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Abstract

Based on the fixed point index theory for a Banach space, nontrivial

periodic solutions are found for delay difference equations of the form

Xn+l = QpXp + hnf(xn—‘t(n))7 necz
1. Introduction

In this note, we consider the existence of nontrivial solutions for the

delay difference equations
Xpi1 = ApXy + hpf(xy_o(n)), 1€ Z, (1)

o-1 _
al

se0 s >1,

where {a,},_, is a positive o-periodic sequence but H
{Pn},ey is an o-periodic positive sequence, {t(n)},., is integer valued

o-periodic sequence, and f(u) is a real continuous function.
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The study on the existence of periodic positive solutions for (1) have
been made extensively by a number of authors (see for example, [1, 3-7]).

2. Main Result

We proceed formerly from (1) and obtain

n-1 n
A{xnkH i} = H%hnf(xn—t(n))

=—00 =

Then summing the above formal equation from n to n + ® — 1, we obtain

n+o-1

X, = E G(n, 8)hsf(xs_o(s)) 1 € Z, (2)
where
s -1 -1
H 1 H 1
G(n, S) = {kzn a} {kzo Q — 1] .

It is not difficult to check that any o-periodic sequence {x,},_, that

satisfies (2) is also an w-periodic solution of (1). Note that

G(n, n) = (aLj {ﬁé - 1}1 =G+ o, n + o),

n

k=0
o-1 1 -1 1 -1
G(n,n+m—1):{ —J[ ——1} = G(0, ® - 1),
k=0 U )\ k=0 Yk

and

0<N= min 1G(n, i) < G(n,s) < max 1G(n, i)= M,

n<i<n+o-— n<i<n+o-—
n<s<n+wn-1.

Now let X be the set of all real w-periodic sequences of the form u =
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{un},. > endowed with the usual linear structure as well as the norm

lul = max |up, |

Then X is a Banach space with cone

<=

Q = {uy ey lun 20| ul, n e Z}, where o =

And XxX is also a Banach space with the norm

|G, v) ]| = max{]w|) [|o]}-
Theorem 1. Let f(x)= fi(x) - fo(x), where fi(x), (i=1,2) are

nonnegative continuous functions satisfying f;(0)=0( =1, 2). Assume

that
. filx)
1 = + oo, 3
|x 50 | x| " ©
lim 2@ o (@)
x>0 | x|
lim M =0, B)
x—>+0o X

and

|l [ ]
Then equation (1) has at least a nontrivial periodic solution.

Proof. Set Q ={u={u,},., € X|u, 20,u, 20|u|,neZj It is
not difficult to check that Q ¢ X isa cone and QxQ c X x X alsois a
cone.

Set

n+o-1

Al(u’ U)n = Z G(n’ S)hsfl(us—r(s) - Us—r(s))’

s=n

n+o-1

A2(u’ U)n = Z G(n’ S)hsz(us—r(s) - Us—r(s))’

s=n
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and
Au, v), = (A1(w, v),, As(u, v),).

Then A:QxQ — X x X is completely continuous (on bounded close

subset of Q x Q). For any n, n € Z, we have
n+o-1

Ai(u’ U)n = Z G(n’ S)hsfi(us—t(s) - US—’E(S))

s=n

o-1
< MZ hsfi(usft(s) - US*T(S))’
s=0

and

n+o-1
Ai(u’ U)ﬁ = Z G(h’ s)hsfi(us—‘r(s) - vs—t(s))

s=n

o-1
> mz hgfi(ts_o(s) = Vs—x(s)) = 04;(u, v),, for i =1, 2.
s=0

Thus, wehave A : QO xQ — Qx Q.

From (4), we know that there exist § > 0 and ; > 0 such that

hefo(x) < Blx| for |x|<r and s e Z. (7)

Let 0 <e < min{ . Then we have

o
b = )
wWFy(s) =ps<n<s+o-1||lu, —v, |2 er} 2 min{co, 2;;4[3} ®)

for (u,v) e QxQ and |(u, v)| =r <n and Ay(u, v) = v, where Fy(s) =
{s<n<s+wo-1||u, —v, |2 er} and w(Fy(s)) is the number of points
in Fy(s). In fact, if |u, —v, | > er for any n e Z, then (8) is obvious. If
there exists n; € Z such that |u, —v, |<er, then |v|>uv, >u, -

er 2 o|u|-er. Thus |v] > (o -¢)r. Assume that v,, =[v|, then from
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Ay (u, v) = v and (7), we have

n2+w71

(c-¢)r< Ung = Z G(n2’ s)hsf2(us—t(s) - vs—t(s))

S=ny

= [ Z + Z JG(nz, s)hsfz(us—r(s) - US—T(S))

seFy(ng) seF(ng\Fp(ng)
< MB[ Z + Z Jl us—'c(s) - Us—r(s) |
seFp(ng) seF(ng\Fp(ng)
< MBr[u(Fo(ng)) + en(F(ng NFo(ng))],
where F(ng)={n e Z|ng <n <ny +w®-1}. It is not difficult now to check

that p(Fy(s)) > 2L i.e., (8) holds.

Mp’
Note that a = min{w, L}, choose o such that « ZL. Then
2MB mag
there exists r < ry, by (3) such that

hsfi(x) 2 of x|, for |[x|<r seZ 9)
Set H, = z:::il G(n,s), then H ={H,} _, €Q, and for any

(w,v) € d(QxQ), ={u,v)e AxQ||(w, v)|=r}, and ¢t >0, we have
(u, v) = A(u, v) # t(H, 0). (10)

In fact, if there exists (u”, v°) = ({ud},_,, W3l ;) e dQxQ),, ty >0
such that
u® — A, v°) = toH, (11)

00 — 4, 00) = 6. (12)

We assume that t; > 0, otherwise, (uo, vo) is a fixed point of A.

From (12) we know that (8) holds for the above . From (9) we have u? >
toH () > toH,). Note that t* = sup{t|u® > tH}, then ¢* >¢, >0, and
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from (8), (9) and (11) we have

ug =toH, + Al(uo, vo)

n+w-1
= tOHn + Z G(n, S)hsfi(u.g_r(s) - U.?—T(S))

> toH, + Z G(n, s)hsfl(ug_r(s) - U;)_T(S))
s—1(s)e Fy(n-1(n))

> toH, +a Z G(n, s)| u?_r(s) - vg_r(s) |
s—t(s)eFy(n-1(n))

> toH, + maer - W(Fy(n — t(n)))
> toH, + maact"H, > (ty +t")H,,.

Obviously, this does not satisfy the definition of ¢*. Thus (10) holds. See

[2], we have

(A, (QxQ),, OAxQ)=0. (13)
Next, we will prove that there exists R > 0, such that

A(u, v) 2 (u, v) for (u, v) € QA xQ)p. (14)

In fact, we take ¢ such that 0 < ¢ < Mico' From (5) and (6), there exists

Ry such that hyfi(u) < cu and hyfy(v) < clv| for u 2 Ry and |v| 2 R,.
Note that

Ty = max{ sup hsfi(u), sup  hsfy(v)}.
0<u<Ry 0<|v [€Ry

Then we have

hofi(w) < cu+ T, forany u > 0, (15)

and
hsfo(v) < cjv|+ Ty forany v e R, (16)
where R>max{r, Ry, Gw_z‘ﬁ})m} such that (14) holds. In fact, let |(x,v)]
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= R and u, > v, forany n € Z. Then we have

n+o-1

Z G(n, s)hsfl(us—r(s) - Us—r(s))

s=n

Al (u’ U)n

n+o-1

D" Gn, 8)[elus—(s) ~ vs-(s) + To]

IA

< MRco+ MTyo < R = | u||
by (15). Thus A;(u, v)#? u, that is, A(u,v) 2 (u, v). If there exists
ng € Z such that u,  <uv, , then v > oR. Hence, we have

n+mn-1

Ay(u, U)n = Z G(n, s)hsf2(us—t(s) - Us—r(s))

sS=n

n+o-1

< Z G(n, S) [Cl Us_1(s) ~ Us—1(s) | + TO]

< MRco + ©MTy < oR < || v
by (16). Thus Ay(u, v) # v, that is, A(u, v) # (u, v). From (14), we have
(A, (QxQ)p, AxQ) =1. 17
From (13) and (17), we have i(A4, (Qx Q)p\(QxQ),, Qx Q) =1. Thus,
there exists (1", v*) € (Qx Q)p\(Qx Q), such that A", v*) = (u", v"),

le.,

n+o-1

ty = Y G, §)hfi(Us—e(s) — Vs—r(s)):

s=n

n+o-1

vy = Z G(n, S)hsf2(u:—t(3) - U:—t(s))’
s=n

from £;(0) = 0(i = 1, 2), we know that u* # v*. (Indeed, if " = v", then

u* =v" =0, which is contrary to the fact that (u", v") e (Qx Q)p\
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(QxQ),.) Thus u* —v" is a nontrivial periodic solution of equation (2),

and also a nontrivial periodic solution of equation (1). The proof is

complete.
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