PERIODIC SOLUTIONS FOR DELAY DIFFERENCE EQUATIONS

SHU-GUI KANG and BAO SHI

(Received August 16, 2005)

Submitted by K. K. Azad

Abstract

Based on the fixed point index theory for a Banach space, nontrivial periodic solutions are found for delay difference equations of the form $$
x_{n+1}=a_{n} x_{n}+h_{n} f\left(x_{n-\tau(n)}\right), \quad n \in Z .
$$

1. Introduction

In this note, we consider the existence of nontrivial solutions for the delay difference equations

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+h_{n} f\left(x_{n-\tau(n)}\right), \quad n \in Z \tag{1}
\end{equation*}
$$

where $\left\{a_{n}\right\}_{n \in Z}$ is a positive ω-periodic sequence but $\prod_{s=0}^{\omega-1} a_{s}^{-1}>1$, $\left\{h_{n}\right\}_{n \in Z}$ is an ω-periodic positive sequence, $\{\tau(n)\}_{n \in Z}$ is integer valued ω-periodic sequence, and $f(u)$ is a real continuous function.

2000 Mathematics Subject Classification: 45M15.
Key words and phrases: delay difference equations, nontrivial periodic solution, fixed point index.

Project supported by Natural Science Foundation of Shanxi Province and Yanbei Normal University and by Development Foundation of Higher Education Department of Shanxi Province and by Science and Technology Bureau of Datong City.

The study on the existence of periodic positive solutions for (1) have been made extensively by a number of authors (see for example, [1, 3-7]).

2. Main Result

We proceed formerly from (1) and obtain

$$
\Delta\left\{x_{n} \prod_{k=-\infty}^{n-1} \frac{1}{a_{k}}\right\}=\prod_{k=-\infty}^{n} \frac{1}{a_{k}} h_{n} f\left(x_{n-\tau(n)}\right) .
$$

Then summing the above formal equation from n to $n+\omega-1$, we obtain

$$
\begin{equation*}
x_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f\left(x_{s-\tau(s)}\right), \quad n \in Z, \tag{2}
\end{equation*}
$$

where

$$
G(n, s)=\left(\prod_{k=n}^{s} \frac{1}{a_{k}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1} .
$$

It is not difficult to check that any ω-periodic sequence $\left\{x_{n}\right\}_{n \in Z}$ that satisfies (2) is also an ω-periodic solution of (1). Note that

$$
\begin{aligned}
& G(n, n)=\left(\frac{1}{a_{n}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1}=G(n+\omega, n+\omega), \\
& G(n, n+\omega-1)=\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}\right)\left(\prod_{k=0}^{\omega-1} \frac{1}{a_{k}}-1\right)^{-1}=G(0, \omega-1),
\end{aligned}
$$

and

$$
\begin{aligned}
& 0<N \equiv \min _{n \leq i \leq n+\omega-1} G(n, i) \leq G(n, s) \leq \max _{n \leq i \leq n+\omega-1} G(n, i) \equiv M, \\
& n \leq s \leq n+\omega-1 .
\end{aligned}
$$

Now let X be the set of all real ω-periodic sequences of the form $u=$
$\left\{u_{n}\right\}_{n \in Z}$, endowed with the usual linear structure as well as the norm

$$
\|u\|=\max _{0 \leq n \leq \omega-1}\left|u_{n}\right| .
$$

Then X is a Banach space with cone

$$
\Omega=\left\{\left\{u_{n}\right\}_{n \in Z} \mid u_{n} \geq \sigma\|u\|, n \in Z\right\}, \text { where } \sigma=\frac{N}{M} .
$$

And $X \times X$ is also a Banach space with the norm $\|(u, v)\|=\max \{\|u\|,\|v\|\}$.

Theorem 1. Let $f(x)=f_{1}(x)-f_{2}(x)$, where $f_{i}(x),(i=1,2)$ are nonnegative continuous functions satisfying $f_{i}(0)=0(i=1,2)$. Assume that

$$
\begin{align*}
& \lim _{x \mid \rightarrow 0} \frac{f_{1}(x)}{|x|}=+\infty, \tag{3}\\
& \left\lvert\, \lim _{x \mid \rightarrow 0} \frac{f_{2}(x)}{|x|}<+\infty\right., \tag{4}\\
& \lim _{x \rightarrow+\infty} \frac{f_{1}(x)}{x}=0 \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty} \frac{f_{2}(x)}{|x|}=0 . \tag{6}
\end{equation*}
$$

Then equation (1) has at least a nontrivial periodic solution.
Proof. Set $\Omega=\left\{u=\left\{u_{n}\right\}_{n \in Z} \in X \mid u_{n} \geq 0, u_{n} \geq \sigma\|u\|, n \in Z\right\}$. It is not difficult to check that $\Omega \subset X$ is a cone and $\Omega \times \Omega \subset X \times X$ also is a cone.

Set

$$
\begin{aligned}
& A_{1}(u, v)_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right), \\
& A_{2}(u, v)_{n}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{2}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right),
\end{aligned}
$$

and

$$
A(u, v)_{n}=\left(A_{1}(u, v)_{n}, A_{2}(u, v)_{n}\right) .
$$

Then $A: \Omega \times \Omega \rightarrow X \times X$ is completely continuous (on bounded close subset of $\Omega \times \Omega$). For any n, $\check{n} \in Z$, we have

$$
\begin{aligned}
A_{i}(u, v)_{n} & =\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{i}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq M \sum_{s=0}^{\omega-1} h_{s} f_{i}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
A_{i}(u, v)_{\check{n}} & =\sum_{s=\check{n}}^{\check{n}+\omega-1} G(\check{n}, s) h_{s} f_{i}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \geq m \sum_{s=0}^{\omega-1} h_{s} f_{i}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \geq \sigma A_{i}(u, v)_{n} \text { for } i=1,2 .
\end{aligned}
$$

Thus, we have $A: \Omega \times \Omega \rightarrow \Omega \times \Omega$.
From (4), we know that there exist $\beta>0$ and $r_{1}>0$ such that

$$
\begin{equation*}
h_{s} f_{2}(x) \leq \beta|x| \text { for }|x| \leq r_{1} \text { and } s \in Z . \tag{7}
\end{equation*}
$$

Let $0<\varepsilon<\min \left\{1, \frac{\sigma}{2(1+M \beta \omega)}\right\}$. Then we have

$$
\begin{equation*}
\mu\left(F_{0}(s)\right)=\mu\left\{s \leq n \leq s+\omega-1| | u_{n}-v_{n} \mid \geq \varepsilon r\right\} \geq \min \left\{\omega, \frac{\sigma}{2 M \beta}\right\} \tag{8}
\end{equation*}
$$

for $(u, v) \in \Omega \times \Omega$ and $\|(u, v)\|=r \leq r_{1}$ and $A_{2}(u, v)=v$, where $F_{0}(s)=$ $\left\{s \leq n \leq s+\omega-1| | u_{n}-v_{n} \mid \geq \varepsilon r\right\}$ and $\mu\left(F_{0}(s)\right)$ is the number of points in $F_{0}(s)$. In fact, if $\left|u_{n}-v_{n}\right| \geq \varepsilon r$ for any $n \in Z$, then (8) is obvious. If there exists $n_{1} \in Z$ such that $\left|u_{n_{1}}-v_{n_{1}}\right|<\varepsilon r$, then $\|v\| \geq v_{n_{1}}>u_{n_{1}}-$ $\varepsilon r \geq \sigma\|u\|-\varepsilon r$. Thus $\|v\|>(\sigma-\varepsilon) r$. Assume that $v_{n_{2}}=\|v\|$, then from

PERIODIC SOLUTIONS FOR DELAY DIFFERENCE EQUATIONS 97

$A_{2}(u, v)=v$ and (7), we have

$$
\begin{aligned}
(\sigma-\varepsilon) r \leq v_{n_{2}} & =\sum_{s=n_{2}}^{n_{2}+\omega-1} G\left(n_{2}, s\right) h_{s} f_{2}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& =\left(\sum_{s \in F_{0}\left(n_{2}\right)}+\sum_{s \in F\left(n_{2}\right) \backslash F_{0}\left(n_{2}\right)}\right) G\left(n_{2}, s\right) h_{s} f_{2}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq M \beta\left(\sum_{s \in F_{0}\left(n_{2}\right)}+\sum_{s \in F\left(n_{2} \backslash F_{0}\left(n_{2}\right)\right.}\right)\left|u_{s-\tau(s)}-v_{s-\tau(s)}\right| \\
& \leq M \beta r\left[\mu\left(F_{0}\left(n_{2}\right)\right)+\varepsilon \mu\left(F\left(n_{2}\right) \backslash F_{0}\left(n_{2}\right)\right)\right],
\end{aligned}
$$

where $F\left(n_{2}\right)=\left\{n \in Z \mid n_{2} \leq n \leq n_{2}+\omega-1\right\}$. It is not difficult now to check that $\mu\left(F_{0}(s)\right) \geq \frac{\sigma}{2 M \beta}$, i.e., (8) holds.

Note that $a=\min \left\{\omega, \frac{\sigma}{2 M \beta}\right\}$, choose α such that $\alpha \geq \frac{1}{m a \varepsilon}$. Then there exists $r \leq r_{1}$, by (3) such that

$$
\begin{equation*}
h_{s} f_{1}(x) \geq \alpha|x|, \quad \text { for }|x| \leq r, s \in Z . \tag{9}
\end{equation*}
$$

Set $H_{n}=\sum_{s=n}^{n+\omega-1} G(n, s)$, then $H=\left\{H_{n}\right\}_{n \in Z} \in \Omega$, and for any $(u, v) \in \partial(\Omega \times \Omega)_{r}=\{(u, v) \in \Omega \times \Omega \mid\|(u, v)\|=r\}$, and $t \geq 0$, we have

$$
\begin{equation*}
(u, v)-A(u, v) \neq t(H, \theta) . \tag{10}
\end{equation*}
$$

In fact, if there exists $\left(u^{0}, v^{0}\right)=\left(\left\{u_{n}^{0}\right\}_{n \in Z},\left\{v_{n}^{0}\right\}_{n \in Z}\right) \in \partial(\Omega \times \Omega)_{r}, t_{0} \geq 0$ such that

$$
\begin{align*}
& u^{0}-A_{1}\left(u^{0}, v^{0}\right)=t_{0} H, \tag{11}\\
& v^{0}-A_{2}\left(u^{0}, v^{0}\right)=\theta . \tag{12}
\end{align*}
$$

We assume that $t_{0}>0$, otherwise, $\left(u^{0}, v^{0}\right)$ is a fixed point of A. From (12) we know that (8) holds for the above ε. From (9) we have $u^{0} \geq$ $t_{0} H\left(u_{n}^{0} \geq t_{0} H_{n}\right)$. Note that $t^{*}=\sup \left\{t \mid u^{0} \geq t H\right\}$, then $t^{*} \geq t_{0}>0$, and
from (8), (9) and (11) we have

$$
\begin{aligned}
u_{n}^{0} & =t_{0} H_{n}+A_{1}\left(u^{0}, v^{0}\right)_{n} \\
& =t_{0} H_{n}+\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(u_{s-\tau(s)}^{0}-v_{s-\tau(s)}^{0}\right) \\
& \geq t_{0} H_{n}+\sum_{s-\tau(s) \in F_{0}(n-\tau(n))} G(n, s) h_{s} f_{1}\left(u_{s-\tau(s)}^{0}-v_{s-\tau(s)}^{0}\right) \\
& \geq t_{0} H_{n}+\alpha \sum_{s-\tau(s) \in F_{0}(n-\tau(n))} G(n, s)\left|u_{s-\tau(s)}^{0}-v_{s-\tau(s)}^{0}\right| \\
& \geq t_{0} H_{n}+m \alpha \varepsilon r \cdot \mu\left(F_{0}(n-\tau(n))\right) \\
& \geq t_{0} H_{n}+\operatorname{ma\alpha \varepsilon } t^{*} H_{n} \geq\left(t_{0}+t^{*}\right) H_{n} .
\end{aligned}
$$

Obviously, this does not satisfy the definition of t^{*}. Thus (10) holds. See [2], we have

$$
\begin{equation*}
i\left(A,(\Omega \times \Omega)_{r}, \Omega \times \Omega\right)=0 \tag{13}
\end{equation*}
$$

Next, we will prove that there exists $R>0$, such that

$$
\begin{equation*}
A(u, v) \nsupseteq(u, v) \quad \text { for }(u, v) \in \partial(\Omega \times \Omega)_{R} \tag{14}
\end{equation*}
$$

In fact, we take c such that $0<c<\frac{\sigma}{M \omega}$. From (5) and (6), there exists R_{0} such that $h_{s} f_{1}(u) \leq c u$ and $h_{s} f_{2}(v) \leq c|v|$ for $u \geq R_{0}$ and $|v| \geq R_{0}$. Note that

$$
T_{0}=\max \left\{\sup _{0 \leq u \leq R_{0}} h_{s} f_{1}(u), \sup _{0 \leq|v| \leq R_{0}} h_{s} f_{2}(v)\right\} .
$$

Then we have

$$
\begin{equation*}
h_{s} f_{1}(u) \leq c u+T_{0} \quad \text { for any } u \geq 0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{s} f_{2}(v) \leq c|v|+T_{0} \quad \text { for any } v \in R \tag{16}
\end{equation*}
$$

where $\check{R}>\max \left\{r, R_{0}, \frac{\omega M T_{0}}{\sigma-c M \omega}\right\}$ such that (14) holds. In fact, let $\|(u, v)\|$
$=\check{R}$ and $u_{n} \geq v_{n}$ for any $n \in Z$. Then we have

$$
\begin{aligned}
A_{1}(u, v)_{n} & =\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq \sum_{s=n}^{n+\omega-1} G(n, s)\left[c\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right)+T_{0}\right] \\
& \leq M \check{R} c \omega+M T_{0} \omega<\check{R}=\|u\|
\end{aligned}
$$

by (15). Thus $A_{1}(u, v) \not \geq u$, that is, $A(u, v) \geq(u, v)$. If there exists $n_{0} \in Z$ such that $u_{n_{0}}<v_{n_{0}}$, then $\|v\| \geq \sigma \check{R}$. Hence, we have

$$
\begin{aligned}
A_{2}(u, v)_{n} & =\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{2}\left(u_{s-\tau(s)}-v_{s-\tau(s)}\right) \\
& \leq \sum_{s=n}^{n+\omega-1} G(n, s)\left[c\left|u_{s-\tau(s)}-v_{s-\tau(s)}\right|+T_{0}\right] \\
& \leq M \check{R} c \omega+\omega M T_{0}<\sigma \check{R} \leq\|v\|
\end{aligned}
$$

by (16). Thus $A_{2}(u, v) \nexists v$, that is, $A(u, v) \nexists(u, v)$. From (14), we have

$$
\begin{equation*}
i\left(A,(\Omega \times \Omega)_{R}, \Omega \times \Omega\right)=1 \tag{17}
\end{equation*}
$$

From (13) and (17), we have $i\left(A,(\Omega \times \Omega)_{R} \backslash(\Omega \times \Omega)_{r}, \Omega \times \Omega\right)=1$. Thus, there exists $\left(u^{*}, v^{*}\right) \in(\Omega \times \Omega)_{R} \backslash(\Omega \times \Omega)_{r}$ such that $A\left(u^{*}, v^{*}\right)=\left(u^{*}, v^{*}\right)$, i.e.,

$$
\begin{aligned}
& u_{n}^{*}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{1}\left(u_{s-\tau(s)}^{*}-v_{s-\tau(s)}^{*}\right), \\
& v_{n}^{*}=\sum_{s=n}^{n+\omega-1} G(n, s) h_{s} f_{2}\left(u_{s-\tau(s)}^{*}-v_{s-\tau(s)}^{*}\right),
\end{aligned}
$$

from $f_{i}(0)=0(i=1,2)$, we know that $u^{*} \neq v^{*}$. (Indeed, if $u^{*}=v^{*}$, then $u^{*}=v^{*}=\theta$, which is contrary to the fact that $\left(u^{*}, v^{*}\right) \in(\Omega \times \Omega)_{R} \backslash$
$(\Omega \times \Omega)_{r}$.) Thus $u^{*}-v^{*}$ is a nontrivial periodic solution of equation (2), and also a nontrivial periodic solution of equation (1). The proof is complete.

References

[1] R. P. Agarwal and P. Y. H. Pang, On a generalized difference system, Nonlinear Anal. 30 (1997), 365-376.
[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
[3] I. Katsunori, Asymptotic analysis for linear difference equations, Trans. Amer. Math. Soc. 349 (1997), 4107-4142.
[4] R. Musielak and J. Popenda, On periodic solutions of a first order difference equation, An. Stiint. Univ. "Al. I. Coza" Iasi Sect. I a Mat. 34(2) (1998), 125-133.
[5] Z. Y. Zhang, An algebraic principle for the stability of difference operators, J. Differential Equations 136 (1997), 236-247.
[6] G. Zhang and S. S. Cheng, Positive periodic solutions of a discrete population model, Functional Differential Eqns. 7(3-4) (2000), 223-230.
[7] R. Y. Zhang, Z. C. Wang, Y. Chen and J. Wu, Periodic solutions of a single species discrete population model with periodic harvest/stock, Comput. Math. Appl. 39 (2000), 77-90.

Shu-Gui Kang and Bao Shi
Department of Basic Sciences
Naval Aeronautical Engineering Institute
Yantai, Shandong 264001, P. R. China
e-mail: dtkangshugui@yahoo.com.cn
baoshi781@sohu.com
Shu-Gui Kang
Department of Mathematics
Yanbei Normal University
Datong, Shanxi 037009, P. R. China
e-mail: dtkangshugui@yahoo.com.cn

