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Abstract

On the unit ball B of C", we obtain a norm equivalence of L”(B) space

for an invariant harmonic function. Using the quantity for the LP(B)

norm, we give characterizations of the invariant harmonic Besov space
and Bloch space, which are extending the known results for the

holomorphic case in the unit disk or the unit ball.

1. Introduction and Some Results

Let B={z e C" :|z| <1} denote the open unit ball and S denote

the boundary of B in C". For each a € B, the M&bius transformation

¢, : B > B is defined by

2
0o (2) = a—Pazl—\[1—|a| Qaz’ . ¢B

—(za)
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where P, is the orthogonal projection from C" onto the subspace

generated by a and €, is the orthogonal complement of P,, i.e.,

Pa,z:%a, Q.,z=2-P,z. Let M denote the group of all
a

biholomorphic automorphisms of B. Then any element of M has a unique

representation by the rotations around origin of ¢,. For a € B and

z € B, the determinant Jy¢,(z) of the real Jacobian matrix of @,

satisfies
2 n+l 9 \n+1
Jnou(e) = | Jeou@) P = [lef T _(1lea@B)T
r9a(2) = [Jcea(2)] [|1—<z,a>|2 2|2 (1.1)
and
dv(9q(2)) = Troq(2)dv(2). (1.2)

For f e C%(B) the invariant Laplacian A on B is given by

Af(2) = Alf = 9,)(0),

n 2
where A =4 Z 6:? is the usual Laplacian. An invariant harmonic or
j=1""J""]

simply M -harmonic function is a function in C2 (B) which is annihilated

by A in B. For a C' function f the invariant gradient V is the vector
field on B defined by

Vf(z) = V(f ° 9.)(0),

(o o o o
“\oxy oy 77 ox, Oy,

J, zj=xj+iyj, j=12, .., n The

Laplacian A and the gradient V are both invariant under the

automorphisms of B, i.e., M -invariant in the sense that for z € B
K(f ° (pz) = (Zf) °Qz, 6(f ° (Pz) = (§f) ° Q.

A straightforward computation (see, Lemma 3.3 in [3]) shows that if
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Zf:Oand1<p<oo, then
AP = el FIP29FF, (1.3)
where the constant ¢, is dependent on p.

Let / € C}(B) and & e C". The maximal derivative of f with respect

to the Bergman metric p on B is defined by

A _ | df(z) € | cB
VO ey TP

where
a2 -y | Lee+ Leg|
=15 !

= 0f(2)- &+ 0f(2) &

The following identities are easily verified. For C"' -function f and

¢ e M inB,
Qf o) =@)ow VRSP <@ =27 < AP @

For 0 < p < «, the Bergman space L£(B), the Hardy space H”(B)

and the Besov space B,(B) for the holomorphic function on the unit ball

of C" are defined respectively as
IZ(B) = {f cHB): |12, = [ |fe)Pave) < oo},
HP®) = {f < HE): 717 = sup [ | 600)Pdolc) < =
0<r<14d S

and

By(B) = {1 < HEB): | 1], = [(@P e < o).



384 JINKEE LEE

where we denote dv the normalized Lebesgue measure on B, do the
_ 1
(1 _ | z |2)n+1

M -invariant measure on B. We use the notations ML?(B), MH?(B)

normalized Lebesgue measure on S, dA(z) = dv(z) the

and MB,(B) in cases of invariant harmonic functions.

The Bloch space MB(B) consists of all invariant harmonic functions

on B such that
I v = 1O+ sup Qf(2) < .

In other words, MB,(B) consists of those M -harmonic function f for

which Qf is p-integrable with respect to the M -invariant measure
dMz) and MB(B) is a Besov p-space with p = . The inclusion

relations between two spaces are, for 1 < p < g < o,

MBp c MBq c MB,, = MB.

Since Q f for f M -harmonic is M -invariant, the M -harmonic Besov

and Bloch spaces are M -invariant Banach spaces in the sense that

[fo@l=]|f], for ¢ € M. Considering the inclusion relations for Besov
space and Bloch space, one may characterize those spaces by the
supremum over the unit ball. We confirm the fact by our results for some
characterizations of Besov space and Bloch space.

A. Zygmund proved that a holomorphic function f on the unit disc D is
in H?(D), if and only if

' 2 _ .
IDJle(Z)l 1-|z])dxdy <o (z =x+1y).

This result was extended to all p, 0 < p < «, by Yamashita [10] and Stoll
[7] in the unit disc D and the unit ball B, respectively. In [5], the result
for Bergman spaces L£(B) similar to that of Yamashita’s was given on

the unit ball.
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In this paper we extend the result for the holomorphic L (B) space of

[5] to the invariant harmonic version. Using the quantity for the LP(B)

norm, we give characterizations of the invariant harmonic Besov space
and Bloch space, which are extending the known results for the
holomorphic case in the unit disk or the unit ball (see, [2], [4], [5], [7], [8],

(91, [11]).

To obtain an analogous result, Theorem 1.2, to Bergman space for
holomorphic functions in [5], we need the following lemma (see, Lemma
3.5 1n [3] for another proof).

Lemma 1.1. If 1 < p < o and f is (complex-valued) M -harmonic on

B, then for 0 < r <1,

[ 100Pds@) - [0 = | 6. 28 1) P (o)

L r (1 _ p2)n—1

2ndiz) p2nl

G(r, z) = dp, zerB={zeC":|z|<r}.

Theorem 1.2. For 1 < p < o, f € MLP(B) if and only if

[ IFr@P @ P2 a2y i) < oo

B

T . . . p .
he integral is equivalent to | f "MLP(B)

Using Lemma 1.1 and Theorem 1.2, we give a new characterization of

the invariant harmonic Besov space.

Theorem 1.3. For 1 < p < w, f € MB,(B) if and only if

~ z) - f(w)[P~2
J’BIB(Qf)Q(z)“() FP ™ @)dvw) < (1.5)

|1 _ <2’ LU> |2(n+1)

The quantity in (1.5) is equivalent to || f "ﬁ/{B (B)
p
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Let 1 < p < o0. For a function f invariant harmonic on B, the Bloch

norm | f "ﬁ/t B(B) is equivalent to

22}13)” foo: =@, (seel2]) (1.6)
and
. 1 | a |2 n+l
sup [ (@FF(2)| = | dv(z) Gsee [1)). (1.7)
acB /B |1-(z, a}|

By (1.1), we can restate (1.7) as
sup [ (QF (=)L~ 9a(2) PV dA(2). (1.8)
acBYB

Using above equivalent quantities for the M -harmonic Bloch space,
we obtain characterizations for the Bloch space in a parallel line with
Theorem 1.3.

Theorem 1.4. For 1 < p < «, we have

~ ) |£(2)= f)[P~ n+
"f"fle(B) ~ EEEIBIB(Qf)z(Z)W(l ~| 0q () P)* dv(z)dv(w).

Applying Theorem 1.2 to the Bloch norm in (1.6), we directly obtain

another characterization of MB space.

Theorem 1.5. For 1 < p < «, we obtain

I W mm) = sup | VEPI ) = f@) P70 - 0a(2) ) di2).

2. Proofs of the Results

We use the notation A < B for the two expressions A and B which

means that there is a constant C, independent of the quantities under
consideration, such that A < C-B. When A < B and B S5 A, we use

the notation A ~ B.
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Proof of Lemma 1.1. By Green’s formula for the invariant Laplacian

Z,for0<p<1,

2n-2

Er,f - pz)‘””_[ SRUF ) (pO)do(C) = IPB Al f(z) [PdM(z)

where R(f) is the radial derivative of /. Since

SEOP = SRAT (L)

we have
d N (1 _ p2)n—1 -
B IS | F(pC) [Pdo(C) ~ e jpB Al f(z)[Pdn(z)

In integrating both side over r € [0, p], we obtain
p p a-pHt 3 p
Jlrearase)-1foF = [ E=fa—d| Fferae. ey
p.
By the change of integration order in (2.1), the proof is completed. 0

Let

otherwise.

1, z|<t
q0-{g

The proof of Theorem 1.2 goes along the similar process as that of [5] (see
Theorem 1 in [5]).

Proof of Theorem 1.2. It follows from Lemma 1.1 and (1.3) for
M -harmonic function f that for 0 < p <1 we obtain

Z)n—l

N 25\ Rana) [° L= ,
[{reorasc = [ I r@pFerae [ Sgn—a

n-1

<[ P Ao [T

2\n-1
_ I PA-r)" 4 j | f2) P2V ) Pdrz).  (2.2)
rB

0 r2n—1
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Following the same process as in Theorem 1 of [5], we obtain the

equivalent quantity for the last one of (2.2)

2\n—1 -
[ p% ar [ | 1) P2 T1)Pai)

0
- p—2n+lj;(1 _ 2yl I 1@ 1P=2(f(2) [2da(z). 2.3)
By (2.2) and (2.3), we have
p _ p
A2 g = [ F@PavE)

MIP

1
p j i 02 1d j MEGSIER

1 p ~
~ 2n j dp j (12 tar j | £(2) P2 9F(2) Pdn(2).
0 0 rB
By interchanging the order of the integration, we get

1712, = [0y ar| PSP o | do

MIP

~ J.()l(l - r2)ndr J‘rBl f(Z) |P—2| gf(2)|2dk(z)

[P R P [ a2 - )
0
9~ 1 "
- IBlf@)I" 2|Vf(2)|2dk(2)j\zﬁ1—r2) dr

- [ 1P TPa -2 Py dre)

This completes Theorem 1.2. 0

Remark 2.1. Taking p — 1 in (2.3), we obtain

1 e = jol(l — 2y lar j L1 P=2|9f(2) Pd(z)
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) I gl ) 7% VF(2) [ di(z) I lzﬁl ~ 2y lar

~ I @) P2Tf(2) P - | 2 [2) dA(z).

The result gives another proof of Proposition 5 in [7]: Let 1 < p < oo.

Then MHP(B) if and only if
j N TP f(2) P20 - | 2 P)dAz) < o,

By modifying Hardy’s inequality, K. T. Hahn obtained the following
theorem.

Theorem 2.2 [2]. For 1 < p < «, f € MB,(B) if and only if

| K(z, w) 2
J. _[ | f(z) - f(w) |p Wd?\.(z)dk(w) < o0,

where

K(z,w):; z,weB

(1~ (zw)"t
denotes the Bergman kernel of B.

Using K. T. Hahn’s result, we can obtain a characterization of the

M -harmonic Besov space.

Proof of Theorem 1.3. By Theorem 2.2, we want to show that

[ ] @re )l' i (2< ’;f;”llJnﬂ dv(z)dv(w)

J‘ I |f(z) f(w)p dv(z)dv(w).

B|1 n+1

It follows from (1.1) and (1.2) that we have the identity

1

11— (2, w) [

[ [ @@l - P 7 dv(z)dv(w)
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dv(w) '
(1 _ | w |2 )n+1

By the change of variable u = ¢,,(z) and the invariance of Qf under the

[ ] @I - )P astan )
BB

automorphism on B, the integral above is

A 2 _2
[ ] @FP(@u)] flou(w) - fo) M) By

N - dv(w)
=[] @ e 0P @) f o 0uw) - )P ) e G0

Replacing f o ¢, (u) - f(w) by F,,(u), (2.4) is equivalent to

A 2 2 dv(w)
IB IB (QFw) ( |p dv(u)( | | )n+1

by applying Theorem 1.2 to F,, and by (1.4), which is equivalent to

= 2 ) dv(w)
Jo o PR P v =S

j j |F, (u)|pdv(u)%. 2.5)

Replacing F,,(u) by f o ¢, (u) — f(w) in (2.5), we get

J‘B jBl F () PP dv()— D)

(1 _ | w |2)n+1

_ o 0y (1) — f(w) [P dv(u)—DE)__
= [l oot - P

By changing of variable u = ¢,,(z) and (1.1), the proof is completed. 0

Proof of Theorem 1.4. Following the step to obtain (2.5), we have

ap [ [ 1S (Z) )P (@12(e) 1 a0 PV dvle)dsto)

acBYB B|1 >|

~ sup I j |Fw(z)|p—2|%Fw(z)|2(1-|z|2)n+1(1-|(pa(w)|2)”+1dx(z)dx(w), (2.6)
acBYBJB
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where F, = f o 9, — f(w). By Theorem 1.2, (2.6) is equivalent to
sup j j | Fy(2) P = | 00 w) P) dv(z)dn(w). @.7)
acBYBJB

By Proposition 10.2 in [8], M -subharmonic mean value property,
TP -wPP s [ 175006~ 1)Pdve)

So, (2.7) is greater than or equal to a constant times to
sup [ [P0~ w0 PP (1 | gale) )" i),
acBY B

which is, by (1.4) and (1.1), equivalent to the left side quantity in (1.7).

Conversely, (2.7) 1s less than or equal to
sup j | Fy(2)[Pdv(z) - sup j (1 — | 9q () 2L dw),
weBJ B acBY B

which equals

sup [ [ 0,(2) = 1) Pdv(z) = 25

weB

since
[ 0= loaw) Py dre) = 1. 0
3. Comparison with a Holomorphic Case

Remark 3.1. When n =1 and fis holomorphic in the unit disc D, the
left side of (1.5) equals

2
[ ] a2 Pr OO yaaw), @)
DJD |1-zw |

in fact, the Bergman metric (2, ¢) for Dis v2|{|/(1 - |z |2 ).

Lemma 3.2. For 2z, w e D, |f’(z)|(l—|z|2) is comparable to

| f(2) = f(w)].
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Proof. From Theorem 3.1 in [9], we see the inequality for 0 < r < 1

1) a-|zP) st sup |1)- flw))

" low(@)|<r

On the other hand it follows from the inequality

1)~ 10| =| [, 4wy

N
< sup | f'(¢w)| (@ - |tu| )J. — 5t
|t |<1 01—t ul
for each u € D that
, 2y 1 1+|u|
| f(w) - f(O)| < sup | f'(tu)|(1 —|tu|")- - log =— . (3.2)
| tu|<1 2 1 |u|

Thus we have, for the Mébius transformation ¢, on the unit disc D,
| (2) = f@)] =1 f © 0w ° 0u(2) = f © 04,(0)]
=|F@)-FO)| (foon =F, gu(z) = w)

Applying (3.2) to F, we then obtain

| F(u) - FO)] < ~tog 4 sup | P | = )
2 1—|u| | tu <1

1 140

"2 T ety ] 0 CouleDI - )

By (1.1), we have

[ e )| = log T2 supl o, ()| - g ) )

—lol+(p“)(2)-su ‘Oa-[vP) @= u
—21g1_ (Pw(z) 0<t£)1|f()|(1 | |)’ ( (Pw(t ))
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Therefore

sup_| (2)- fw)| < glog 150 sup| /)| ~|o )
0<t<1

op(2)|<r

The proof is complete. 0

Then we see that the following characterization of the holomorphic

Besov space B, (D) by K. Zhu is obtained by (3.1) and Lemma 3.2.

Theorem 3.3 [11]. If p > 1 and f is holomorphic in D, then f is in

B, if and only if

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[l

[ [ D10 4ga) <.,
1-zw [*
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