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Abstract 

Let 1≥n  and 0≥d  be integers. Let ( ) [ ]nxxn ...,,12FP =  be the 

polynomial algebra in n-variables ix  over the field 2F  of two elements 

and let A  be the mod-2 Steenrod algebra. In this paper we give a 

formula for computing ( ),, dnB  the number of degree d monomials of 

the form 1212
2

12
1

21 −−− λλλ n
nxxx  (called spikes) in ( ).nP  Motivation for 

this question comes from algebraic topology where ( )nP  is identified 

with the mod-2 cohomology group of the n-fold product of ∞PR  with 

itself and thereby receives its module structure over .A� The value of 

( )dnB ,  is of interest in the problem of determining a basis for the 

quotient vector space ( ) ( )nn PP +A  of the polynomial algebra by the 

image of the positive part +A  of the Steenrod algebra [1, 11, 13]. 

1. Introduction 

For ,1≥n  let ( )nP  be the mod-2 cohomology group of the n-fold 

product of ∞PR  with itself. Then ( )nP  is the polynomial algebra 

( ) [ ]nxxn ...,,12FP =  in n variables ix  over the field 2F  of two elements. 
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The mod-2 Steenrod algebra A  acts on ( )nP  according to well-known 

rules. A polynomial u is said to be hit if it belongs to the set 

( ) ( ) .,
0 











∈∈|= ∑
>

+ AA i

i
ii

i SqnuuSqn PP  

The papers [3, 7, 8, 9, 11, 12] are concerned with the problem of 

determining the set ( ).nP+A  A closely related problem is that of 

determining the vector space dimension of the quotient ( ) =nC  

( ) ( ).nn PP +A  Motivation for these problems stems from a conjecture by 

Peterson [5], proved in [12] and various other sources [6, 10]. 

To put our work into context we recall that ( )nP  has natural grading 

by degree d, that is, ( ) ( ),0 nn dd PP ≥⊕=  where ( )ndP  denotes the 

homogeneous polynomials of degree d. The quotient vector space ( )nC  

inherits similar grading by d. 

If 0≥d  can be expressed in the form ( ),12
1∑ =

λ −=
n
i

id  ,0≥λi  

then ( )ndP  contains monomials 1212
1

1 −− λλ n
nxx  called spikes. It is 

known that a spike can never appear as a term in a hit polynomial. Thus 

spikes must be included in any generating set for ( )ndC  so that if ( )nd
∗P  

is the subspace of ( )ndP  generated by spikes and ( ( ))nd
∗Pdim  is the 

vector space dimension of this subspace then ( ) ( ( ))ndnB d
∗= Pdim,  is a 

lower bound for the vector space dimension of ( ).ndC  Apart from a few 

special cases there is no simple formula for computing ( )., dnB  Our main 

objective in this paper is to derive an effective recursive method for 

computing ( )dnB ,  that finds application in certain choices of d. This 

however is deferred until Section 3. 

We note that the dimension of ( )ndC  is completely known if 

3,2,1=n  (the case 3=n  being determined by Kameko [2]). Apart from 

a few cases where equality holds (for example ,1=n  1=d  or 2≥n  and 

)2=d  ( )dnB ,  is strictly lower than the dimension of ( ).ndC  Thus 
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further work is required to improve the lower bounds for the dimension of 

( )ndC  that may be obtained with the aid of the results of this paper. 

It may well happen that ( )ndP  contains no spikes. We quote some 

results about hit polynomials that in particular show that ( ) 0=ndC  if 

( )ndP  contains no spikes. 

The results [12, 11, 3, 7, 9] all identify classes of hit monomials and 
are special cases of the following result of Silverman, which was 
conjectured in [9]. 

Let ne
n

e xxb 1
1=  be a monomial of degree d. Write =ie  

( ) j
ij j e 2

0∑ ≥
α  for the binary expansion of each exponent ie  and for each 

0≥j  let ( ) ( ).
1∑ =
α=

n
i ijj ebw  If 0≥l  is an integer, define ( )bdl  to be 

the integer ( ) ( ) .2∑ ≥
−=

lj
lj

jl bwbd  Then ( ) dbd =0  and ( ) ( )bdbd 10 ≥  

( ) .2 ≥≥ bd  

Let S  be the set of all ordered sequences ( )...,,, 321 λλλ=s  of non-

negative integers almost all of which are 0. The dimension of a sequence 

( ).12
1∑∞
=

λ −=
i

is  If ,ds =  then s is called a representation of d [9]. 

Given S∈s  and 0≥j  let ( ) ( ).12
1∑ ≥

λ −α=
i jj

isw  For 0≥l  define 

( )sdl  to be the integer ( ) ( ) .2∑ ≥
−=

lj
lj

jl swsd  Then each d has a unique 

minimal representation ( )ds~  such that ( )( ) ( )sddsd ll ≥~  for all S∈s  of 

degree d and all 0≥l  [9]. 

Finally define ( ) ( )( )dsddd ll
~=  for .0≥l  Then: 

Theorem 1.1 [8]. Let ( )nb P∈  be a monomial of degree d. If 

( ) ( )ddbd ll >  for some ,1≥l  then b is hit. 

The main result of Wood [12] is the case 1=l  of Theorem 1.1. The 

result of Wood, in particular, identifies degrees d for which all elements 

in ( )ndP  are hit, that is, degrees d for which ( ) .0=ndC  Let ( )mα  denote 
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the number of digits 1 in the binary expansion of m. If ne
n

e xxb 1
1=  

( )ndP∈  and ( ) ,ndn >+α  then ( ) ( ).11 ddbd >  Hence b is hit. 

It is known that ( ) ndn ≤+α  if and only if there exists at least one 

representation ( )...,,, 321 λλλ=s  of d, with 0=λi  for all ni >  [11]. We 

identify such a sequence s with ( )nλλ ...,,1  and following Singer we refer 

to each such a sequence as a representation of d as n-sharp. 

It follows that ( ) ndn ≤+α  if and only if ( )ndP  contains spikes or, 

equivalently, if and only if the subset 

( ) ( ) ( )












≥λ≥≥λ≥λ−=|λλ= ∑
=

λ
n

i
nn

iddnS
1

211 0,12...,,,  

of S  is nonempty. Then ( )dnB ,  may equivalently be defined by 

( ) ( )
( ) ( )

,...,,,
,...,,

1

1

∑
∈λλ

λλ=
dnS

n

n

dnB  

where ( )nλλ ...,,1  is the number of distinct permutations of the 

sequence ( ) ( ).,...,,1 dnSn ∈λλ  

2. Preliminary Results 

We first note that there is a simple recursive method for computing 

( )., dnB  For all 0≥d  

 ( )


 ∈−==

otherwise0
somefor12if1,1 NjddB

j
 (1) 

and for 2≥n  and 0≥d  

 ( ) ( ( )).12,1,

12

−−−= ∑
≤−

j

dj

dnBdnB  (2) 

Equation (1) follows from the definition of a spike and (2) follows from the 

fact that every spike m of degree d factors uniquely as 12 −⋅=
j

nxum  

where u is a spike in ( )( )1
12

−
−−

njd
P  and .0≥j  
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We note also that there are simple formulae for computing ( )dnB ,  in 

the cases ( ) ndn =+α  and ( ) .1−=+α ndn  If ( ) ,ndn =+α  then 

( ) !., ndnB =  On the other hand if ( ) 1−=+α ndn  so that 2≥n  we 

write ,2
1

1
1∑ −

=
∑ ==+

n
i

ii
s snd  01 ≥i  and ,1≥si  ,12 −≤≤ ns  and let 

( ) { }{ }.1...,, 12 =|∈= − sns iiiidR  Then 

( )
( )

( )








>





−−+








=





−−+








=
,0if

!2
!

1
!3
!

0if
!2
!

2
!3
!

,
1

1

i
n

kn
n

k

i
n

kn
n

k
dnB  (3) 

where ( ) .dRk =  

Our procedure is based on the following results. 

Let m, ,1 nm ≤≤  be an integer. Then ( ) mdn =+α  if and only if 

there exist integers ,si  ,1 ms ≤≤  with 01 ≥i  and ,1≥si  ,2 ms ≤≤  

such that .2
1

1∑ =
∑ ==+ m

k

ik
s snd  If mni −≥1  or ( ) ,ndn >+α  then: 

Theorem 2.1 [2]. ( ) ( ).2 nn ndd +≅ CC  

We do not give a detailed proof but all the same note that if we let 

( ) ( )nnf PP →:  be the linear function given on monomials by 

( ) ,1212
11

11 ++= nn e
n

ee
n

e xxxxf  

then f passes to an isomorphism of quotients. In particular f is an 

injective mapping of sequences: ( ) ( )ndnSdnS +→ 2,,  

 ( ) ( ).1...,,1...,, 11 +λ+λλλ nn  (4) 

The mapping (4) is bijective if .1 mni −≥  Further 

 ( ) ( )ndnBdnB += 2,,  if .1 mni −≥  (5) 

The next result generalizes (5). Write 

 ,2
1

1 nd
m

k

ik
s s −= ∑

=

∑ =  where .1 nm ≤≤  (6) 



MBAKISO MOTHEBE 422

Theorem 2.2. Suppose that mni −≥1  or that there is an integer t, 

,2 mt ≤≤  such that .1 mnit −+≥  Let 

 .22
11

1

1
1 nd

m

tk

it

k

i
k
s sk

s s −+=′ ∑∑
=









+






−

=

∑∑ =
=  (7) 

Then ( ) ( ).,, dnBdnB ′=  

The result of the theorem may easily be justified by noting that the 

formula 

 ppp 222 1 +=+   for ,0≥p  (8) 

when applied to (6) and (7), determines a bijection from ( )dnS ,  to 

( )., dnS ′  Further that if ( ) ( )dnSn ′∈λ′λ′ ,...,,1  is the image of 

( ) ( )dnSn ,...,,1 ∈λλ  under the bijection, then ( ) ( ) ....,,...,, 11 nn λ′λ′=λλ  

3. Formula for Computing ( )dnB ,  

Let n be fixed and suppose that d is an integer for which 

( ) ,mdn =+α  where m, ,1 nm ≤≤  is fixed. To compute ( ),, dnB  we see, 

by the result of Theorem 2.2, that it is sufficient to consider all degrees d 

for which mni −≤1  and mnis −+≤ 1  for all s, .2 ms ≤≤  All such 

degrees d lie in the range ( ),0 mdd ≤≤  where ( )md  is defined by 

( ) ( ) .2
1
0

1∑ −
=

−++− −=
m
k

kmnmn nmd  

Our next result is elementary and is given without proof. 

Lemma 3.1. Suppose that ( ) ,mdn =+α  where .1 nm ≤≤  Then 

( ) 





 +

≤
2

2n
dmd  if n is even and ( ) 






 +

≤
2

1n
dmd  if n is odd. 

From the result of the lemma we see that if n is fixed and we require 

to compute ( ),, dnB  then we need only consider degrees d in the range 

 
( )

nndd

n

k

nk

−=




 +≤≤ ∑

=







 −+2

0

2
21

2
2

20  (9) 
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when n is even and 
( )

∑
−

=







 −++

−=




 +≤≤ 2

1

0
2

11

2
2

10
n

k

knk

nndd  when n is 

odd. 

We now give a formula for computing 




 





 +

2
2, ndnB  and 

.
2

1, 




 





 +ndnB  The procedure is not limited to these cases. In particular 

it applies to ( )( )mdnB ,  for all m, ,1 nm <≤  as we shall illustrate. 

For any positive integer l, let ( )lT  denote the set of all j-tuples of 

positive integers ( )jlll ...,,, 21  such that .21 llll j =+++  Then an 

element of ( )lT  may be represented in the form [ ]llααα 2121  where for 

each i, ,1 li ≤≤  iα  is the number of parts of size i. Thus, making trivial 

abbreviations, we have: [ ] ( ) ( ).63,1,1,1313 T∈=  

Let [ ] ( )lTl l ∈ααα 2121  and let k be a positive integer. We shall use 

a more compact notation ( )kF lα
α1

 for 

.

...,,1

1

1
















αα

α

















α

∑
∑

=

= l

l

i i
l

i i

k
 

Theorem 3.2. Let 3≥n  be an integer. If n is even, then 






 





 +

2
2, ndnB  is given by 

 

( )( )
[ ( ( ))]∏∑

∏

−

=

α
α

α−

=
α

+−+





 +

+







 − 2

2

12
2

1

12,1
2

2

!1

! 2
2

1

n

i

i
n

i

i

n

i

iiB
n

F

i

n
 (10) 

and if n is odd, then 




 





 +

2
1, ndnB  is given by 

 

( )( )

[ ( ( ))] ,12,1
2

1

!1

! 2
1

12
1

1

2
1

1 ∏∑
∏

−

=

α
α

α−

=
α

+−+




 +

+







 −

n

i

i
n

i

i

n

i

iiBnF

i

n
 (11) 
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where, in both cases, the sum is taken over all elements 

.
2

2
2

21 2
2

1 




 −∈













 − 






 −α

α nTn n
 

Proof. Let 4≥n  be an even integer. We first show that there is a 

partition of 




 





 +

2
2, ndnS  indexed by .

2
2





 −nT  An element 

( ) 













 +

∈λλ
2

2
,...,,1

n
dnSn  may be obtained from the representation (9) 

of 





 +

2
2n

d  by splitting powers of 2 in the sum 

 
( )

∑
=







 −+2

0

2
21

2

n

k

nk

 (12) 

by means of formula (8). In other words, an additional 
2

2−n
 powers of 2 

have to be obtained from (12) by means of (8) resulting in a 

representation of 





 +

2
2n

d  as n-sharp. A term, 
( )

,2 2
21






 −+ nk

 in (12) may 

be split in one of 
2

2−n
 admissible ways. Put 

( )

,2 2
21






 −+

==
nk

kpp  

,
2

0
n

k ≤≤  and let i, ,
2

21 −≤≤ ni  be an integer. Define an order i 

splitting of p2  as an expansion of this power into a sum of 1+i  terms of 

powers of 2. This may be achieved in several but a finite number of ways. 

For instance ( ) ipipippppp −−+−−−− ++++++= 2222222 1321  is an 

example of an order i splitting of .2p  In general an order i splitting of p2  

yields a representation of ( )12 +− ip  as ( )1+i -sharp. There, therefore, 

exists a bijective correspondence between the set of all order i splittings 

of p2  and the set ( ( ))12,1 +−+ iiS p  of all representations of 

( )12 +− ip  as ( )1+i -sharp. 
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Let ( )jlll ...,,, 21  be a j-tuple of integers with 
2

21 −≤≤ nli  for all i. 

We can think of each il  as representing an element in a class or set of 

order il  splittings of a term in (12) (one term for each ).il  Suppose that 

 .21 llll j =+++  (13) 

With the given interpretation of ,il  we see that corresponding to the 

expression (13) is a class of representations of 





 +

2
2n

d  involving 

l
n

+
+
2

2
 powers of 2. If ,

2
2−

=
n

l  then (13) determines a class of 

sequences ( ) .
2

2,...,,1 




 





 +∈λλ ndnSn  Clearly distinct such j-tuples 

determine distinct classes of sequences in .
2

2, 




 





 +ndnS  This is the 

case since splitting kp2  in any of the 
2

2−n
 ways above we obtain terms 

q2  with 122 −> kpq  for all q and all k. Furthermore since every element 

of 




 





 +

2
2, ndnS  may be obtained by applying the formula (8) to (12) it 

follows that the j-tuples ( ) 




 −∈

2
2...,,, 21

nTlll j  index a partition of 

.
2

2, 




 





 +ndnS  

Each element 




 −∈













 − 





 −α

α
2

2
2

21 2
2

1 nTn n
 therefore determines 

a unique subset 




















 −






 + 





 −α

α
2

2
1

2
21,

2
2,

nnndnS  of .
2

2, 




 





 +ndnS  

The sum ∑
−

=
α2

2

1

n

i i  is the number of terms in the expression (12) split to 

generate elements ( ) .
2

21,
2

2,...,, 2
2

1
1 





















 −






 +∈λλ 






 −α

α nnndnSn  

Since there are 
2

2+n  terms in the expression (12) 

 





 + ,

2
2, ndnS  
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
















 − 






 −α

α
2

2
1

2
21

nn  is the disjoint union of 

















α

+

∑
−

=
2

2

1

2
2

n

i i

n

 

subclasses, each with the same number of elements. Now let ( )nλλ ...,,1  

be an element in one of these subclasses and let ( )jlll ...,,, 21  be the 

j-tuple notation for .
2

21 2
2

1 












 − 





 −α

α nn  Then corresponding to distinct 

permutations of the j-tuple ( )jlll ...,,, 21  are distinct permutation 

representations ( )nλ′λ′ ...,,1  of ( )nλλ ...,,1  all of which belong to the same 

subclass. Thus associated with each element ( )nλλ ...,,1  in a subclass of 






















 −






 + 





 −α

α
2

2
1

2
21,

2
2,

nnndnS  are 

















αα

α∑
−

=

l

n

i i

...,,1

2
2

1  

permutation representatives. 

Finally let 




 −∈













 − 





 −α

α
2

2
2

21 2
2

1 nTn n
 and i, ,

2
21 −≤≤ ni  be 

an integer. For a fixed i an order i splitting may be applied to more than 

one term in (12). The power iα  of i represents this multiplicity. To show 

how each element 




 −∈













 − 





 −α

α
2

2
2

21 2
2

1 nTn n
 determines a term 

in (10) we illustrate with the case .
2

2




 −n  Let ( ) ∈λλ n...,,1  

.
2

2,
2

2, 










 −






 + nndnS  Then iλ  are distinct apart possibly for the 

2
n

 

terms obtained from an order 
2

2−n
 splitting of a power of 2, ,2p  in (12). 



DIMENSIONS OF SUBSPACES … 427

Let 










 −






 +

2
2,

2
2, nndnSk  be the subclass consisting of all ( )nλλ ...,,1  












 −






 +∈

2
2,

2
2, nndnS  obtained from order 

2
2−n

 splittings of the 

term ,2 kp  (k fixed) in (12). Then 

( )
( )

∑











 −






 +∈λλ

λλ

2
2,

2
2,...,,

1

1

...,,
nndnS

n
k

n

 

is equal to 

( )

( )

.
2

2,
2!

2

!
...,,

!
2

! 2
2

2
2,

2
...,,

2
1

2
2

2
1














−









=

























σσ














 −
















−∈σσ

∑






 −

nn
B

n
n

n
n

n

nn
S

n
n

n

 

Summing over all k we obtain the term 














−













 +













 −

2
2,

2
1
2

2

!
2

! 2
2

nnB
n

n
n

n

 

in (10). A similar argument works for any choice of 


















 − 






 −α

α
2

2
1

2
2

1
nn

 





 −

∈
2

2n
T  noting, by Theorem 2.2, that 

( ( )) =+−+ 12,1 iiB p  ( ( ))12,1 +−+ iiB i  for all 
2

2−
≥

n
p  and all i, 

.
2

21 −≤≤ ni  The case n odd may be proved similarly. This completes 

the proof of the theorem. 

The result of Theorem 3.2 is, of course, also true for all degrees 

obtained from 





 +

2
2n

d  in the manner outlined in Theorem 2.2. 

A truncated version of (10) which gives exact equality when 

82 ≤≤ n  is 
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.

2

!

2
2

2
2

2
222,

2
22

2!
2

22
!2

2

2
2

2
2

1

2
4

1 




 −

−

−

−

= 















−

+

+


















 −+−−+






 −+












 +

∑ n

in

i

n

i

n
n

n
inin

B
in

n

i

n
i  

If we now make use of the fact that ( ) 31,3 =B  and ( ) 134,4 =B  we 

obtain ( ) ,3638,4 =B  ( ) 25202334,6 =B  and ( ) .361200559232,8 =B  

We conclude by using the fact that ( ) ,7511,5 =B  ( ) 52526,6 =B  and 

( ) 434757,7 =B  to obtain explicit formulae for ( )( )indnB −,  in the cases 

( ) ,indn −=+α  .61 ≤≤ i  The respective formulae are given in the 

table below. We note that (10) is an expression for ( )( )indnB −,  when n 

is even and 
2

2−
=

n
i  and (11) is an expression for ( )( )indnB −,  when n 

is odd and .
2

1−
=

n
i  By analogy we may therefore obtain an expression 

for ( )( )mdnB ,  for all m, .1 nm <≤  

( )dn +α  ( )( )indnB −,  

1−n  ( )
2
!1 nn −  

2−n  ( ) ( )
22

!
2

2
3

!3
!2 nnnn 






 −

+−  

3−n  ( ) ( ) ( )
32

!
2

3
3

2!3
!

2
3

213
!4
!3 nnnnnn 






 −

+





 −

+−  

4−n  
( )

( ( ))
4

53

1 1 2

!
4

4
62,6

2!6

!4 nn
iiB

i

n
i

n
i i

i i 





 −

+−−−
−







 − −

= −∑  

( )
( )2

2
3

!3

!
2

4 nn






 −

+  

5−n  
( )

( ( ))
5

64

1 1 2

!
5

5
72,7

2!7

!5 nn
iiB

i

n
i

n
i i

i i 





 −

+−−−
−







 − −

= −∑  

( )
( ) ( ) ( )133

!4!3
!

2
5

23
!32

!
3

5
3 2

2
nnnn







 −

+





 −

+  
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6−n  

( )
( ( ))

6
75

1 1 2

!
6

6
82,8

2!8

!6 nn
iiB

i

n
i

n
i i

i i 





 −

+−−−
−







 − −

= −∑  

( )
( )

( )
( )

( )
( )2

2
3

3
2

22
13

!4

!
2

6
3

!3

!
3

6
3

!32

!
4

6
6 nnnnnn







 −

+





 −

+





 −

+  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )133
!4!3!2

!
3

6
6753

!5!3
!

2
6

2
nnnn







 −

+





 −

+  

Computation of ( )( )mdnB ,  is therefore dependent on the values 

( ),2, 1 jjB j −−  for all .3≥j  We do not consider this problem in this 

paper except to note that formula (2) is effective for small values of j. 
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