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Abstract 

Let ( )nPj  denote the number of representations of n as a sum of j 

pentagonal numbers. We obtain formulas for ( )nPj  when 2=j  and 

.3=j  

1. Introduction 

The pentagonal numbers are defined for Zn ∈  by ( ) ( ) .213 −=ω nnn  

They occur frequently in the theory of partitions, notably in Euler’s 
recurrence for the partition function ( )np  for ,1≥n  which may be 

written as 

( ) ( )( ) .01 =ω−−∑
∞

−∞=k

k knp  

The first few pentagonal numbers ( )4,3,2,1,0toingcorrespond ±±±±=n  

are: 0, 1, 2, 5, 7, 12, 15, 22, 26. If the integers 1≥j  and ,0≥n  let ( )nPj  

denote the number of representations of n as a sum of j pentagonal 
numbers. Representations that differ only in the order of terms are 
considered distinct, that is, we are counting compositions of n whose 
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summands are pentagonal numbers. In this note, we obtain formulas for 
( ),nPj  where .3,2=j  

2. Preliminaries 

Let the integers ,0≥n  ,0≥k  ,1≥j  ,2≥m  .10 −≤≤ mi  

Definitions. ( )nd mi,  is the number of positive integers d such that 

nd |  and ( )mid mod≡  

( )αjr  is the number of representations of α as a sum of j squares of 

integers if α is a non-negative integer (and is zero otherwise) 

( )nsj  is the number of representations of n as a sum of j squares of 

integers that are coprime to 6. 

( ) ( )numbertriangularththe21 kkktk +=  

( )nt j  is the number of representations of n as a sum of j triangular 

numbers. 

Proposition 1. ( ) ( ) ( ).
4
1

4,34,12 ndndnr −=  

Proposition 2. Let 
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a ji qpn  

where ,0≥a  all primes ( ),4mod1≡ip  all primes ( ).4mod3≡jq  Then 

( )
( ) ( )





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 ≡+
= ∏ =
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2mod01
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fallife
nr
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Proposition 3. ( ) ( ) ( ).1414 4,34,12 +−+= ndndnt  

Proposition 4. Let a, b be positive integers such that ( ) .1, =ba  Let 

.0≥n  Then the sequence { }ban +  contains infinitely many primes. 
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Remarks. Proposition 1 is attributed to Jacobi. (See [5, p. 15, 
Theorem 2].) Proposition 2 is equivalent to Proposition 1. (See [6, p. 166, 
Theorem 3.22], where a slightly different notation is used.) Proposition 3 
appears in both [2] and [7]. Proposition 4 is Dirichlet’s celebrated theorem 
on primes in arithmetic progressions. 

3. The Main Results 

We begin with a lemma that links representations of non-negative 
integers as sums of pentagonal numbers to representations of non-
negative integers as sums of squares. 

Lemma 1. Let ,1≥k  .0≥n  Then ( ) ( ).24 knsnP kk +=  

Proof. 

( ) ( ) ( ) .1624243624
2
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ii xknxxn
xx

n  

Our next result is a formula for ( ).2 nP  

Theorem 1. 

( ) ( ) ( ) ( ).112112112
4
1

4,34,122 +−+=+= ndndnrnP  

Proof. Lemma 1 implies ( ) ( ).22422 += nsnP  Now 

( ) ( ) ( ) .12,2,4mod2224 2222 ==→≡+→+=+ yxyxyxn  

Also 

( ) ( ) ( ) .13,3,3mod2224 2222 ==→≡+→+=+ yxyxyxn  

Therefore ( ) ( ) ,16,6, == yx  so ( ) ( ).224
4
1224 22 +=+ nrns  But Proposition 1 

implies ( ) ( ),112224 22 +=+ nrnr  so we are done. � 

The next theorem states a property of ( )nr24
1

 that seems not to have 

been previously noticed, although it follows from Proposition 2. We offer a 
proof that is based instead on Proposition 1. 
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Theorem 2. ( )nr24
1

 is a multiplicative function. 

Proof. Let 

( )
( )
( )







≡−
≡

=χ
otherwise.0

4mod3if1
4mod1if1

2 n

n

n  

Then ( )n2χ  is a Dirichlet character (mod 4), and is therefore 

multiplicative. (See [1, Theorem 6.15, p. 138].) Let ( ) 1=nu  be the unit 

function. Invoking Proposition 1, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
4
1

2224,34,12 ∑ ∑
| |

∗χ=χ=χ=−=
nd nd

nudnuddndndnr  

where ∗ denotes the Dirichlet product. Since each of ( ),2 nχ  ( )nu  is 

multiplicative, it follows that ( ) ( )nu∗χ2  is multiplicative. (See [1, 

Theorem 2.14, p. 35].) � 

We now present an alternate proof of Theorem 1, based on a 

connection between sums of pentagonal numbers and sums of triangular 

numbers. 

Lemma 2. ( ) ( ).322 ntnP =  

Proof. 

( ) ( ) ( ) ( ) ,
2

133
2

1333
2

13
2

13 ±+±=↔±+±= yyxxnyyxxn  

that is, n is a sum of two pentagonal numbers if and only if 3n is a sum of 

two triangular numbers that are multiples of 3. But if it  is a triangular 

number, then we must have ( ).3mod1,0≡it  Therefore if ≡+ ji tt  

( ),3mod0  it follows that ( ).3mod0≡≡ ji tt  Thus there are no 

representations of 3n as a sum of two triangular numbers that are not 

both multiples of 3. The conclusion now follows. � 

Alternate Proof of Theorem 1. This follows immediately from 

Lemma 2 and Proposition 3. � 
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The next theorem concerns solutions of the equation ( ) ,2 knP =  

where k is a given non-negative integer. 

Theorem 3. For every non-negative integer k, there are infinitely 

many n such that ( ) .2 knP =  

Proof. 

Case 1 .0=k  By Proposition 4, there are infinitely many primes, q, 

such that ( ).12mod7≡q  For each such pair ,1q  2q  of distinct primes, 

let ( )( ) .12121 −= qqn  Then, by Theorem 1, ( ) ( ) .0
4
1

2122 == qqrnP  

Case 2 .1=k  By Proposition 4, there are infinitely many primes, q, 

such that 3>q  and ( ).4mod3≡q  For each such prime, q, let =n  

( ) .1212 −q  Then ( ) ( ) .1
4
1 2

22 == qrnP  

Case 3 .2≥k  By Proposition 4, there are infinitely many primes, q, 

such that ( ).4mod1≡q  For each such prime, q, and each ,2≥k  let 

( ) .1211 −= −kqn  Then ( ) ( ) .
4
1 1

22 kqrnP k == −  � 

We now present a formula for sums of three pentagonal numbers. 

Theorem 4. 

( ) ( ) .
3

18324
8
1

333 



 





 +−+= nrnrnP  

Proof. Lemma 1 implies ( ) ( ).32433 += nsnP  Let .324 222 zyxn ++=+  

Clearly, x, y, z are all odd, and either all of them or none of them are 

multiples of 3. If ( ),3mod1≡/n  then ( ),9mod3222 ±≡++ zyx  so 

( ).3mod0≡/xyz  Therefore ( ) ( ).324
8
1324 33 +=+ nrns  (The factor 

8
1

 

occurs because ( )nr3  counts squares of both positive and negative 

integers.) If ( ),3mod1≡n  then ( ),9mod0222 ≡++ zyx  so it is possible 

that ,3rx =  ,3sy =  .3tz =  In this case, we have .
3

18222 +=++ ntsr  
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Since we do not wish to count such representations, we have ( )3243 +ns  

( ) .
3

18324
8
1

33 



 





 +−+= nrnr  The conclusion now follows, recalling the 

definition of ( ).αjr  � 

Remarks. ( )nr3  may be computed in either of the following ways: 

(1) Let ( )nR3  denote the number of primitive representations of n as 

a sum of three squares, that is, ,222 zyxn ++=  where ( ) .1,, =zyxGCD  

Then 

( )
( ) ( )

( ) ( )





≡−

≡−
=

,8mod3if424

8mod6,5,2,1if12
3

nnh

nnh
nR  

where ( )dh  denotes the class number of an imaginary quadratic field of 

discriminant d, and 

( ) .
2

233 ∑
|







=

nd
d

nRnr  

(See [4, p. 187, Theorem 7.8].) 

(2) Let ( )nq0  denote the number of self-conjugate partitions of n (or 

the number of partitions of n into distinct, odd parts). Then 

( ) ( ) ( )( ) ( )( ).611 03 ∑
∞

−∞=

ω ω−−−=
k

k knqknr  

This identity is due to Ewell [3]. 
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