CHARACTERIZATION OF 2-PRIMAL IDEALS

C. SELVARAJ and S. PETCHIMUTHU

Department of Mathematics
Periyar University
Salem-636011, Tamilnadu, India
e-mail: selvavlr@yahoo.com
spmuthuss@yahoo.co.in

Abstract

In this paper we show that an ideal I of a ring R with identity is 2-primal if and only if $N_{I}(P)=\{a \in R / a R b \subset \mathcal{P}(I)$ for some $b \in R-P\}$ has the IFP (Insertion of Factors Property), where $\mathcal{P}(I)$ is the intersection of all prime ideals which contain I. Also we prove some equivalent conditions for 2 -primal ideals.

1. Introduction

Throughout this paper R denotes a ring with identity. Birkenmeier et al. [1] called a ring $R 2$-primal if its prime radical $\mathcal{P}(R)$ coincides with the set $\mathcal{N}(R)$ of all nilpotent elements of R. An ideal I of R is called 2-primal if $\mathcal{P}(R / I)=\mathcal{N}(R / I)$. An ideal I of R is said to have IFP if $x y \in I$ implies $x R y \subseteq I$ for $x, y \in R$. $\operatorname{Spec}(R)$ denotes the set of all prime ideals of R. Observe that every completely semiprime ideal of R has IFP. Birkenmeier et al. [1] proved that an ideal I is 2 -primal if and only if $\mathcal{P}(I)$ is completely semiprime ideal of R. Kim and Kwak [4] proved that a ring R is 2-primal if and only if the prime radical $\mathcal{P}(R)$ has the IFP if and

[^0]Keywords and phrases: completely prime ideals, 2-prime ideals, insertion of factors property.

Received October 24, 2007
only if $N(P)=\{a \in R / a R b \subseteq \mathcal{P}(R)$ for some $b \in R-P\}$ has the IFP. In this paper we introduce the definition of $N_{I}(P)$ and N_{I}^{P} and also we show that an ideal I of R is 2 -primal if and only if $N_{I}(P)$ has the IFP.

2. Characterization of 2-Primal Ideals

In this section we introduce $N_{I}(P), \quad N_{I}^{P}$ and discuss the characterizations of 2-primal ideals.

Definition 2.1 [2]. Let R be a ring with identity and P be a prime ideal of R. Then $N(P)=\{y \in R / y R s \subseteq \mathcal{P}(R)$ for some $s \in R-P\}, N_{P}=$ $\{y \in R / y s \in \mathcal{P}(R)$ for some $s \in R-P\}, \overline{N(P)}=\left\{y \in R / y^{n} \in N(P)\right.$ for some $n\}, \overline{N_{P}}=\left\{y \in R / y^{n} \in N_{P}\right.$ for some $\left.n\right\}$.

A ring R is said to satisfy (SI) if for each $a \in R, r(a)$ is a two sided ideal of R, where $r(a)=\{b \in R / a b=0\}$.

Definition 2.2. Let I be any ideal of R and P be a prime ideal of R. Then we define $N_{I}(P)=\{y \in R / y R s \subseteq \mathcal{P}(I)$ for some $s \in R-P\}, N_{I}^{P}=$ $\{y \in R / y s \in \mathcal{P}(I)$ for some $s \in R-P\}, \overline{N_{I}(P)}=\left\{y \in R / y^{n} \in N_{I}(P)\right.$ for some $n\}, \overline{N_{I}^{P}}=\left\{y \in R / y^{n} \in N_{I}^{P}\right.$ for some $\left.n\right\}$. Note that $N(P) \subseteq N_{I}(P)$, $N_{P} \subseteq N_{I}^{P}, I \subseteq N_{I}(P) \subseteq \overline{N_{I}(P)}$ and $I \subseteq N_{I}^{P} \subseteq \overline{N_{I}^{P}}$ for any ideal I of R.

Example 2.3. Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$, where F is a field and $I=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$, $P=\left(\begin{array}{ll}F & F \\ 0 & 0\end{array}\right)$ and $Q=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)$. Then clearly I is an ideal of R and P, Q are prime ideals of R. It can be easily checked that $\mathcal{P}(I)=I, \mathcal{P}(P)=P$ and $\mathcal{P}(Q)=Q$.

We observe that
(i) $N_{I}(P)=\overline{N_{I}(P)}=N_{P}(P)=\overline{N_{P}(P)}=\overline{N_{I}^{P}}=N_{I}^{P}=N_{P}^{P}=\overline{N_{P}^{P}}=P$,
(ii) $N_{I}(Q)=\overline{N_{I}(Q)}=N_{Q}(Q)=\overline{N_{Q}(Q)}=\overline{N_{I}^{Q}}=N_{I}^{Q}=N_{Q}^{Q}=\overline{N_{Q}^{Q}}=Q$,
(iii) $N_{P}(Q)=\overline{N_{P}(Q)}=N_{Q}(P)=\overline{N_{Q}(P)}=\overline{N_{P}^{Q}}=N_{P}^{Q}=N_{Q}^{P}=\overline{N_{Q}^{P}}=R$.

Proposition 2.4. Let R be a ring with identity. Then we have the following:
(i) $I \subseteq P$ if and only if $N_{I}(P) \subseteq P$ for any ideal I and prime ideal P of R.
(ii) $N_{I}(P) \subseteq N_{I}^{P}$ for any prime ideal P and ideal I of R.
(iii) If $I=P$, then $N_{I}(P)=P$ for any ideal I and any prime ideal P of R.
(iv) $P=Q$ if and only if $N_{Q}(P)=P$ for any prime ideals P and Q of R.

Proof. (i) Suppose $I \subseteq P$. Then $\mathcal{P}(I) \subseteq P$. So, for any element $x \in N_{I}(P)$, there exists $b \in R-P$ such that $x R b \subseteq P$. From the primeness of P, we have $x \in P$. Therefore $N_{I}(P) \subseteq P$. Converse part is obvious.
(ii) Let $x \in N_{I}(P)$. Then there exists $b \in R-P$ such that $x R b \subseteq$ $\mathcal{P}(I)$. Since P is prime, there exists $r \in R$ such that brb $\in R-P$. Thus we get $x b r b \in x R b \subseteq \mathcal{P}(I)$ and $b r b \notin P$. Therefore $x \in N_{I}^{P}$ and consequently $N_{I}(P) \subseteq N_{I}^{P}$.
(iii) Since $P=I \subseteq \mathcal{P}(I)$, any element $x \in P$, we get $x R 1 \subseteq \mathcal{P}(I)$. So that $P \subseteq N_{I}(P)$. Thus $N_{I}(P)=P$ by (i).
(iv) Suppose that $P=Q$, then we obtain $N_{Q}(P)=P$ by (iii). On the other hand, since $Q \subseteq N_{Q}(P)=P, Q \subseteq P$. Also let $x \in P$, then there exists $b \in R-P$ such that $x R b \subseteq \mathcal{P}(Q)$, because $N_{Q}(P)=P$. Since Q is prime, $\mathcal{P}(Q)=Q$. Hence we have $x \in Q$, since $b \in R-P \subseteq R-Q$. Therefore $P=Q$.

Remark 2.5. 1. Converse of Proposition 2.4 (iii) is not true. In example $2.3 N_{I}(Q)=Q$, but $I \neq Q$.
2. For any ideal I and J and any prime ideals P, Q if $I \subseteq J$ and $Q \subseteq P$, then $N_{I}(P) \subseteq N_{J}(Q)$. But converse is not true. In example 2.3 $N_{Q}(Q) \subseteq N_{Q}(P)$ but P is not contained in Q.

Theorem 2.6. Let R be a ring with identity and I be an ideal of R. Then the following are equivalent:
(i) I is a 2-primal ideal;
(ii) $\mathcal{P}(I)$ has the IFP;
(iii) $N_{I}(P)$ has the IFP for each $P \in \operatorname{Spec}(R)$;
(iv) $N_{I}(P)=\overline{N_{I}^{P}}$ for each $P \in \operatorname{Spec}(R)$;
(v) $N_{I}(P)=N_{I}^{P}$ for each $P \in \operatorname{Spec}(R)$;
(vi) $N_{I}^{P} \subseteq P$ for each prime ideal P which contains I;
(vii) $N_{P / \mathcal{P}(I)} \subseteq P / \mathcal{P}(I)$ for each prime ideal P which contains I;
(viii) $\overline{N_{J}^{Q}} \subseteq N_{I}(P)$ for any ideal $J \subseteq I$ and prime ideals P, Q such that $P \subseteq Q$;
(ix) $N_{J}^{Q} \subseteq N_{I}(P)$ for any ideal $J \subseteq I$ and prime ideals P, Q such that $P \subseteq Q$;
(x) $\overline{N_{J}^{Q}} \subseteq P$ for any ideal J and prime ideals P, Q such that $J \subseteq I$ $\subseteq P \subseteq Q ;$
(xi) $N_{J}^{Q} \subseteq P$ for any ideal J and prime ideals P, Q such that $J \subseteq I$ $\subseteq P \subseteq Q ;$
(xii) $N_{Q / \mathcal{P}(I)} \subseteq P / \mathcal{P}(I)$ for each prime ideal P, Q such that $I \subseteq P \subseteq Q$.

Proof. (i) implies (ii): Let $x+\mathcal{P}(I) \in \mathcal{N}(R / \mathcal{P}(I))$. Then there exists a positive integer n such that $(x+\mathcal{P}(I))^{n}=\mathcal{P}(I)$, i.e., $x^{n} \in \mathcal{P}(I)$. Since I is
a 2-primal ideal, $\mathcal{P}(I)$ is completely semiprime ideal. Hence $x \in \mathcal{P}(I)$, i.e., $x+\mathcal{P}(I)=\mathcal{P}(I)$. Hence $R / \mathcal{P}(I)$ has no nilpotent elements and so $R / \mathcal{P}(I)$ satisfies $(S I)$. Thus $x y \in \mathcal{P}(I)$ implies $x R y \subseteq \mathcal{P}(I)$. Therefore $\mathcal{P}(I)$ has the IFP.
(ii) implies (iii): Let $x y \in N_{I}(P)$ for each $P \in \operatorname{Spec}(R)$. Then $x y R b \subseteq$ $\mathcal{P}(I)$ for some $b \in R-P$. Since $\mathcal{P}(I)$ has IFP, $x R y R b \subseteq \mathcal{P}(I)$ and so $x R y \subseteq N_{I}(P)$. Therefore $N_{I}(P)$ has the IFP for each $P \in \operatorname{Spec}(R)$.
(iii) implies (i) : It is enough to prove that if $x^{n} \in I$, then $x \in \mathcal{P}(I)$ [1]. Suppose $x \notin \mathcal{P}(I)$, then there exists a prime ideal P which contains I such that $x \notin P$. Since P is prime, there exists $r_{1}, r_{2}, \ldots, r_{n-1}$ such that $x r_{1} x r_{2} \cdots r_{n-1} x \notin P$. Since $x^{n} \in I \subseteq N_{I}(P)$ and $N_{I}(P)$ has the IFP, $x r_{1} x r_{2} \cdots r_{n-1} x \in N_{I}(P)$. Since $I \subseteq P, N_{I}(P) \subseteq P$ by Proposition 2.4 (i) and hence $x r_{1} x r_{2} \cdots r_{n-1} x \in P$, a contradiction. Therefore $x \in \mathcal{P}(I)$. Thus I is a 2 -primal ideal.
(i) implies (iv): Let $a \in \overline{N_{I}^{P}}$ for each $P \in \operatorname{Spec}(R)$. Then $a^{n} \in N_{I}^{P}$ for some positive integer n. Hence there exists $b \in R-P$ such that $a^{n} b \in \mathcal{P}(I)$. Since I is 2 -primal, $\mathcal{P}(I)$ has IFP and also $\mathcal{P}(I)$ is completely semiprime. So that $a R b \subseteq \mathcal{P}(I)$. Thus $a \in N_{I}(P)$. Again we observe that $N_{I}(P) \subseteq N_{I}^{P} \subseteq \overline{N_{I}^{P}}$ by Proposition 2.4 (ii). Therefore $N_{I}(P)=N_{I}^{P}$.
(iv) implies (v): It is obvious.
(v) implies (vi): It follows from Proposition 2.4 (i).
(vi) implies (vii): Let $a+\mathcal{P}(I) \in N_{P / \mathcal{P}(I)}$. Then there exists $b+\mathcal{P}(I)$ $\in R / \mathcal{P}(I)-P / \mathcal{P}(I) \quad$ such that $(a+\mathcal{P}(I))(b+\mathcal{P}(I))=\mathcal{P}(I)$, i.e., $\quad a b \in$ $\mathcal{P}(I)$. Hence $a \in N_{I}^{P} \subseteq P$. Therefore $a+\mathcal{P}(I) \in P / \mathcal{P}(I)$.
(vii) implies (i): It is enough to prove that $R / \mathcal{P}(I)$ is reduced. Suppose for the purpose of contradiction that $R / \mathcal{P}(I)$ is not reduced. Then there
exists $a+\mathcal{P}(I) \in R / \mathcal{P}(I)$ such that $(a+\mathcal{P}(I))^{2}=\mathcal{P}(I)$ and $a \notin \mathcal{P}(I)$. Hence there is a prime ideal P such that $a \notin P$. So $a+\mathcal{P}(I) \in R / \mathcal{P}(I)-$ $P / \mathcal{P}(I)$. But since $(a+\mathcal{P}(I))^{2}=\mathcal{P}(I)$, we obtain $a+\mathcal{P}(I) \in N_{P / \mathcal{P}(I)} \subseteq$ $P / \mathcal{P}(I)$ which is a contradiction. Therefore I is a 2 -primal ideal.
(i) implies (viii): Let $x \in \overline{N_{J}^{Q}}$. Then there exists n such that $x^{n} b \in$ $\mathcal{P}(J)$ for some $b \in R-Q$. Since $P \subseteq Q$, and $J \subseteq I, x^{n} b \in \mathcal{P}(I)$ for some $b \in R-P$. Since I is 2-primal, $x R b \subseteq \mathcal{P}(I)$ for some $b \in R-P$. Thus $x \in N_{I}(P)$.
(viii) implies (ix) implies (xi) implies (vi) and (viii) implies (x) implies (xi) are obvious.
(vi) implies (xii): Let $a+\mathcal{P}(I) \in N_{Q / \mathcal{P}(I)}$. Then $(a+\mathcal{P}(I))(b+\mathcal{P}(I))$ $=\mathcal{P}(I)$ for some $b+\mathcal{P}(I) \in R / \mathcal{P}(I)-Q / \mathcal{P}(I)$. Hence $a b \in \mathcal{P}(I)$ for some $b \notin Q$. Since $P \subseteq Q, b \notin P$. Thus we have $a \in N_{I}^{P}$. Since $I \subseteq P$, $N_{I}^{P} \subseteq P$ by (vi). Therefore $a+\mathcal{P}(I) \in P / \mathcal{P}(I)$,
(xii) implies (vii): It is obvious.

Corollary 2.7. Let R be a ring with identity and I be a 2-primal ideal of R. Then for any prime ideal P of $R, I \subseteq P$ if and only if $N_{I}^{P} \subseteq P$.

Proof. Suppose $I \subseteq P$, then $N_{I}^{P} \subseteq P$ by Theorem 2.6. Conversely, let $x \in I$. Then $x \in \mathcal{P}(I)$, because $I \subseteq \mathcal{P}(I)$. Since R has the identity, $\mathcal{P}(I) \subseteq N_{I}^{P}$ and hence $x \in P$. Thus $I \subseteq P$.

Corollary 2.8. $I=P$ if and only if $N_{I}^{P}=P$ for any completely prime ideal I and prime ideal P of R.

Proof. Assume that $I=P$. Since I is completely prime ideal of R, I is 2-primal ideal. By Corollary 2.7, $N_{I}^{P} \subseteq P$. Hence $P=I \subseteq N_{I}^{P} \subseteq P$. Therefore $P=N_{I}^{P}$. On the other hand, clearly $I \subseteq P$ by Corollary 2.7. Let $x \in P$. Then there exists $b \in R-P$ such that $x b \in \mathcal{P}(I)$, because
$P=N_{I}^{P}$. Since I is completely prime, $\mathcal{P}(I)=I$ and $b \notin I$, we get $x \in I$. Therefore $I=P$.

Remark 2.9. Theorem 2.6 is more generalization of Theorem 2.1 in [4].

Corollary 2.10. Let R be a ring with identity. Then the following are equivalent:
(i) R is a 2-primal ring;
(ii) $\mathcal{P}(R)$ has the $I F P$;
(iii) $N(P)$ has the IFP for each $P \in \operatorname{Spec}(R)$;
(iv) $N(P)=\overline{N_{P}}$ for each $P \in \operatorname{Spec}(R)$;
(v) $N(P)=N_{P}$ for each $P \in \operatorname{Spec}(R)$;
(vi) $N_{P} \subseteq P$ for each $P \in \operatorname{Spec}(R)$;
(vii) $N_{P / \mathcal{P}(R)} \subseteq P$ for each $P \in \operatorname{Spec}(R)$;
(viii) $\overline{N_{Q}} \subseteq N(P)$ for each $Q, P \in \operatorname{Spec}(R)$ such that $P \subseteq Q$;
(ix) $N_{Q} \subseteq N(P)$ for each $Q, P \in \operatorname{Spec}(R)$ such that $P \subseteq Q$;
(x) $\overline{N_{Q}} \subseteq P$ for each $Q, P \in \operatorname{Spec}(R)$ such that $P \subseteq Q$;
(xi) $N_{Q} \subseteq P$ for each prime ideal P and Q such that $P \subseteq Q$;
(xii) $N_{Q / \mathcal{P}(R)} \subseteq P / \mathcal{P}(R)$ for each $Q, P \in \operatorname{Spec}(R)$ such that $P \subseteq Q$.

Proof. It follows from Theorem 2.6.

References

[1] G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denision Conference 1992, S. K. Jain and S. T. Rizvi, eds., World Scientific, New Jersey, 1993, pp. 102-129.
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, A characterization of minimal prime ideals, Glasgow Math. J. 40 (1998), 223-236.
[3] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), 213-230.
[4] N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japon. 50(3) (1999), 415-420.
[5] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math Soc. 184 (1973), 43-60.

[^0]: 2000 Mathematics Subject Classification: 16N60, 20M12, 16 Y 99.

