3)=\frac{1}{8} r_{3}(24 n+3)$. (The factor $\frac{1}{8}$ occurs because $r_{3}(n)$ counts squares of both positive and negative integers.) If $n \equiv 1(\bmod 3)$, then $x^{2}+y^{2}+z^{2} \equiv 0(\bmod 9)$, so it is possible that $x=3 r, y=3 s, z=3 t$. In this case, we have $r^{2}+s^{2}+t^{2}=\frac{8 n+1}{3}$.

Since we do not wish to count such representations, we have $s_{3}(24 n+3)$ $=\frac{1}{8}\left\{r_{3}(24 n+3)-r_{3}\left(\frac{8 n+1}{3}\right)\right\}$. The conclusion now follows, recalling the definition of $r_{j}(\alpha)$.

Remarks. $r_{3}(n)$ may be computed in either of the following ways:
(1) Let $R_{3}(n)$ denote the number of primitive representations of n as a sum of three squares, that is, $n=x^{2}+y^{2}+z^{2}$, where $G C D(x, y, z)=1$. Then

$$
R_{3}(n)= \begin{cases}12 h(\sqrt{-n}) & \text { if } n \equiv 1,2,5,6(\bmod 8) \\ 24 h(\sqrt{-4 n}) & \text { if } n \equiv 3(\bmod 8)\end{cases}
$$

where $h(d)$ denotes the class number of an imaginary quadratic field of discriminant d, and

$$
r_{3}(n)=\sum_{d^{2} \mid n} R_{3}\left(\frac{n}{d^{2}}\right)
$$

(See [4, p. 187, Theorem 7.8].)
(2) Let $q_{0}(n)$ denote the number of self-conjugate partitions of n (or the number of partitions of n into distinct, odd parts). Then

$$
r_{3}(n)=\sum_{k=-\infty}^{\infty}(-1)^{\omega(k)}(1-6 k) q_{0}(n-\omega(k))
$$

This identity is due to Ewell [3].

References

[1] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
[2] J. A. Ewell, On representations of numbers by sums of two triangular numbers, Fibonacci Quart. 25 (1987), 175-178.
[3] J. A. Ewell, Recursive determination of the enumerator for sums of three squares, Int. J. Math. Math. Sci. 24 (2000), 529-532.

ON SUMS OF TWO OR THREE PENTAGONAL NUMBERS

[4] D. Flath, Introduction to Number Theory, John Wiley \& Sons, 1989.
[5] E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, 1985.
[6] I. Niven, H. S. Zuckerman and D. L. Montgomery, The Theory of Numbers, 5th ed., John Wiley \& Sons, 1991.
[7] K. Ono, S. Robins and P. Wahl, The representation of integers as sums of triangular numbers, Aequationes Math. 50 (1995), 73-94.

