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Abstract 

We present experimental and theoretical analyses of data requirements 

for haplotype inference algorithms. Our experiments include a broad 

range of problem sizes under two standard models of tree distribution 

and were designed to yield statistically robust results despite the size of 

the sample space. Our results validate Gusfield’s conjecture that a 

population size of n log n is required to give (with high probability) 

sufficient information to deduce the n haplotypes and their complete 

evolutionary history. The experimental results inspired our theoretical 

bounds on the population size. We also analyze the population size 

required to deduce some fixed fraction of the evolutionary history of a 
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set of n haplotypes and establish linear bounds on the required sample 

size. These linear bounds are also shown theoretically. 

1. Introduction 

Though DNA sequences of any two people are about 99.9% identical, 

the variations, however slight, may greatly affect an individual’s risk for 
disease and response to different drug treatments [16]. Sites in the DNA 

sequence where individuals differ at a single DNA base are called single 

nucleotide polymorphisms (SNPs). The pattern of SNPs on a block (or 
continuous segment along the genome which is essentially non-

recombinant) is a haplotype. DNA genotype data for an individual 
consists of the union of two sets of haplotype data, one from each parent. 

To understand the genetic makeup of a population fully, it is essential to 
understand not just the genotypes present in the population, but the set 

and distribution of haplotypes in the population and the evolutionary 
history of the haplotypes. The next important large scale project, 

following the success of the Human Genome Project is the Haplotype 
Mapping (HapMap) Project [17, 4]. The HapMap project is a data 

resource for genetic association studies, and as such seeks to build a map 
of these haplotype blocks, including the specific SNPs that identify the 
haplotypes. It is relatively inexpensive to get genotype data biochemically 

(in a “wet lab”) but it is still very expensive to determine haplotype data 
this way, making this a suitable and attractive challenge for algorithm 

designers. 

Many algorithms have been developed to computationally infer 

haplotypes, given only the genotype data, avoiding the great cost in 
biochemically determining haplotype information. Several statistical 

approaches have been developed to do this [6, 21], as well as parsimony 
approaches [3]. Gusfield et al. [2, 9, 11, 10] developed promising 

combinatorial algorithmic techniques for taking genotype information 
and computationally deducing the most likely set of haplotypes and their 

evolutionary history. To deduce the evolutionary history, he relies on the 
existence of a perfect phylogeny for the mutations in the population 

(basically, a binary tree), for which there is compelling biochemical 
evidence. Computational algorithms that give accurate estimates of 
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haplotype avoid the great cost in biochemically determining haplotype 

information and hold a great deal of promise for efficiently yielding the 
evolutionary history of the set of haplotypes in the population. We focus 

on the lower bounds for the amount of data required for such algorithms 
to have a high probability of success. Gusfield [9] conjectured that the 
sample size required to infer the haplotype evolutionary history for a set 

of n haplotypes would be on the order of n log n. 

We present results of theoretical and experimental analyses of 
population size requirements for haplotype inference algorithms needed 

to determine the haplotypes with high accuracy and we establish 
Gusfield’s conjecture. We also analyze theoretically and experimentally 

the data sufficiency requirements to determine a fixed fraction of the 
evolutionary history of a set of haplotypes. The paper is organized as 

follows: Section 2 covers background of haplotyping and evolutionary 
trees. In Section 3, we discuss path coverage of trees in the case where 

there is the minimal possible number of individuals necessary. In Section 
4, we bound the expected sample size requirements for complete as well 
fractional coverage of trees. In Section 5, we describe the experimental 

results from simulation studies. 

2. Background 

2.1 Haplotypes. Each diploid individual has two sets of 

chromosomes, one from each parent, and thus two copies of every gene. 
The chromosome copies often differ only by a single base at a site in the 

DNA sequence; these are the SNPs described above. SNPs account for 
much of the variation in the human genome, and there are about 10 
million SNPs that are common in human populations (see [8, 18, 4] for 

details). Genotyping of a person reveals the values at the SNPs from the 
two copies of the genes, but not from which parent it was inherited. For 

example, in Figure 1, the two copies of the gene for Person A differ at site 
1. From the genotype data, we do not know if the “A” seen at site 1 came 

from the maternal or paternal copy of the gene. It is relatively quick and 
inexpensive to find genotypes in a wet lab, but difficult and expensive to 

find the haplotypes, or the “halves” that came from each parent. Figure 1 
gives a possible set of haplotypes for the genotypes given. Note identical 



SEAN CLEARY and KATHERINE ST. JOHN 322

genotype data could come from more than one set of haplotype data, and 

collecting genotype data from relatives can facilitate haplotyping efforts 

[21]. In general, there can be as many as 12 −k  possible haplotype 

arrangements for haplotype data collected at k sites. 

 Person A Person B  A maternal paternal  B maternal paternal 

Site 1 A:G A:G   G A   G A 

Site 2 T:C T:T   T C   T T 

Figure 1. The left table shows the genotype data from two people. The 

other tables show one possible haplotype data for the two parents. Note 
that for Person B the second site is the same from both parents. There 

are three other possible haplotype configurations for Person A and one 
other possible haplotype configuration for Person B. 

2.2 Evolutionary trees. Trees are often used to model evolution 

between species in computational biology. The simplest models use rooted 
binary trees, with each leaf of the trees representing a different taxon. 

The root node represents the common ancestor of a collection of taxon, 
and mutations occur on edges, or branches, or the tree. A perfect 

phylogeny is an evolutionary history of the data in the case where each 
allele evolved at only one place in the tree. 

Similarly, trees can be used to model evolution on haplotypes. Again, 

rooted binary trees are used to represent the ancestral history of a 
collection of haplotypes present in a population, with interior nodes 

representing mutations in the past. Gusfield’s algorithm [9] for haplotype 
inference assumes a perfect phylogeny. It is far more efficient than the 
exhaustive enumeration of all possible haplotypes and evolutionary 

histories of those haplotypes (which has super-exponential running time) 
but has some limitations, as does any such computational inference. The 

relevant limitation we study is whether or not a haplotype mutation is 
detectable with a given amount of data. Specifically, in order to observe a 

mutation at an interior node, there must be an individual present in the 
population whose parents had haplotypes from the two different 

descendants of that node or from one descendant of that node and one 
non-descendant of that node. If there is a very large population with 

genotype data for many individuals, then it is likely that there will be 
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sufficient information to determine the complete phylogenetic data for the 

haplotypes. 

In order to identify the set of n haplotypes present and distinguish 

their phylogenetic relationships, we gather data from a set of m 

individuals. For there to be a chance of identifying and inferring the 
complete correct phylogeny for the haplotypes, of course, each haplotype 

must be present in some individual so thus necessarily .
2
nm ≥  If we 

consider the phylogenetic tree of haplotype ancestry, then we can regard 

each individual as being formed by a pair of haplotypes. The information 
about the phylogeny which may be inferred from that individual’s data is 

only about nodes in the tree which lie along the path from the one 
haplotype to the other. 

     

Figure 2. Example of relationship of 8 haplotypes { }....,,, HBA  The 

dotted edges in the right tree represent the edges covered by the genotype 
data: (AC), (BD), (EF) and (GH). 

For example, if the evolutionary relationship of haplotypes is given by 

the tree described as ((A, B), (C, D)), ((E, F), (G, H)) and pictured in 
Figure 2, and the genotype data collected for 4 individuals is (AC), (BD), 
(EF) and (GH), then there are 2 internal nodes numbered 1 and 3 which 

are not traversed by any path in the set of paths connecting the two 
haplotypes of each individual, so it would be impossible to deduce the 

evolutionary relationships represented by those internal nodes. In 
contrast, if we had 4 individuals with genotype data (A H), (B D), (C F) 

and (E G), then all edges (and thus all internal nodes) are traversed by 
the collection of paths and thus, in principle, it may be possible to deduce 

the complete evolutionary history of those 8 haplotypes using inference 
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algorithms such as those described by Gusfield et al. below, we consider 

the question of how many individuals should be expected to be required 
to get complete path coverage of the tree, and also to get specified 

fractional coverage of the tree. The answer to this question depends upon 
the shape of the phylogenetic tree. 

We note that if the set of haplotypes is known in advance, then it may 
be possible to deduce the complete phylogeny with less than full coverage 

of the tree. Also, even if the tree is completely covered by such paths, 
there may still be impossible to deduce the complete phylogenetic 

relationships of the haplotypes. However, full path coverage is a natural 
estimate for lower bounds of data sufficiency requirements for haplotype 

inference algorithms. 

2.3 Tree distributions. We consider the combinatorial edge-covering 
properties of three families of trees under a number of assumptions about 

possible constructions of pairing of leaves. Natural models for generating 
trees to consider are the uniform random tree generation model, in which 

every possible tree on n leaves is equally likely, and also the Yule model 
for speciation (or birth-death trees) which constructs random trees based 

upon a sequence of bifurcations and results in a different random 
distribution of trees (see [1] for an overview of biologically-related tree 
distributions). 

3. Exact Exhaustive Pairings 

We first consider the simple case where each haplotype occurs in 
exactly one individual. We will necessarily have an even number of 

haplotypes since each individual has two haplotype constituents. We call 

the case where each haplotype occurs in exactly one individual an exact 

exhaustive pairing. Such pairings provide the absolute minimum possible 
information from which it might, in principle, be possible to deduce 
properties of the haplotype evolution. This contrived situation is not 

biologically realistic, but it is easy to observe and analyse behavior here 
that is characteristic of more realistic models considered later. We 

consider the question: given a population with 2n haplotypes and n 
individuals with each haplotype appearing in exactly one individual, 

what is the probability that there is sufficient coverage of the internal 
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nodes? In more realistic settings where individuals are sampled randomly 

from a population, we expect to need even more individuals to give more 
complete coverage on average and we address those settings in later 

sections. 

3.1 Balanced Tree Pairings. First, we consider perfectly balanced 
binary trees, and we begin by considering the probability that the root 
node is not traversed. That is, if we have a perfectly balanced tree with 

l2  leaves, then the only way that the root node can be untraversed is if 

every leaf in the right subtree is paired with another leaf in the right 
subtree. We can see that this circumstance is unlikely for large trees 
below. 

Proposition 3.1. Given a balanced tree T with l levels having l2  

leaves, the fraction of all possible complete distinct pairings of leaves that 

do not cross the root is 
(( ) )

( )
.

!!12

!!12 21

−

−−

l

l
 

Proof. The number of possible pairings of the 12 −l  leaves in the left 

subtree of the root is ( ) ,!!12 1 −−l  as is the number of possible pairings of 

the 12 −l  leaves in the right subtree of the root. The total number of 

pairings of all the leaves is ( ) ,!!12 −l  so we get the fraction in the 

proposition. � 

Proposition 3.2. Given a balanced tree T with n levels having l2  

leaves, the fraction of all possible complete distinct pairings of leaves that 

do not cross an edge just above a particular node k levels down from the 

root is 
( ) ( )

( )
.

!!12

!!122!!12 11

−

−−− −−−−

l

kllkl
 

Proof. Again we count all pairings, and we count the pairings which 
are contained totally within the descendants of the node and totally 

outside of the set of descendants of the node to get the desired fraction. � 

We note that each of the above quantities goes to zero as the number 
of haplotypes increases, and these quantities go to zero particularly 
quickly for the root node and nodes close to the root node. Thus, even 
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given a bare minimum of haplotype information, it is likely that 

information about mutations from early in the haplotype evolutionary 
history can be obtained algorithmically from the genotype data. For the 

lower levels, there are many more possible nodes to consider and the 
expected number of uncovered edges rises, although not dramatically as a 
fraction of the total nodes. For example, with a balanced tree of 18 levels, 

the expected value of uncovered edges at level 17 is 321 out of 131072 
total. 

3.2 The sibling pair obstruction. Experimental results show that 

in the distributions of balanced, uniform and Yule model trees, in the 
case of an exact exhaustive pairing which fails to cover the tree, the 

predominant means of failure is due to a sibling pair occurring as 
haplotypes in an individual, making it impossible to deduce where that 

sibling pair is attached to the remaining tree. We can estimate the 
likelihood of the failure to cover the tree as approximately the likelihood 

of there being a sibling pair matched together. As we saw in Section 3.1, 
the likelihood of being uncovered increases as we get further from the 
root, so the sibling pairs at the bottom of a balanced tree are the most 

likely to be uncovered. 

For each sibling pair present in the tree, the probability that it is not 

paired in the matching is .
1

11
−

−
n

 If there are s sibling pairs, then we 

can calculate the probability that neither are paired in a matching as 

( ) ( ) .
31

1
1

21 







−−
−

−
−

nnn
 We can extend the case of s sibling pairs, 

which can be calculated exactly using the Inclusion-Exclusion Principle, 

and the probability is bounded below by the initial terms: 
1

1
−

−
n

s  Work 

by Steel and McKenzie [14] computes the asymptotic number of sibling 

pairs (“cherries”) for the uniform distribution as 4n  and for the Yule 

distribution as .3n  Thus, we underestimate the probability that there is 

no sibling pair obstruction in a uniformly-selected random tree with an 

exact exhaustive matching as ,
1
2

11
1

4
1

1
1

1
4

1 4
n

n
n

nn
n









−
−

−
−=

−
−  which 
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converges to 43  as n becomes large. Similarly, we have for the Yule 

distribution the probability of no sibling pair obstruction as at least 32  

as n becomes large. For the balanced tree case, where every leaf is part of 

a sibling pair and there are exactly 2n  such sibling pairs, we obtain the 

probability as n is large that there is no uncovered edge from the sibling 

pair obstruction is .21  Thus, what appears to be the primary obstruction 

to incomplete coverage is increasingly present in the Yule, uniform and 
balanced tree families, but does not dominate the process and prevent 

many exact exhaustive pairings from having complete tree coverage. 

The next most common failure for exact exhaustive pairings, from 
experimental experience and consistent with the analysis in the balanced 

case above, appears to be when two sets of adjacent sibling pairs are 
matched in such a way that the edge connecting them to the rest of the 

tree is uncovered. In that situation, though it may be possible to 
determine the evolutionary history of that group of four haplotypes, it 

will not be possible to determine where that group of four is connected to 
the remainder of the haplotype evolutionary tree. An example of this 

phenomenon is the uncovered node 1 from the earlier Figure 2 with the 
pairing which included individuals with haplotype pairs (AC) and (BD). 

Preliminary experimental data shows this behavior is significantly less 
probable than the simpler sibling pair obstruction phenomenon. 

4. Sample Size Sufficiency 

In general, the size of our sample of individuals from the population 
will be larger than the set of haplotypes, and we can ask the question of 

how many randomly selected individuals are needed to cover all of the 
edges (and thus all of the nodes) of the evolutionary tree. These 

individuals are selected at random, and it is likely that some haplotypes 
will appear repeatedly even before other haplotypes appear at all. 

4.1 The sibling pair obstruction. We examined the preliminary 

experimental results in the distributions of uniform and Yule model 
trees, in the case of sets of pairings which cover the leaves but whose sets 

of paths fail to cover the tree. The predominant means of failure is due to 
a sibling pair of haplotypes occurring only as haplotypes in a single 
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individual, making it impossible to deduce where that sibling pair of 

haplotypes is attached to the remaining tree. 

4.2 Coupon collecting. A model for collecting haplotype data is to 

consider a population with n haplotypes and select individuals whose 

genotypes are given by two randomly selected haplotypes. If an individual 

has exactly the same haplotype for both parents, then this forms a 

homozygote – very useful for determining what the set of haplotypes is, 

but such a pairing can yield no information about the evolutionary 

history of the haplotype pool. To determine the evolutionary history of the 

set of haplotypes, we need heterozygotic individuals, which are formed 

from pairings of different haplotypes. We address the question – how 

many heterozygotic individuals are necessary for the paths of the 

pairings for those individuals to completely cover the tree? We use the 

simplifying assumption that each of the n haplotypes is equally likely to 

occur in the genotype of an individual in the population. Though this is 

not biologically realistic, the estimates obtained below can apply roughly 

to the non-uniform likelihood case by considering the uniform likelihood 

case with the number of haplotypes set at the reciprocal of the probability 

of the least likely haplotype in that distribution. 

A lower bound to the number of individuals sampled (with 

replacement) needed to infer the haplotypes is given by the Coupon 

Collector Problem, also known as the “sequential occupancy problem.” 

The Coupon Collector Problem is the following: suppose there is a large 

pool of coupons, equally distributed from n distinct types. We start with 

an empty collection and at each stage, a random coupon is drawn from 

the pool and added to the current collection. We would like to collect one 

of each type of coupon – typically, we will soon have many duplicates of 

those coupons already in our collection and will just keeping waiting for 

the last few types of coupons that we do not yet have. What is the waiting 

time to collect at least one of each coupon and thus have a complete set in 

our collection? The dominant term for the expected waiting time is given 

by n log n; see Feller [7] for an excellent introduction to coupon collection 

methods. In the case where what is desired is a partial collection of 

coupons, given by a fraction p of the total number n of coupons, the 
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dominant term in the expected waiting time for fractional coverage is 

given by .
1

1log
p

n
−

 

4.3 Edge collection. To estimate the number of individuals required 

to get complete edge coverage in these tree models, we make several 

observations. We consider only non-degenerate leaf pairings – that is, 

heterozygotic individuals. A homozygotic individual whose parents 
possess the same haplotype (amounting to a leaf paired with itself) cannot 

yield any information about the haplotype ancestry, so we ignore those 
individuals and count only non-degenerate leaf pairings. Note, however, 

that such homozygotic individuals are very useful for identifying the set 
of haplotypes present in the population if it is not already known. 

Theorem 4.1. The expected number of non-degenerate individuals for 

complete coverage of a rooted binary evolutionary tree of a set of n 

haplotypes is at least nn log
2

 and bounded above by ( ).32log
2
3

−





 − nn  

Proof. The lower bound for coverage comes from the coupon 
collection methods described above. In order to cover all of the pendant 

edges of the tree (those which lead to a leaf), there must be at least one 
pairing containing each individual. Thus, the standard coupon-collection 

lemma applies and we expect to be required to accumulate n log n leaves 

before having at least one of each pendant edge. Since there are two 
distinct haplotypes present in each nondegenerate individual, we obtain a 

lower bound of at least n
n

log
2

 individuals expected to infer the 

evolutionary history of n haplotypes. 

The upper bound for coverage also comes from the coupon collection 
lemma. In this case, we consider the coupons to be the 32 −n  edges of 

the tree. In this case, each non-degenerate pairing may give many edges 
in the path connecting the leaves of that pairing, but will always give at 

least 2 edges. The probability of an edge being crossed for a given pairing 

is at least ( ),12 pp −  where p is the fraction of the leaves closer to one 

end of the edge, and p−1  is the fraction of the leaves closer to the other 

end of the edge. That probability will vary according to the position of the 
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edge in the tree and is highest when the edge approximately divides the 

tree into equal halves of leaves. That probability will always be at least 
that for the probability of a pendant edge being crossed, which is itself 

greater than ( ).322 −n  Thus, since the probability of being selected at 

each stage is greater than the ( )321 −n  that would occur in the usual 

coupon collecting model with 32 −n  coupons, the expected waiting time 

for a complete collection of coupons (edges) is no more than 

( ) ( ).32log32 −− nn  Again, since there at least two edges selected for 

each individual, we expect the required number of individuals to be no 

more than ( ).32log
2
3

−





 − nn  � 

Given the estimates used in the upper bound, this is clearly an 

overestimate, as borne out by the experimental data described below. 

4.4 Fractional coverage. If instead of insisting on collecting enough 
data to determine the complete phylogenetic history, then we instead look 
only to collect enough data from individuals to determine a fixed fraction 

1<p  of the evolutionary history, only a linear number of non-degenerate 

individuals are required. 

Theorem 4.2. The expected number of non-degenerate individuals to 

determine, from genotype data, a fixed fraction 1<p  of the rooted binary 

tree representing the evolutionary history of a set of n haplotypes is at least 

p
n

−1
1log

2
 and bounded above by .

1
1log

p
n

−
 

Proof. We use the coupon collecting lemma for fractional coverage. 

The expected waiting time for collecting pn distinct coupons has 

dominant term ,
1

1log
p

n
−

 so the lower bound comes from considering 

the expected waiting time to have fractional coverage of the n leaves, 
again halving the expected waiting time because the non-degenerate 

individuals will each give two leaves. 

For an upper bound for the fractional coverage, we again consider the 
coupons to be the set of 32 −n  edges of the tree, and we note that each 

individual given traverses at least two edges of the tree, giving the bound 
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of 
p

n
−

−
1

1log
2

32  for the expected waiting time for the desired 

fractional coverage of the set of edges, and thus the desired bound. � 

These analyses do not depend upon the process to generate the shape 

of the tree. In cases where a particular process is used, for example in the 

Yule model for tree generation, we may be able to improve the analysis. 

For example, we note the mean path length for the path between two 

individuals selected at random in the Yule model, analyzed by Steel and 

McKenzie [20], is larger than 2 and grows slowly with the size of the tree 

and thus the upper bound can be improved in that case. 

These estimates on sample size sufficiency are confirmed by the 

experimental data described in the next section. 

5. Experimental Results 

5.1 Experimental design. We generated synthetic datasets under 

two different tree distributions (uniform and Yule) and then randomly 

chose non-degenerate pairs of leaves and tallied the edges in the path 

induced by the pair. We continued to choose pairs until all edges had been 

crossed at least once. The pairs were chosen with equal probability of any 

distinct pair of leaves being selected. We also measured the number of 

pairs needed until all leaves were chosen and the height of the last edge 

crossed. We recorded the number of individuals at the earlier stages 

when we crossed thresholds of 70%, 80%, 90%, 95%, and 99% coverage of 

edges, as well as recording when the complete 100% coverage occurred. 

5.1.1 Parameter space. We randomly generated model tree 

topologies from the uniform distribution on binary leaf-labelled trees, as 

well as the Yule distribution using Sanderson’s r8s program [19]. The 

uniform trees were generated using tgen, a program written by Daniel 

Huson. We used the default settings for r8s under the YULE_C option to 

generate the trees from the Yule distribution. Due to the use of 

computational clusters, we were able to study a large number of tree 

sizes. We generated 100 random trees under each distribution for 100 

different sizes of trees, ranging from ten haplotypes to 1000 haplotypes 
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(increasing by increments of ten), for a total of 20,000 trees containing 10 

million haplotypes. 

5.1.2 Statistical considerations. Since the number of distinct 

rooted, leaf-labelled trees on n leaves is ( ) ,!!22 −n  it is not possible to 

take a fair sample of the entire input space. In order to obtain 
statistically robust results, we follow McGeoch [13] and Moret [15] and 
use a number of runs, each composed of a number of trials (a trial is the 
collecting of edges on a single tree), computed the mean outcome for each 
run, and studied the mean and standard deviation over the runs of these 
events. This approach is preferable to using the same total number of 
samples in a single run, because each of the runs is an independent 
pseudorandom stream. With this method, one can obtain estimates of the 
mean that are closely clustered around the true value, even if the 
pseudorandom generator is not perfect (see [13] for more details). 

5.1.3 Methods. The experiments were performed on two computer 
clusters. In addition to the tree generation software described above, the 
authors’ C programs and Perl scripts were used to calculate the paths 
generated and analyze the cumulative coverage. A set of 10 runs for 1000 
haplotypes took about two hours of computation time on the slowest 
machines. 

5.1.4 Measurements. Our focus was to determine the number of 
pairs of leaves (those heterozygotic individuals sampled in the 
population) needed to “witness” all of the edges (those mutations that 
form the haplotypes), confirming Gusfield’s conjecture. In addition to 
measuring the number of pairs needed to cover all the edges, we also kept 
track of the number pairs until all the leaves were seen, as well as the 
height of the last edge seen. For each run of 10 trials, we retained only 
the mean values. Our results are composed of the means for each set of 
10 runs. 

5.2 Experimental results 

5.2.1 Overview. For each distribution, we ran 10,000 trials 
consisting of trees ranging in size of 10 leaves to 1000 leaves. Due to the 
efficient generations of trees, we generated trees for each trial, instead of 
sampling subtrees of fewer large trees. We found similar results for the 
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two tree distributions most commonly used in phylogeny. The number of 
samples, or steps, needed to cover all the edges approximated closely the 

expectation predicted by the coupon collecting lemma, nn log
2
1  for 

complete coverage and 
p

n
−1
1log

2
1  for fractional coverage (from Section 

3, above). Interestingly, the samples needed to cover all the edges of a 
tree closely matched the numbers needed merely to cover all of the 
leaves. This correlation between the numbers needed to cover the edges 
and to cover the leaves is also seen when looking at the height of the last 
edge covered. The last edge covered was almost always an external edge 
(an edge connecting only a leaf to the rest of the tree). In both 
distributions, a fair fraction of the time was spent waiting for a final 
single pendant edge and its corresponding single leaf to be covered. This 
was seen in both distributions, with the very significant difference in the 
number of individuals required to ensure 99% coverage and 100% 
coverage indicating that a large fraction of the time was spent waiting for 
a few final edges and leaves to be covered. 

5.2.2 Yule distribution. We present the results for the number of 

samples of pairs of distinct leaves needed to cover all the edges in trees 

under the Yule distribution. The left-hand graph in Figure 3 shows the 

number of samples from the population needed to see all the edges in the 

tree. The number is bounded by the theoretical results from Section 3 of 

nn log
2
1  and ( )32log

2
3 −




 − nn  (shown by dotted lines in Figure 3). 

Interestingly, our results match the lower bound which is the expected 

number of samples, predicted by the coupon collecting lemma, needed to 

see all the leaves. This correlates well with the last edge covered almost 

always being a leaf, mentioned above. It is very rarely the case that we 

have all the leaves and are sampling just to cover remaining interior 

edges. Instead, it takes about the same time to cover the leaves as the 

edges. The experiments indicate that the upper bound could be 

sharpened. 

The results for the number of samples needed to cover the leaves 

differed by less than 1 percent from the number needed to cover the edges 
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and are omitted due to space constraints. As mentioned above, we ran 10 

runs of 10 trials, averaged the results for each run, and then analyzed the 

averages. We present only the average of the averages. The standard 

deviations, for both the samples needed to cover the leaves and the edges 

were between 3 to 5 percent of the averages and were omitted to make 

the graph easier to read. 

    

Figure 3. The graph on the left gives the number of samples from leaf 
pairs needed to cover all the edges of a tree chosen from the Yule 

distribution (dark line), as well as known lower and upper bounds of 

nn log
2
1  and ( )32log

2
3 −




 − nn  (dotted lines). On the right is the 

similar graph for the uniform distribution. The number of haplotypes 
ranges from 10 to 1000, in increments of 10. The results are the average 

of 10 runs of 10 trials. The standard deviations are 3 to 5 percent of the 
averages for the Yule distribution, 4 to 7 percent of the averages for the 

uniform distribution, and are omitted for readability. 

5.2.3 Uniform distribution. We present the results for the number 
of samples of distinct pairs of leaves needed to cover all the edges in trees 

under the uniform distribution. The right-hand graph in Figure 3 shows 
the number of samples from the population needed to see all the edges in 

the tree. As in the Yule distribution, the number is bounded by nn log
2
1  

and ( )32log
2
3 −




 − nn  (shown by dotted lines in Figure 3 and obtained 

in Section 3). Again, our results approximate the lower bound which is 
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the expected number of samples, predicted by the coupon collecting 

lemma, needed to see all the leaves. It takes the same time to cover the 
leaves as the edges. The experiments indicate that there could be some 

improvement in the upper bound. 

As in the Yule distribution case, the results for the number of 
samples needed to cover the leaves differed by less 1 percent from the 
number needed to cover the edges and are omitted due to space 

constraints. The standard deviations, for both the samples needed to 
cover the leaves and the edges were between 4 to 7 percent of the 

averages, slightly higher than was observed in the Yule distribution case. 

Fractional Coverage 

We present experimental results for the number of samples of distinct 
pairs of leaves needed to cover specified fractions of the edges in trees 

under the uniform random distribution of trees. 

     

Figure 4. The left graph gives the number of samples from leaf pairs 
needed to cover 70%, 80%, 90%, 95%, 99% and 100% of the edges of a tree 

chosen from the Yule distribution. The right graph shows the number of 

samples versus the number of samples divided by n, the number of 

haplotypes. The number of haplotypes ranges from 10 to 1000. 

In Figure 4, the left-hand graph shows the average number of 
individuals required to cover increasingly large fractions of the 

evolutionary history for an increasing large number of haplotypes, or 
mutations. As expected, the required population grows as the fraction and 
number of haplotypes grows. Furthermore, the right-hand graph shows 

the number of individuals required divided by the number of mutations. 
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Since the theoretical bounds established above in Theorems 4.1 and 4.2 

give ranges on the order of 
p

n
−1
1log  for 1<p  and n log n for the 1=p  

case, we see clearly the constant linear coefficients emerging as linear 

coefficient terms for the fractional p and the logarithmically growing case 
from the complete coverage 1=p  case. We see similar behavior for the 

uniform process for random tree generation via similar graphs. In both of 

these processes, the standard deviations for the individuals required for a 
fraction 1<p  was small, with the standard deviations being less than 

1% of the averages. For the 1=p  complete coverage case, there was 

much greater spread, with the standard deviation being about 5% of the 
average required population size. 

 

Figure 5. The distribution of edges covered, by size, for percent coverage 

(black dots) and the percentage normalized by the number of edges of 
that size (gray stars) under the Yule tree distribution. The tree size is 

fixed at 1000 leaves. 

In Figure 5, the graphs show both the distribution of edge coverings 
and the total edge coverings, against the size of an edge, for the Yule 
distribution. Each edge divides the tree into two connected components; 

the size of an edge is the number of leaves on the smaller of those two 
connected components. In a tree with 1000 leaves, the largest possible 

edge size is obviously 500, which would usually occur near the root. The 
decreasing curve is the distribution of edges by size; we see, as expected, 
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that due to the sheer number of small edges, we cross edges near the 

leaves of the tree more often than the larger edges close to the root. The 
increasing curve is the average number of edge crossings per edge (that 

is, the total number of crossings for each size divided by the total number 
of edges of that size), for edges of increasing size. We see from their 
shapes that the edges close to the leaves are crossed, on average, only a 

few times, but edges higher up and closer to the root are crossed 
hundreds to thousands of times. The wider spread in the number of 

crossings per edge for the complete coverage case of 1=p  corresponds to 

the wider spread in the required population size in that case and 

graphically shows the jump from linear to n log n waiting time when 

moving from a fixed fraction less than 1 to complete coverage, as seen in 
the theory. Similar behavior is seen for the uniform tree distribution, 
though not pictured here due to space constraints. 

6. Future Work 

When we chose pairs of leaves, we made the simplifying assumption 
that all haplotypes occur uniformly across the population. One line of 

future study is to look at more biologically realistic distributions of 
haplotypes and the effect on the number of individuals that need to be 
sampled to see various fractions of the mutations. An appropriate model 

to consider for distribution of haplotypes is the Fisher-Wright model [5, 
12]. We also assume that the distribution of haplotypes does not change 

as a function of time and we would like to incorporate possible changes in 
haplotype distribution with time into our simulations. We also would like 

to get sharper theoretical bounds on the required steps by applying the 
work of McKenzie and Steel [20] which gives average path length 

between two randomly selected leaves in a tree generated by the Yule 
process. 
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