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Abstract

Based on the fixed point index theory for a Banach space, nontrivial

periodic solutions are found for delay difference equations of the form

( ( ) ) .,1 Znxfhxax nnnnnn ∈+= τ−+

1. Introduction

In this note, we consider the existence of nontrivial solutions for the

delay difference equations

( ( ) ) ,,1 Znxfhxax nnnnnn ∈+= τ−+ (1)

where { } Znna ∈  is a positive ω-periodic sequence but ∏ −ω
=

− >
1
0

1 ,1
s sa

{ } Znnh ∈  is an ω-periodic positive sequence, ( ){ } Znn ∈τ  is integer valued

ω-periodic sequence, and ( )uf  is a real continuous function.
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The study on the existence of periodic positive solutions for (1) have

been made extensively by a number of authors (see for example, [1, 3-7]).

2. Main Result

We proceed formerly from (1) and obtain

( ( ) )∏∏
−∞=

τ−

−

−∞=

=












∆
n

k
nnn

k

n

k k
n xfh

aa
x .11

1

Then summing the above formal equation from n to ,1−ω+n  we obtain

( ) ( ( ) )∑
−ω+

=
τ− ∈=

1

,,,
n

ns
sssn ZnxfhsnGx (2)

where

( ) .111,

11

0

−−ω

==













−













= ∏∏

k k

s

nk k aa
snG

It is not difficult to check that any ω-periodic sequence { } Znnx ∈  that

satisfies (2) is also an ω-periodic solution of (1). Note that

( ) ( ),,111,

11

0

ω+ω+=



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−−ω
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∏ nnG
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nnG

k kn

( ) ( ),1,01111,

11

0

1

0
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−
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


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


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=−ω+

−−ω

=

−ω

=
∏∏ G

aa
nnG

k kk k

and

( ) ( ) ( ) ,,max,,min0
11

MinGsnGinGN
ninnin

≡≤≤≡<
−ω+≤≤−ω+≤≤

.1−ω+≤≤ nsn

Now let X be the set of all real ω-periodic sequences of the form =u
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{ } ,Znnu ∈  endowed with the usual linear structure as well as the norm

.max
10 nn

uu
−ω≤≤

=

Then X is a Banach space with cone

{{ } },, Znuuu nZnn ∈σ≥|=Ω ∈  where .
M
N=σ

And XX ×  is also a Banach space with the norm
( ) { }.,max, vuvu =

Theorem 1. Let ( ) ( ) ( ),21 xfxfxf −=  where ( ) ( )2,1, =ixfi  are

nonnegative continuous functions satisfying ( ) ( ).2,100 == ifi  Assume

that

( )
,lim 1

0
∞+=

→ x
xf

x
(3)

( )
,lim 2

0
∞+<

→ x
xf

x
(4)

( )
,0lim 1 =

+∞→ x
xf

x
(5)

and

( )
.0lim 2 =

+∞→ x
xf

x
(6)

Then equation (1) has at least a nontrivial periodic solution.

Proof. Set { { } }.,,0 ZnuuuXuu nnZnn ∈σ≥≥|∈==Ω ∈  It is

not difficult to check that X⊂Ω  is a cone and XX ×⊂Ω×Ω  also is a
cone.

Set

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −=

1

11 ,,,
n

ns
sssssn vufhsnGvuA

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −=

1

22 ,,,
n

ns
sssssn vufhsnGvuA
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and

( ) ( ( ) ( ) ).,,,, 21 nnn vuAvuAvuA =

Then XXA ×→Ω×Ω:  is completely continuous (on bounded close

subset of ).Ω×Ω  For any ∨ ∈ ,, Znn  we have

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −=

1

,,
n

ns
ssssisni vufhsnGvuA

( ( ) ( ) )∑
−ω

=
τ−τ− −≤

1

0

,
s

ssssis vufhM

and

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ−

∨

∨

∨
∨ −=

1

,,
n

ns

ssssisni vufhsnGvuA

( ( ) ( ) ) ( )∑
−ω

=
τ−τ− σ≥−≥

1

0

,
s

nissssis vuAvufhm  for .2,1=i

Thus, we have .: Ω×Ω→Ω×ΩA

From (4), we know that there exist 0>β  and 01 >r  such that

( ) xxfhs β≤2    for 1rx ≤  and .Zs ∈ (7)

Let ( ) .
12

,1min0






βω+
σ<ε<
M

 Then we have

( )( ) { }








β
σω≥ε≥−−ω+≤≤µ=µ
M

rvusnssF nn 2
,min10 (8)

for ( ) Ω×Ω∈vu,  and ( ) 1, rrvu ≤=  and ( ) ,,2 vvuA =  where ( ) =sF0

{ }rvusns nn ε≥−−ω+≤≤ 1  and ( )( )sF0µ  is the number of points

in ( ).0 sF  In fact, if rvu nn ε≥−  for any ,Zn ∈  then (8) is obvious. If

there exists Zn ∈1  such that ,
11

rvu nn ε<−  then −>≥
11 nn uvv

.rur ε−σ≥ε  Thus ( ) .rv ε−σ>  Assume that ,
2

vvn =  then from
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( ) vvuA =,2  and (7), we have

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −=≤ε−σ

1

22

2

2
2

,
n

ns
sssssn vufhsnGvr

( ) ( )( )
( ) ( ( ) ( ) )sssss

nFs nFnFs

vufhsnG τ−τ−
∈ ∈

−













+= ∑ ∑ 22

\

,

20 202

( ) ( )( )
( ) ( )ssss

nFs nFnFs

vuM τ−τ−
∈ ∈

−













+β≤ ∑ ∑

20 202 \

( )( ) ( ) ( )( )[ ],\ 20220 nFnFnFrM εµ+µβ≤

where ( ) { }.1222 −ω+≤≤|∈= nnnZnnF  It is not difficult now to check

that ( )( ) ,
20 β
σ≥µ
M

sF  i.e., (8) holds.

Note that ,
2

,min








β
σω=
M

a  choose α such that .1
ε

≥α
ma

 Then

there exists ,1rr ≤  by (3) such that

( ) ,1 xxfhs α≥         for ., Zsrx ∈≤ (9)

Set ( )∑ −ω+
=

= 1
,,

n
nsn snGH  then { } ,Ω∈= ∈ZnnHH  and for any

( )vu,   ( ) ( ) ( ){ },,, rvuvur =Ω×Ω∈=Ω×Ω∂∈   and ,0≥t  we have

( ) ( ) ( ).,,, θ≠− HtvuAvu (10)

In fact, if there exists ( ) ({ } { } ) ( ) 0,,, 0
0000 ≥Ω×Ω∂∈= ∈∈ tvuvu rZnnZnn

such that

( ) ,, 0
00

1
0 HtvuAu =− (11)

( ) ., 00
2

0 θ=− vuAv (12)

We assume that ,00 >t  otherwise, ( )00 , vu  is a fixed point of A.

From (12) we know that (8) holds for the above ε. From (9) we have ≥0u

( ).0
0

0 nn HtuHt ≥  Note that { },sup 0 tHutt ≥|=∗  then ,00 >≥∗ tt  and
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from (8), (9) and (11) we have

( )nnn vuAHtu 00
10

0 ,+=

( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −+=

1
00

10 ,
n

ns
sssssn vufhsnGHt

( ) ( ( ) ( ) )
( ) ( )( )
∑

τ−∈τ−
τ−τ− −+≥

nnFss
sssssn vufhsnGHt

0

00
10 ,

( ) ( ) ( )
( ) ( )( )
∑

τ−∈τ−
τ−τ− −α+≥

nnFss
ssssn vusnGHt

0

00
0 ,

( )( )( )nnFrmHt n τ−µ⋅αε+≥ 00

( ) .00 nnn HttHtmaHt ∗∗ +≥αε+≥

Obviously, this does not satisfy the definition of .∗t  Thus (10) holds. See

[2], we have

( ( ) ) .0,, =Ω×ΩΩ×Ω rAi (13)

Next, we will prove that there exists ,0>R  such that

( ) ( )vuvuA ,, ≥/    for ( ) ( ) ., Rvu Ω×Ω∂∈ (14)

In fact, we take c such that .0
ω
σ<<

M
c  From (5) and (6), there exists

0R  such that ( ) cuufhs ≤1  and ( ) vcvfhs ≤2  for 0Ru ≥  and .0Rv ≥

Note that

{ ( ) ( )}.sup,supmax 2
0

1
0

0
00

vfhufhT s
Rv

s
Ru ≤≤≤≤

=

Then we have

( ) 01 Tcuufhs +≤    for any ,0≥u (15)

and

( ) 02 Tvcvfhs +≤    for any ,Rv ∈ (16)

where 








ω−σ
ω

>
∨

cM
MT

RrR 0
0,,max  such that (14) holds. In fact, let ( )vu,
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∨

= R  and nn vu ≥  for any .Zn ∈  Then we have

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −=

1

11 ,,
n

ns
sssssn vufhsnGvuA

( ) [ ( ( ) ( ) ) ]∑
−ω+

=
τ−τ− +−≤

1

0,
n

ns
ssss TvucsnG

uRMTcRM =<ω+ω≤
∨∨

0

by (15). Thus ( ) ,,1 uvuA ≥/  that is, ( ) ( ).,, vuvuA ≥/  If there exists

Zn ∈0  such that ,
00 nn vu <  then .

∨

σ≥ Rv  Hence, we have

( ) ( ) ( ( ) ( ) )∑
−ω+

=
τ−τ− −=

1

22 ,,
n

ns
sssssn vufhsnGvuA

( ) [ ( ) ( ) ]∑
−ω+

=
τ−τ− +−≤

1

0,
n

ns
ssss TvucsnG

∨∨

≤σ<ω+ω≤ vRMTMRc 0

by (16). Thus ( ) ,,2 vvuA ≥/  that is, ( ) ( ).,, vuvuA ≥/  From (14), we have

( ( ) ) .1,, =Ω×ΩΩ×Ω RAi (17)

From (13) and (17), we have ( ( ) ( ) ) .1,\, =Ω×ΩΩ×ΩΩ×Ω rRAi  Thus,

there exists ( ) ( ) ( )rRvu Ω×ΩΩ×Ω∈∗∗ \,  such that ( ) ( ),,, ∗∗∗∗ = vuvuA

i.e.,

( ) ( ( ) ( ) )∑
−ω+

=

∗
τ−

∗
τ−

∗ −=
1

1 ,,
n

ns
sssssn vufhsnGu

( ) ( ( ) ( ) )∑
−ω+

=

∗
τ−

∗
τ−

∗ −=
1

2 ,,
n

ns
sssssn vufhsnGv

from ( ) ( ),2,100 == ifi  we know that .∗∗ ≠ vu  (Indeed, if ,∗∗ = vu  then

,θ== ∗∗ vu  which is contrary to the fact that ( ) ( ) \, Rvu Ω×Ω∈∗∗
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( ) .)rΩ×Ω  Thus ∗∗ − vu  is a nontrivial periodic solution of equation (2),

and also a nontrivial periodic solution of equation (1). The proof is
complete.
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