CHARACTERIZATION OF 2-PRIMAL IDEALS

C. SELVARAJ and S. PETCHIMUTHU

Department of Mathematics
Periyar University
Salem-636011, Tamilnadu, India
e-mail: selvavlr@yahoo.com
spmuthuss@yahoo.co.in

Abstract

In this paper we show that an ideal I of a ring R with identity is 2-primal if and only if $N_I(P) = \{a \in R/aRb \subset \mathcal{P}(I) \text{ for some } b \in R-P\}$ has the IFP (Insertion of Factors Property), where $\mathcal{P}(I)$ is the intersection of all prime ideals which contain I. Also we prove some equivalent conditions for 2-primal ideals.

1. Introduction

Throughout this paper R denotes a ring with identity. Birkenmeier et al. [1] called a ring R 2-primal if its prime radical $\mathcal{P}(R)$ coincides with the set $\mathcal{N}(R)$ of all nilpotent elements of R. An ideal I of R is called 2-primal if $\mathcal{P}(R/I) = \mathcal{N}(R/I)$. An ideal I of R is said to have IFP if $xy \in I$ implies $xRy \subseteq I$ for $x, y \in R$. Spec(R) denotes the set of all prime ideals of R. Observe that every completely semiprime ideal of R has IFP. Birkenmeier et al. [1] proved that an ideal I is 2-primal if and only if $\mathcal{P}(I)$ is completely semiprime ideal of R. Kim and Kwak [4] proved that a ring R is 2-primal if and only if the prime radical $\mathcal{P}(R)$ has the IFP if and

2000 Mathematics Subject Classification: 16N60, 20M12, 16Y99.

Keywords and phrases: completely prime ideals, 2-prime ideals, insertion of factors property.

Received October 24, 2007

only if $N(P) = \{a \in R/aRb \subseteq \mathcal{P}(R) \text{ for some } b \in R - P\}$ has the IFP. In this paper we introduce the definition of $N_I(P)$ and N_I^P and also we show that an ideal I of R is 2-primal if and only if $N_I(P)$ has the IFP.

2. Characterization of 2-Primal Ideals

In this section we introduce $N_I(P)$, N_I^P and discuss the characterizations of 2-primal ideals.

Definition 2.1 [2]. Let R be a ring with identity and P be a prime ideal of R. Then $N(P) = \{y \in R/yRs \subseteq \mathcal{P}(R) \text{ for some } s \in R - P\}$, $N_P = \{y \in R/ys \in \mathcal{P}(R) \text{ for some } s \in R - P\}$, $\overline{N(P)} = \{y \in R/y^n \in N(P) \text{ for some } n\}$, $\overline{N_P} = \{y \in R/y^n \in N_P \text{ for some } n\}$.

A ring R is said to satisfy (SI) if for each $a \in R$, r(a) is a two sided ideal of R, where $r(a) = \{b \in R/ab = 0\}$.

Definition 2.2. Let I be any ideal of R and P be a prime ideal of R. Then we define $N_I(P) = \{y \in R/yRs \subseteq \mathcal{P}(I) \text{ for some } s \in R - P\}, \ N_I^P = \{y \in R/ys \in \mathcal{P}(I) \text{ for some } s \in R - P\}, \ \overline{N_I(P)} = \{y \in R/y^n \in N_I(P) \text{ for some } n\}, \ \overline{N_I^P} = \{y \in R/y^n \in N_I^P \text{ for some } n\}. \text{ Note that } N(P) \subseteq N_I(P), \\ N_P \subseteq N_I^P, \ I \subseteq N_I(P) \subseteq \overline{N_I(P)} \text{ and } I \subseteq N_I^P \subseteq \overline{N_I^P} \text{ for any ideal } I \text{ of } R.$

Example 2.3. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field and $I = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$, $P = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$. Then clearly I is an ideal of R and P, Q are prime ideals of R. It can be easily checked that $\mathcal{P}(I) = I$, $\mathcal{P}(P) = P$ and $\mathcal{P}(Q) = Q$.

We observe that

$$\text{(i)}\ \ N_I(P) = \overline{N_I(P)} = N_P(P) = \overline{N_P(P)} = \overline{N_I^P} = N_I^P = \overline{N_P^P} = \overline{N_P^P} = P,$$

$$(ii) \ \ N_I(Q) = \overline{N_I(Q)} = N_Q(Q) = \overline{N_Q(Q)} = \overline{N_I^Q} = N_I^Q = N_Q^Q = \overline{N_Q^Q} = Q,$$

$$(iii) \ \ N_P(Q) = \overline{N_P(Q)} = N_Q(P) = \overline{N_Q(P)} = \overline{N_Q^Q} = N_P^Q = N_Q^P = \overline{N_Q^P} = R.$$

Proposition 2.4. Let R be a ring with identity. Then we have the following:

- (i) $I \subseteq P$ if and only if $N_I(P) \subseteq P$ for any ideal I and prime ideal P of R.
 - (ii) $N_I(P) \subseteq N_I^P$ for any prime ideal P and ideal I of R.
- (iii) If I = P, then $N_I(P) = P$ for any ideal I and any prime ideal P of R.
 - (iv) P = Q if and only if $N_Q(P) = P$ for any prime ideals P and Q of R.
- **Proof.** (i) Suppose $I\subseteq P$. Then $\mathcal{P}(I)\subseteq P$. So, for any element $x\in N_I(P)$, there exists $b\in R-P$ such that $xRb\subseteq P$. From the primeness of P, we have $x\in P$. Therefore $N_I(P)\subseteq P$. Converse part is obvious.
- (ii) Let $x \in N_I(P)$. Then there exists $b \in R P$ such that $xRb \subseteq \mathcal{P}(I)$. Since P is prime, there exists $r \in R$ such that $brb \in R P$. Thus we get $xbrb \in xRb \subseteq \mathcal{P}(I)$ and $brb \notin P$. Therefore $x \in N_I^P$ and consequently $N_I(P) \subseteq N_I^P$.
- (iii) Since $P=I\subseteq \mathcal{P}(I)$, any element $x\in P$, we get $xR1\subseteq \mathcal{P}(I)$. So that $P\subseteq N_I(P)$. Thus $N_I(P)=P$ by (i).
- (iv) Suppose that P=Q, then we obtain $N_Q(P)=P$ by (iii). On the other hand, since $Q\subseteq N_Q(P)=P$, $Q\subseteq P$. Also let $x\in P$, then there exists $b\in R-P$ such that $xRb\subseteq \mathcal{P}(Q)$, because $N_Q(P)=P$. Since Q is prime, $\mathcal{P}(Q)=Q$. Hence we have $x\in Q$, since $b\in R-P\subseteq R-Q$. Therefore P=Q.
- **Remark 2.5.** 1. Converse of Proposition 2.4 (iii) is not true. In example 2.3 $N_I(Q)=Q$, but $I\neq Q$.

2. For any ideal I and J and any prime ideals P, Q if $I\subseteq J$ and $Q\subseteq P$, then $N_I(P)\subseteq N_J(Q)$. But converse is not true. In example 2.3 $N_Q(Q)\subseteq N_Q(P)$ but P is not contained in Q.

Theorem 2.6. Let R be a ring with identity and I be an ideal of R. Then the following are equivalent:

- (i) I is a 2-primal ideal;
- (ii) $\mathcal{P}(I)$ has the IFP;
- (iii) $N_I(P)$ has the IFP for each $P \in Spec(R)$;
- (iv) $N_I(P) = \overline{N_I^P}$ for each $P \in Spec(R)$;
- (v) $N_I(P) = N_I^P$ for each $P \in Spec(R)$;
- (vi) $N_I^P \subseteq P$ for each prime ideal P which contains I;
- (vii) $N_{P/\mathcal{P}(I)} \subseteq P/\mathcal{P}(I)$ for each prime ideal P which contains I;
- (viii) $\overline{N_J^Q} \subseteq N_I(P)$ for any ideal $J \subseteq I$ and prime ideals P, Q such that $P \subseteq Q$;
- (ix) $N_J^Q \subseteq N_I(P)$ for any ideal $J \subseteq I$ and prime ideals P, Q such that $P \subseteq Q$;
- (x) $\overline{N_J^Q} \subseteq P$ for any ideal J and prime ideals P, Q such that $J \subseteq I$ $\subseteq P \subseteq Q$;
- (xi) $N_J^Q \subseteq P$ for any ideal J and prime ideals P, Q such that $J \subseteq I$ $\subseteq P \subseteq Q$;
 - (xii) $N_{Q/\mathcal{P}(I)} \subseteq P/\mathcal{P}(I)$ for each prime ideal P, Q such that $I \subseteq P \subseteq Q$.

Proof. (i) implies (ii): Let $x + \mathcal{P}(I) \in \mathcal{N}(R/\mathcal{P}(I))$. Then there exists a positive integer n such that $(x + \mathcal{P}(I))^n = \mathcal{P}(I)$, i.e., $x^n \in \mathcal{P}(I)$. Since I is

a 2-primal ideal, $\mathcal{P}(I)$ is completely semiprime ideal. Hence $x \in \mathcal{P}(I)$, i.e., $x + \mathcal{P}(I) = \mathcal{P}(I)$. Hence $R/\mathcal{P}(I)$ has no nilpotent elements and so $R/\mathcal{P}(I)$ satisfies (SI). Thus $xy \in \mathcal{P}(I)$ implies $xRy \subseteq \mathcal{P}(I)$. Therefore $\mathcal{P}(I)$ has the IFP.

- (ii) implies (iii): Let $xy \in N_I(P)$ for each $P \in \operatorname{Spec}(R)$. Then $xyRb \subseteq \mathcal{P}(I)$ for some $b \in R P$. Since $\mathcal{P}(I)$ has IFP, $xRyRb \subseteq \mathcal{P}(I)$ and so $xRy \subseteq N_I(P)$. Therefore $N_I(P)$ has the IFP for each $P \in \operatorname{Spec}(R)$.
- (iii) implies (i): It is enough to prove that if $x^n \in I$, then $x \in \mathcal{P}(I)$ [1]. Suppose $x \notin \mathcal{P}(I)$, then there exists a prime ideal P which contains I such that $x \notin P$. Since P is prime, there exists $r_1, r_2, \ldots, r_{n-1}$ such that $xr_1xr_2\cdots r_{n-1}x \notin P$. Since $x^n \in I \subseteq N_I(P)$ and $N_I(P)$ has the IFP, $xr_1xr_2\cdots r_{n-1}x \in N_I(P)$. Since $I \subseteq P$, $N_I(P) \subseteq P$ by Proposition 2.4 (i) and hence $xr_1xr_2\cdots r_{n-1}x \in P$, a contradiction. Therefore $x \in \mathcal{P}(I)$. Thus I is a 2-primal ideal.
- (i) implies (iv): Let $a \in \overline{N_I^P}$ for each $P \in \operatorname{Spec}(R)$. Then $a^n \in N_I^P$ for some positive integer n. Hence there exists $b \in R P$ such that $a^nb \in \mathcal{P}(I)$. Since I is 2-primal, $\mathcal{P}(I)$ has IFP and also $\mathcal{P}(I)$ is completely semiprime. So that $aRb \subseteq \mathcal{P}(I)$. Thus $a \in N_I(P)$. Again we observe that $N_I(P) \subseteq N_I^P \subseteq \overline{N_I^P}$ by Proposition 2.4 (ii). Therefore $N_I(P) = N_I^P$.
 - (iv) implies (v): It is obvious.
 - (v) implies (vi): It follows from Proposition 2.4 (i).
- (vi) implies (vii): Let $a + \mathcal{P}(I) \in N_{P/\mathcal{P}(I)}$. Then there exists $b + \mathcal{P}(I) \in R/\mathcal{P}(I) P/\mathcal{P}(I)$ such that $(a + \mathcal{P}(I))(b + \mathcal{P}(I)) = \mathcal{P}(I)$, i.e., $ab \in \mathcal{P}(I)$. Hence $a \in N_I^P \subseteq P$. Therefore $a + \mathcal{P}(I) \in P/\mathcal{P}(I)$.
- (vii) implies (i): It is enough to prove that $R/\mathcal{P}(I)$ is reduced. Suppose for the purpose of contradiction that $R/\mathcal{P}(I)$ is not reduced. Then there

exists $a + \mathcal{P}(I) \in R/\mathcal{P}(I)$ such that $(a + \mathcal{P}(I))^2 = \mathcal{P}(I)$ and $a \notin \mathcal{P}(I)$. Hence there is a prime ideal P such that $a \notin P$. So $a + \mathcal{P}(I) \in R/\mathcal{P}(I) - P/\mathcal{P}(I)$. But since $(a + \mathcal{P}(I))^2 = \mathcal{P}(I)$, we obtain $a + \mathcal{P}(I) \in N_{P/\mathcal{P}(I)} \subseteq P/\mathcal{P}(I)$ which is a contradiction. Therefore I is a 2-primal ideal.

- (i) implies (viii): Let $x \in \overline{N_J^Q}$. Then there exists n such that $x^nb \in \mathcal{P}(J)$ for some $b \in R-Q$. Since $P \subseteq Q$, and $J \subseteq I$, $x^nb \in \mathcal{P}(I)$ for some $b \in R-P$. Since I is 2-primal, $xRb \subseteq \mathcal{P}(I)$ for some $b \in R-P$. Thus $x \in N_I(P)$.
- (viii) implies (ix) implies (xi) implies (vi) and (viii) implies (x) implies (xi) are obvious.
- (vi) implies (xii): Let $a + \mathcal{P}(I) \in N_{Q/\mathcal{P}(I)}$. Then $(a + \mathcal{P}(I))(b + \mathcal{P}(I))$ = $\mathcal{P}(I)$ for some $b + \mathcal{P}(I) \in R/\mathcal{P}(I) - Q/\mathcal{P}(I)$. Hence $ab \in \mathcal{P}(I)$ for some $b \notin Q$. Since $P \subseteq Q$, $b \notin P$. Thus we have $a \in N_I^P$. Since $I \subseteq P$, $N_I^P \subseteq P$ by (vi). Therefore $a + \mathcal{P}(I) \in P/\mathcal{P}(I)$,
 - (xii) implies (vii): It is obvious.

Corollary 2.7. Let R be a ring with identity and I be a 2-primal ideal of R. Then for any prime ideal P of R, $I \subseteq P$ if and only if $N_I^P \subseteq P$.

Proof. Suppose $I \subseteq P$, then $N_I^P \subseteq P$ by Theorem 2.6. Conversely, let $x \in I$. Then $x \in \mathcal{P}(I)$, because $I \subseteq \mathcal{P}(I)$. Since R has the identity, $\mathcal{P}(I) \subseteq N_I^P$ and hence $x \in P$. Thus $I \subseteq P$.

Corollary 2.8. I = P if and only if $N_I^P = P$ for any completely prime ideal I and prime ideal P of R.

Proof. Assume that I=P. Since I is completely prime ideal of R, I is 2-primal ideal. By Corollary 2.7, $N_I^P\subseteq P$. Hence $P=I\subseteq N_I^P\subseteq P$. Therefore $P=N_I^P$. On the other hand, clearly $I\subseteq P$ by Corollary 2.7. Let $x\in P$. Then there exists $b\in R-P$ such that $xb\in \mathcal{P}(I)$, because

 $P=N_I^P$. Since I is completely prime, $\mathcal{P}(I)=I$ and $b\notin I$, we get $x\in I$. Therefore I=P.

Remark 2.9. Theorem 2.6 is more generalization of Theorem 2.1 in [4].

Corollary 2.10. Let R be a ring with identity. Then the following are equivalent:

- (i) R is a 2-primal ring;
- (ii) $\mathcal{P}(R)$ has the IFP;
- (iii) N(P) has the IFP for each $P \in Spec(R)$;
- (iv) $N(P) = \overline{N_P}$ for each $P \in Spec(R)$;
- (v) $N(P) = N_P$ for each $P \in Spec(R)$;
- (vi) $N_P \subseteq P$ for each $P \in Spec(R)$;
- (vii) $N_{P/\mathcal{P}(R)} \subseteq P$ for each $P \in Spec(R)$;
- (viii) $\overline{N_Q} \subseteq N(P)$ for each $Q, P \in Spec(R)$ such that $P \subseteq Q$;
- (ix) $N_Q \subseteq N(P)$ for each $Q, P \in Spec(R)$ such that $P \subseteq Q$;
- $\text{(x) } \overline{N_Q} \subseteq P \text{ for each } Q,\, P \in \operatorname{Spec}(R) \text{ such that } P \subseteq Q;$
- (xi) $N_Q \subseteq P$ for each prime ideal P and Q such that $P \subseteq Q$;
- (xii) $N_{Q/\mathcal{P}(R)} \subseteq P/\mathcal{P}(R)$ for each $Q, P \in Spec(R)$ such that $P \subseteq Q$.

Proof. It follows from Theorem 2.6.

References

- [1] G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denision Conference 1992, S. K. Jain and S. T. Rizvi, eds., World Scientific, New Jersey, 1993, pp. 102-129.
- [2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, A characterization of minimal prime ideals, Glasgow Math. J. 40 (1998), 223-236.

- [3] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), 213-230.
- [4] N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japon. 50(3)~(1999),~415-420.
- [5] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math Soc. 184 (1973), 43-60.