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Abstract 

A curve is said to be a spherical curve if it lies on a sphere. There are 

many characterizations of spherical curves, among those is the well-

known theorem of Breuer and Gottlieb [4], which was then improved by 

Wong without any preconditions. It states that a 4C -curve lies on a 

sphere if and only if 
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where A, B are arbitrary constants and k is the curvature of the curve 

and τ is the torsion of the curve. This result was then generalized by 

Alodan and Deshmukh to n-dimensional submanifolds of a Euclidean 

space pnR +  which states that an n-dimensional compact connected and 

oriented submanifold of pnR +  lies on a hypersphere if and only if 

,1, −=ψ= ⊥HF  where H is the mean curvature vector field and ⊥ψ  

is the normal component of the position vector field ψ of the submanifold 

in .pnR +  In this paper we prove the equivalence of Wong’s result with 

Alodan and Deshmukh’s result in two ways.  
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1. Introduction 

Characterizing spherical curves is an interesting goal in geometry. 

There are many characterizations for a curve in 3R  to lie on a sphere. An 

important one is the well-known theorem of Breuer and Gottlieb [4], 

which was then improved by Wong [12] without any preconditions, states 

that a 4C -curve lies on a sphere if and only if 
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where A, B are arbitrary constants and k is the curvature of the curve 

and τ  is the torsion of the curve. Alodan and Deshmukh gave recently a 

generalization of this result to higher dimensions which is, given an 

n-dimensional submanifold M of a Euclidean space pnR +  with immersion 

( ) ( )cSMRM pnpn 1,: −++ ⊂ψ→ψ  for some c if and only if the smooth 

function ,1, −=ψ= ⊥HF  where H is the mean curvature vector field 

and ⊥⊥ ψψψ+ψ=ψ ,, TT  being the tangential and normal components 

of ψ  restricted to M, and ,  is the Euclidean metric on pnR +  

(Theorem) [1]. 

We prove that Wong’s result is equivalent to Alodan and Deshmukh’s 

result (cf. Theorem 4.1). We also give examples of spherical and non-

spherical submanifolds where the condition is met or is violated. 

2. Preliminaries  

We denote by ,  and ∇  the Euclidean metric and the Euclidean 

connection on .pnR +  Let g and ∇  be the induced metric and the 

Riemannian connection on the submanifold M. Then we have the 

following equations for the submanifold M 

 ( ) ,,, NXANYXhYY XNXXX
⊥∇+−=∇+∇=∇  (2.1) 
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where ( ) ( ),,, vNMYX Γ∈∈ X  where ( )MX  is the Lie-algebra of smooth 

vector fields, ( )vΓ  is the space of smooth sections of the normal bundle v 

of M, h is the second fundamental form, NA  is the Weingarten map with 

respect to the normal ( )vN Γ∈  which is related to the second 

fundamental form h by ( ) ( ) ( )MYXNYXhYXAg N X∈= ,,,,,  and ⊥∇  

is the connection in the normal bundle v. We also have the following 

equations of Gauss and Codazzi for the submanifold M 

 ( ) ( ) ( )( ) ( ) ( )( ),,,,,,,,,, WYhZXhgWXhZYhgWZYXR −=  (2.2) 

 ( ) ( ) ( ) ( ) ( ) ( ),,,,,,, YXZDhXZYDhZYXDh ==  (2.3) 

where R is the curvature tensor field of the submanifold M and 

( ) ( ) ( ) ( ) ( ) ( ).,,,,,,,, MYXZYhZYhZYhZYXDh XXX χ∈∇−∇−∇= ⊥  

The Ricci tensor Ric  of the submanifold is given by 

 ( ) ( )( ) ( ) ( )( ),,,,,,, ∑−=
i

ii eYheXhgHYXhngYXRic  (2.4) 

where { }nee ,,1 …  is a local orthonormal frame on M and 

( ),,∑=
i ii eehH  is the mean curvature vector field. The Ricci operator Q 

is a symmetric operator defined by ( ) ( )( ),,, YXQgYXRic =  ∈YX ,  

( ).MX  

The scalar curvature S of the submanifold M is given by 

 ,222 hHnS −=  (2.5) 

where 2h  is the square of the length of the second fundamental form 

defined by  

( ) ., 22 ∑= ij ji eehh  
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If we express ,⊥ψ+ψ=ψ T  where ( )MT X∈ψ  is the tangential 

component and ( )vΓ∈ψ⊥  is the normal component of .ψ  We denote by 

⊥ψ
= AA  the Weingarten map with respect to the normal vector field 

( ),vΓ∈ψ⊥  then using (2.1), we have  

 ( ) ( ).,,, MXXhAXX T
X

T
X X∈ψ−=ψ∇+=ψ∇ ⊥⊥  (2.6) 

Define a smooth function RMF →:  on the submanifold M by 

,, ⊥ψ= HF  then we have the following lemmas for an n-dimensional 

compact submanifold .: pnRM +→ψ  

Lemma 2.1 [1]. Let M be an n-dimensional compact submanifold of 

the Euclidean space .pnR +  Then 

( ) .01 =+∫M
dvF  

Lemma 2.2 [1]. Let M be an n-dimensional submanifold of .pnR +  

Then the tensor field A satisfies 

  (i) ,nFtrA =  

 (ii) ( ) ( ) ( ) ( ) ( ) ,,,, TYXRXYAYXA ψ=∇−∇   

(iii) ( ) ( ) ( ),,∑ ψ+∇=∇ T
ii QFneeA   

where ( ) ( ) ( )MYXYAAYYXA XX χ∈∇−∇=∇ ,,,  and { }nee ,,1 …  is a 

local orthonormal frame on M. 

Lemma 2.3 [1]. Let M be an n-dimensional submanifold of .pnR +  

Then the tensor field A satisfies 

{ ( ) ( )} .01, 222 =−+−+ψψ∫ dVnnFnARic T

M

T   
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3. Spherical Submanifolds  

The following well-known theorem characterizes spherical curves 

Theorem 3.1 (Breuer and Gottlieb). A curve ( )sα  in 3R  is a 

spherical curve if and only if ( )sρ  and ( )sτ  satisfy the explicit relation: 

( ) ( ) ,1sincos =



 





 τ+





 τκ ∫∫ dssBdssA  

where A and B are arbitrary constants. 

This theorem was later improved by Wong without any preconditions 

on κ and τ as follows: 

Theorem 3.2 (Wong). A 4C  curve ( ) [ ]Lss ,0, ∈α  parametrized by its 

arc length is a spherical curve if and only if 

( ) ( ) ,1sincos
00

=
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where A and B are arbitrary constants. A curve satisfying the above 

condition lies on a sphere of radius ( ) .2
1

22 BA +  

This result was then generalized by Alodan and Deshmukh for 

n-dimensional submanifolds of pnR +  to lie on a hypersphere 

Theorem 3.3 (Alodan and Deshmukh). Let pnRM +→Ψ :  be an 

n-dimensional connected compact oriented submanifold. Then 

( ) ( ),1 cSM pn −+⊂Ψ  for some constant ,0>c  if and only if the function 

.1, −=Ψ= ⊥HF  

4. Equivalence Theorem 

In this section, we prove that the result of Wong (Theorem 3.2) is 

equivalent to the result of Alodan and Deshmukh (Theorem 3.3). 
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Theorem 4.1. For a unit speed curve [ ] ⊥Ψ=→Ψ ,,,: 3 HFRba  

1−=  holds if and only if 
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where A, B are arbitrary constants. 

Proof. It is known that  

( ) ( ) 1sincos
00

=
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holds if and only if there exists a differentiable function f such that 

ρ′=τf  and .0=τρ+′f  Thus it is sufficient to prove that 1−=F  if and 

only if there exists a differential function f such that ρ′=τf  and 

.0=τρ+′f  

Suppose that .1−=F  Then Ψ  is a spherical curve. Then in this case  

1−=H  and n  along Ψ  is given by ( ) ( ).ss Ψ=n  Thus 

 1, =Ψ n  (4.1) 

which gives after differentiating with respect to s 

 .0, =ΨT  (4.2) 

Differentiating equation (4.2) with respect to s and using the Frenet-

Serret theorem we have 

., ρ=Ψ− N  

Now 

Ψτ−Ψ=ρ′ ,, BTk  

., Ψτ−= B  
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Take Ψ−= ,Bf  which is a differentiable function and 

.τρ−=′f  

Thus we get 0=τρ+′f  and .ρ′=τf  

Conversely, suppose that there exists a differentiable function f which 

satisfies 0=τρ+′f  and .ρ′=τf  

Now as 

Ψ−=ρ ,N  

we get 0, =ΨT
ds
d

 and hence =Ψ,T  constant. But as Ψ is spherical, 

then the constant must be zero. Now as ,,
ds
dn

Tn ==Ψ  we arrive at 

.0,,, =−Ψ=Ψ TnnT
ds
d

 

Thus 0, =Ψn
ds
d

 and hence =Ψ,n  constant. But as Ψ=n   

1, =Ψn  

.1−=F  

This proves the theorem. 

Remark. The proof we gave for Theorem 4.1 is certainly not the only 

possible proof. Another proof can given with more use of submanifold 

theory. We shall give such proof in what follows. 

Suppose Ψ  is a unit speed curve and ,1−=F  then Ψ  is a spherical 

curve. Now [ ] ,,: 3Rba →Ψ  can be expressed as follows: 

BNT µ+λ+=Ψ f  
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µλ,,f  are smooth functions. Now as ,, TΨ=f  then 

( ) ( ) .,,, TTTTTT T hf +∇Ψ+=  

But as 0=∇ TT  

( ) ( )TTT ,,1 hff ⊥Ψ+=′=  

F+= 1  

and using ,1−=F  we get ,0=′f  and hence f = constant. Thus 

.0, =Ψ T  This implies that .BN µ+λ=Ψ  

Now 

 ( ) ( ),NBBTNT τ−µ+µ′+τ+−λ+λ′=Ψ∇=Ψ′ k  

( ) ( ) ,BNTT µ′+λτ+µτ−λ′+λ−= k  

( ) ( ) ( ) .10 BNT µ′+λτ+µτ−λ′+λ+−= k  

As { }BNT ,,  is a linearly independent set we get 

.,,1 µ′−=λτµτ=λ′λ=− k  

Thus 0≠k  and .ρ−=λ  Hence µτ−=ρ′  and .σρ′−=µ  But B,Ψ=µ  

gives 

τρ=Ψτ−=µ′ N,  

and 

( ) .′σρ′−=τρ  

This is Darboux’s condition which is equivalent to Wong’s condition. 

Conversely, suppose Ψ  is a unit speed curve and there exists a 

differential function f such that ρ′=τf  and ,0=τρ+′f  i.e., Ψ  is a 
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spherical curve. We have 

.BN σρ′−ρ−=Ψ=Ψ ⊥  

As the curve is a 1-dimensional submanifold of ,3R  the mean 

curvature vector is expressed as 

( )., TThH =  

Now 

( )TTTTT TT ,h+∇=∇=′  

N
ρ

=
1

 

which gives 

⊥Ψ= ,HF  

BNN σρ′−ρ−
ρ

= ,
1

 

.1−=  

5. Examples of Spherical and Non-spherical Submanifolds  

In this section we give examples of spherical submanifolds where the 

condition 1−=F  is met and examples of non-spherical submanifolds 

where the condition 1−=F  is violated. 

Example 5.1. Consider the hyperspheres ( ) ,: 3
1

2
1 RcS →Ψ   

( ) 







−−=Ψ 22

1
1

1
,,, vu

c
vuvu   

and ( ) ,: 3
2

2
2 RcS →Ψ   
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( ) 







−−=Ψ 22

2
2

1
,,, sr

c
srsr   

and let ( ) ( ).2
2

1
2 cScSM ×=  Define 6: RM →Ψ  by ( ),, 21 ΨΨ=Ψ  

such that .0, 21 =ΨΨ  

It is easy to check 

Ψ= ,HF  

.1−=  

Thus M is a spherical submanifold. 

Example 5.2. Consider the unit sphere ( ) 11 +⊂ nn RS  with the 

natural embedding ( ) .1: 1+→ nn RSi  Let ×







−

=
1n

m
SM m  









− 1n
k

Sk  be the product of the spheres ,
11 







−

×







− n

k
S

n
m

S km  

where .1−=+ nkm  Then from Simon [11], we know that there exists 

an immersion ( )1: nSMf →  which is a minimal hypersurface. 

Now consider 1: +→=Ψ nRMfi  as an ( )1−n -dimensional 

submanifold of .1+nR  Let 1N  be the unit normal of M in ( )1nS  and 

iN =2  the unit normal of ( )1nS  in .1+nR  Then { }21, NN  is an 

orthonormal frame of normals for the submanifold M in .1+nR  

The mean curvature vector H of M in 1+nR  is given by 

,2nNnH −=  

where we used 0
1
=NtrA  as M is a minimal hypersurface of ( ).1nS  Thus 

.2NH −=  



ON CHARACTERIZATIONS OF SPHERICAL CURVES 377

Also as 

( ) ( ) ( )pfip =Ψ  

( )( ),2 pfN=  

where ,2Ni =  treating i as a position vector field of ( ).1nS  

Thus we have 

⊥Ψ= ,HF  

1−=  

which gives an example of a spherical submanifold M. 

Example 5.3. Consider the surface of revolution given by 

( ) ( ) ( )( ),sin,sincos2,coscos2, θφθ+φθ+=φθx  

where ( ){ }.,0,,,: 3 π<φ<π−π<θ<φθ=→ URUx  Then x is an 

immersion and 

( ) ( ),sin,sincos,coscos1cos2 θφθφθ+θ=⊥x  

we have 

⊥= xHF ,  

θ+
+θ+θ

=
cos2

1cos2cos3 2
 

.1−≠  

This gives an example of a submanifold with .1−≠F  

Remark. In the previous example, we found that 1−≠F  as .0≠x  

Example 5.4. Consider the simple surface 3: RUx →  defined by 
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( ) ,1,sin,cos, 2 




 +θθ=θ ssssx  

where ( ){ }.20,0,, π<θ<>θ= ssU  Then clearly x is an immersion and 

n
221

1

s
x

+
=⊥  

and 

⊥= xHF ,  

( )
( ) 











+

+
=

22

2

21

1

s

s
 

.1−≠  

This is another example with .1−≠F   
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