EQUIVARIANT DEFINABLE MORSE FUNCTIONS ON DEFINABLE C^rG MANIFOLDS

TOMOHIRO KAWAKAMI

Department of Mathematics
Faculty of Education
Wakayama University
Sakaedani Wakayama 640-8510
Japan

e-mail: kawa@center.wakayama-u.ac.jp

Abstract

Let $0 \le r < \infty$, G be a compact definable C^r group, X be a compact affine definable C^rG manifold and f be an equivariant definable Morse function on X. We prove that if f has no critical value in [a, b], then $f^{-1}((-\infty, a])$ is definably C^rG diffeomorphic to $f^{-1}((-\infty, b])$. Moreover we prove that the set of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set of G invariant C^r functions on X with respect to the C^r Whitney topology.

We also prove that if G is a compact definable group and X is a definable G manifold, then X is definably G homeomorphic to an open definable G CW complex.

 $2000 \ \text{Mathematics Subject Classification: } 14P10, \quad 14P20, \quad 57R35, \quad 57S10, \quad 57S15, \quad 58A05, \quad 03C64$

Keywords and phrases: o-minimal, equivariant Morse theory, definable C^r groups, equivariant definable Morse functions, critical points, critical values, open definable G CW complexes.

Received September 17, 2007

1. Introduction

In Morse theory it is proved that the topological data of a given space can be described via data given by Morse functions defined on the space. We refer the reader to the book by Milnor [17] for Morse theory on compact C^{∞} manifolds, and to the book by Goresky and MacPherson [4] on singular spaces. Its equivariant versions are studied in Wasserman [23], Mayer [16], Datta and Pandey [1], and its definable versions are studied in Peterzil and Starchenko [19], Loi [15].

Let $\mathcal{M}=(\mathbb{R},+,\cdot,<,...)$ be an o-minimal expansion of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". General references on o-minimal structures are [2], [3], see also [22]. It is known in [20] that there exist uncountably many o-minimal expansions of \mathcal{R} .

In this paper we consider its equivariant definable C^r version of Morse theory. Everything is considered in \mathcal{M} , $2 \le r < \infty$, every definable map is continuous and every definable C^r manifold does not have boundary unless otherwise stated. Remark that the condition that $r \ge 2$ is necessary to define Morse functions. Definable C^rG manifolds are studied in [11], [9].

Let X be an n-dimensional definable C^r manifold and $f: X \to \mathbb{R}$ be a definable C^r function. We say that a point $p \in X$ is a *critical point* of f if the differential of f at p is zero. If p is a critical point of f, then f(p) is called a *critical value* of f. Let p be a critical point of f and (U, u) be a definable C^r coordinate system on X at p (i.e., U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0). The critical point p is nondegenerate if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular. Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate system. In the non-equivariant setting,

Peterzil and Starchenko [19] introduced definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field.

Let G be a definable C^r group, X be a definable C^rG manifold and $f:X\to\mathbb{R}$ be a G invariant definable C^r function on X. A closed definable C^rG submanifold Y of X is called a *critical manifold* (resp. a nondegenerate critical manifold) of f if each f is a critical point (resp. a nondegenerate critical point) of f. We say that f is an equivariant definable Morse function if the critical locus of f is a finite union of nondegenerate critical manifolds of f without interior.

Theorem 1.1. Let G be a compact definable C^r group and f be an equivariant definable Morse function on a compact affine definable C^rG manifold X. If f has no critical value in [a, b], then $f^a := f^{-1}((-\infty, a])$ is definably C^rG diffeomorphic to $f^b := f^{-1}((-\infty, b])$.

Theorem 1.1 is an equivariant definable C^r version of Theorem 4.3 [23].

In the non-equivariant definable case, Loi [15] proved the density of definable Morse functions.

Let $Def^r(\mathbb{R}^n)$ denote the set of definable C^r functions on \mathbb{R}^n . For each $f \in Def^r(\mathbb{R}^n)$ and for each positive definable function $\varepsilon : \mathbb{R}^n \to \mathbb{R}$, the ε -neighborhood $N(f; \varepsilon)$ of f in $Def^r(\mathbb{R}^n)$ is defined by $\{h \in Def^r(\mathbb{R}^n) \mid |\partial^{\alpha}(h-f)| < \varepsilon, \ \forall \alpha \in \mathbb{N}^n, \ |\alpha| \le r\}$, where $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\partial^{\alpha} F = \frac{\partial^{|\alpha|} F}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$. We call the topology

defined by these ε -neighborhoods the definable C^r topology.

Theorem 1.2 [15]. Let X be a definable C^r submanifold of \mathbb{R}^n . Then the set of definable C^r functions on \mathbb{R}^n which are Morse functions on X and have distinct critical values are open and dense in $Def^r(\mathbb{R}^n)$ with respect to the definable C^r topology.

Remark that the definable C^r topology and the C^r Whitney topology do not coincide in general. If X is compact, then these topologies of the set $Def^r(X)$ of definable C^r functions on X are the same ([22, p.156]).

A nondegenerate critical manifold of an equivariant Morse function on a definable C^rG manifold is called a *nondegenerate critical orbit* if it is an orbit. The following is the density of equivariant definable Morse functions.

Theorem 1.3. Let G be a compact definable C^r group and X be a compact affine definable C^rG manifold. Then the set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C^r_{inv}(X)$ of G invariant C^r functions on X with respect to the C^r Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def^r_{inv}(X)$ of G invariant definable C^r functions with respect to the definable C^r topology.

Definable G CW complexes are introduced in [7]. Moreover it is proved that if G is a compact definable group, then every definable G set is definably G homeomorphic to a G invariant definable subset of a definable G CW complex obtained by removing some open G cells ([7, 1.1]). Here definable G set means a G invariant definable subset of some representation of G.

In this paper we consider *open definable G CW complexes* (See Definition 4.1) which are more general than 2.2 [7].

We say that a definable C^0G manifold is a definable G manifold.

Theorem 1.4. Let G be a compact definable group and X be a definable G manifold.

- (1) X is definably G homeomorphic to an open definable G CW complex in the sense of Definition 4.1.
 - (2) If X is compact, then X is definably G homeomorphic to a complete

definable G CW complex in the sense of Definition 4.1. In particular, X is G homeomorphic to a finite G CW complex.

Theorem 1.4 is somewhat stronger than the following usual equivariant C^{∞} version [16].

Theorem 1.5 [16]. Let G be a compact Lie group and f be a special equivariant Morse function on a $C^{\infty}G$ manifold X such that every f^a is compact. Then X is G homotopy equivalent to a G CW complex. If X is compact, then X is G homotopy equivalent to a finite G CW complex.

The following is a definable version of a well-known topological result (e.g. [5, 6.2.4]).

Theorem 1.6. Let X be an n-dimensional compact definable C^r manifold admitting a definable Morse function $f: X \to \mathbb{R}$ with only two critical points. Then X is definably homeomorphic to the n-dimensional unit sphere S^n . If $n \le 6$, then X is definably C^r diffeomorphic to S^n .

Remark that if n=7, then Milnor [18] found a C^{∞} manifold which is homeomorphic to S^7 , but not C^{∞} diffeomorphic to S^7 . Since every C^r manifold admits a unique C^{∞} manifold structure up to C^{∞} diffeomorphism (e.g. [5, 2.3.4]), this result holds in the C^r setting.

2. Preliminaries and Proof of Theorem 1.1

A definable C^r manifold is a C^r manifold with a finite system of charts whose transition functions are definable, and definable C^r maps, definable C^r diffeomorphisms and definable C^r imbeddings are defined similarly ([11], [9]). A definable C^r manifold is affine if it is definably C^r imbeddable into some \mathbb{R}^n . If $\mathcal{M} = \mathcal{R}$, a definable C^{ω} manifold (resp. an affine definable C^{ω} manifold) is called a Nash manifold (resp. an affine Nash manifold). By [10], every definable C^r manifold is affine. The definable C^{ω} case is complicated. Even if $\mathcal{M} = \mathcal{R}$, it is known that for every compact or compactifiable C^{ω} manifold of positive dimension

admits a continuum number of distinct nonaffine Nash manifold structures [21], and its equivariant version is proved in [12].

A group G is a definable C^r group if G is a definable C^r manifold such that the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps. Let G be a definable C^r group. A definable C^rG manifold is a pair (X, ϕ) consisting of a definable C^r manifold X and a group action $\phi: G \times X \to X$ such that ϕ is a definable C^r map. For simplicity, we write X instead of (X, ϕ) .

Let G be a definable C^r group. A representation map of G means a group homomorphism from G to some $O_n(\mathbb{R})$ which is of class definable C^r and the representation of this representation map is \mathbb{R}^n with the orthogonal action induced by the representation map. In this paper, we always assume that every representation is orthogonal. A definable C^rG submanifold of a representation Ω of G is a G invariant definable C^r submanifold of Ω . We say that a definable C^rG manifold is affine if it is definably C^rG diffeomorphic to a definable C^rG submanifold of some representation of G.

Theorem 2.1 [8]. Let X and Y be compact affine definable C^rG manifolds possibly with boundary and $2 \le r < \infty$. Then the following three conditions are equivalent.

- (1) X and Y are C^1G diffeomorphic.
- (2) X and Y are definably C^rG diffeomorphic.
- (3) The interior of X is definably C^rG diffeomorphic to that of Y.

Proof of Theorem 1.1. By the proof of Theorem 4.3 [23], $f^a = f^{-1}((-\infty, a])$ is $C^{r-1}G$ diffeomorphic to $f^b = f^{-1}((-\infty, b])$. Since X is compact and affine, these two manifolds are compact affine definable C^rG manifolds with boundary. Thus Theorem 2.1 proves Theorem 1.1. \square

Remark that the method of the proof of Theorem 4.3 [23] is the integration of a G invariant C^{∞} vector field. This method does not work in the definable category because the integration of a G invariant definable C^r vector field is not always definable.

Example 2.2. (1) Let $\mathcal{M}=\mathcal{R}$ and $f:\mathbb{R}\to\mathbb{R},\ f(x)=\frac{1}{x^2+1}$. Then f is a definable C^ω function, but $F(x)\coloneqq\int_0^x f(t)dt=\tan^{-1}(x)$ is not definable in \mathcal{M} .

(2) Let $\mathcal{M} = \mathbf{R}_{\exp} = (\mathbb{R}, +, \cdot, <, e^x)$ and $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{x^2}$. Then f is a definable C^{ω} function, but $F(x) := \int_0^x f(t) dt$ is not definable in \mathcal{M} .

3. Proof of Theorem 1.3

Let G be a compact definable C^r group. Let f be a map from a C^rG manifold X to a representation Ω of G. Denote the Haar measure of G by dg and let $C^r(X, \Omega)$ denote the set of C^r maps from X to Ω . Define

$$A: C^r(X, \Omega) \to C^r(X, \Omega), \quad A(f)(x) = \int_G g^{-1}f(gx)dg.$$

We call A the averaging function. In particular, if $G = \{g_1, ..., g_n\}$, then $A(f)(x) = \frac{1}{n} \sum_{i=1}^n g_i^{-1} f(g_i x)$.

Observations similar to 2.6 [13], 4.3 [9] and 2.35 [14] show the following proposition.

Proposition 3.1 ([13], [9], [14]). Let G be a compact definable C^r group.

- (1) A(f) is equivariant, and A(f) = f if f is equivariant.
- (2) If $0 \le r \le \infty$ and $f \in C^r(X, \Omega)$, then $A(f) \in C^r(X, \Omega)$.
- (3) If f is a polynomial map, then so is A(f).

- (4) If $0 \le r < \infty$ and X is compact, then $A : C^r(X, \Omega) \to C^r(X, \Omega)$ is continuous in the C^r Whitney topology.
- (5) If G is a finite group and $0 \le r \le \omega$, X is a definable C^rG manifold and f is a definable C^r map, then A(f) is a definable C^rG map.

We say that a C^r manifold G is a C^r group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are C^r maps. By the proof of Lemma 4.8 [23] proves the following.

Theorem 3.2 [23]. Let G be a compact C^r group and X be a compact C^rG manifold. Then the set $C^r_{equi-Morse,o}(X)$ of equivariant Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is open and dense in the set $C^r_{inv}(X)$ of G invariant C^r functions on X with respect to the C^r Whitney topology.

Proof of Theorem 1.3. Let $f \in C^r_{inv}(X)$ and $\mathcal{N} \subset C^r_{inv}(X)$ be an open neighborhood of f in $C^r_{inv}(X)$. By Theorem 3.2, there exists an open subset $\mathcal{N}' \subset \mathcal{N}$ such that each $h \in \mathcal{N}'$ is an equivariant Morse function whose critical locus is a finite union of nondegenerate critical orbits. Let $C^r(X)$ denote the set of C^r functions on X. Since $A:C^r(X) \to C^r(X)$ is continuous and $A(C^r(X)) = C^r_{inv}(X)$, $A:C^r(X) \to C^r_{inv}(X)$ is continuous. Fix $h \in \mathcal{N}'$. Since A(h) = h, $A^{-1}(\mathcal{N}')$ is an open neighborhood of h in $C^r(X)$. Applying the polynomial approximation theorem, we have a polynomial function h' lies in $A^{-1}(\mathcal{N}')$. Applying the averaging function, we have a G invariant polynomial function, it is a G invariant definable C^r function. Thus F is an equivariant definable Morse function lies in \mathcal{N} .

We now prove the second part. Since X is compact, the definable C^r topology and the C^r Whitney topology coincide [22, p. 156]. By the first

part, $Def_{equi-Morse,o}(X)$ is dense in $C_{inv}^r(X)$. Thus it is dense in $Def_{inv}^r(X)$.

Let $h \in Def_{equi-Morse,o}(X)$. By Theorem 3.2, there exists an open neighborhood \mathcal{V} of h in $C^r_{inv}(X)$ such that each $h \in \mathcal{V}$ is an equivariant Morse function whose critical locus is a finite union of nondegenerate critical orbits. Thus $\mathcal{V} \cap Def_{inv}(X)$ is the required open neighborhood of h in $Def_{inv}(X)$.

4. Proof of Theorem 1.4

Let G be a definable group. A definable set with a definable G action is a pair (X, θ) consisting of a definable set X and a group action $\theta: G \times X \to X$ such that θ is a definable map. This action is not necessarily linear (orthogonal). We simply write X instead of (X, θ) .

A definable map between definable sets with definable G actions is a definable G map if it is a G map. A definable G map is a definable G homeomorphism if it is bijective and its inverse is a definable G map.

We consider the definition of open definable G CW complexes which is more general than 2.2 [7].

Definition 4.1. Let G be a compact definable group.

- (1) An open definable G CW complex is a pair of $(X, \{c_i | i \in I\})$ consisting of a Hausdorff definable G space X and a finite family of open G cells $\{c_i | i \in I\}$ such that
- (a) The underlying space $\mid X \mid$ of X is a definable set with a definable G action.
 - (b) The orbit space X/G is a definable subset of some \mathbb{R}^n .
- (c) For each open G n-cell c_i , there exist a definable subgroup H_{c_i} of G and the characteristic map $f_{c_i}:G/H_{c_i}\times\Delta\to\overline{c_i}\subset X$ such that $f_{c_i}|G/H_{c_i}\times Int\ \Delta\to c_i$ is a definable G homeomorphism and the

boundary ∂c_i is equal to $f_{c_i}(G/H_{c_i} \times \partial \Delta)$, where Δ is a subset of the standard compact n-simplex Δ^n obtained by removing some open lower dimensional faces of Δ^n , $\overline{c_i}$ denotes the closure of c_i in X, $Int \Delta$ means the interior of Δ and $\partial \Delta = \Delta - Int \Delta$.

- (d) For each c_i , $\overline{c_i} c_i$ is a finite union of open G cells.
- (2) An open definable G CW complex is called a *complete definable* G CW *complex* if every Δ is a standard compact simplex.

In the above definition, if $(X, \{c_i | i \in I\})$ is complete and |X| is a definable G set, then this coincides 2.2 [7]. Remark that a complete definable G CW complex is a compact standard G CW complex.

The following is a generalization of 1.1 [7].

Theorem 4.2. Let G be a compact definable group and X be a definable set with a definable G action.

- (1) X is definably G homeomorphic to an open definable G CW complex.
- (2) If X is compact, then X is definably G homeomorphic to a complete definable G CW complex.

To prove Theorem 4.2, we first prepare a piecewise equivariant definable trivialization theorem. Its non-equivariant version is proved in 9.1.2 [2].

Let X be a definable set with a definable G action and $Y \subset \mathbb{R}^n$ be a definable set, and $f: X \to Y$ be a G invariant definable map. We say that f is definably G trivial if there exist a definable set F with a definable G action and a definable G map $h: X \to F$ such that $(f, h): X \to Y \times F$ is a definable G homeomorphism. In this case, each fiber $f^{-1}(a)$ of f over g is definably G homeomorphic to F.

Theorem 4.3. Let G be a compact definable group and let X be a definable set with a definable G action. Let Y be a definable set in some \mathbb{R}^n and let $f: X \to Y$ be a G invariant definable map. Then there exists

a finite partition $\{A_i\}$ of A into definable sets such that each $f | f^{-1}(A_i)$: $f^{-1}(A_i) \to A_i$ is definably G trivial.

Using the following two theorems, the proof of 2.5 [9] proves Theorem 4.3.

Theorem 4.4 (10.2.18 [2]). Let G be a compact definable group and let X be a definable set with a definable G action. Then the orbit space X/G exists as a definable subset of some \mathbb{R}^n and the orbit map $\pi: X \to X/G$ is G invariant, definable and proper.

The following is a special case of 1.3 [6]

Theorem 4.5 [6]. Let G be a compact definable group. Then every definable set with a definable G action has only finitely many orbit types.

The following is a definable triangulation of a definable set 8.2.9 [2].

Theorem 4.6 (8.2.9 [2]) (Definable triangulation). Let $S_1, ..., S_k$ be definable subsets of a definable set S in \mathbb{R}^n . Then there exist a finite simplicial complex $K \subset \mathbb{R}^n$ and a definable map $\phi : S \to \mathbb{R}^n$ such that ϕ maps S and each S_i homeomorphically onto unions of open simplexes of K.

We call (ϕ, K) a definable triangulation of S compatible with $S_1, ..., S_k$.

Proof of Theorem 4.2. Let $\pi: X \to X/G$ be the orbit map. Then X/G is a definable set and π is a definable map. By Theorem 4.3, there exists a finite decomposition $\{A_i\}$ of X/G into definable sets such that each $\pi \mid \pi^{-1}(A_i) : \pi^{-1}(A_i) \to A_i$ is definably G trivial. Using Theorem 4.5, X has only finitely many orbit types $\{(H_1), ..., (H_k)\}$. By Theorem 4.6, there exists a definable triangulation (ϕ, K) of X/G compatible with $\{A_i\} \cup \{\pi(X(H_1)), ..., \pi(X(H_k))\}$, where $X(H_i) = \{x \in X \mid G_x \text{ is conjugate to } H_i\}$. Then $\phi(X/G)$ is a definable subset of K obtained by removing some open simplexes.

Let Y be the minimal simplicial complex of K containing $\phi(X/G)$. For each n-simplex Δ^n of Y, there exists a definable section $s:\phi^{-1}(\operatorname{int}\Delta^n)\to X$ of π because $\phi^{-1}(\operatorname{int}\Delta^n)$ is contained in some A_i . After replacing its subdivision, if necessary, we can extend the section s to a definable section $\widetilde{s}:\phi^{-1}(\Delta^n\cap\phi(X/G))\to X$. Let $\sigma=s(\phi^{-1}(\operatorname{int}\Delta^n))$. Then $\overline{\sigma}=\widetilde{s}(\phi^{-1}(\Delta^n\cap\phi(X/G)))$ and $\overline{G}\overline{\sigma}=G\overline{\sigma}$, where $\overline{\sigma}$ (resp. $\overline{G}\overline{\sigma}$) denotes the closure of σ (resp. $G\overline{\sigma}$) in X. Hence there exists a definable G map $f_{\sigma}:G/H\times(\Delta\cap\phi(X/G))\cong G(\widetilde{s}(a_i))\times(\Delta\cap\phi(X/G))\to \overline{G}\overline{\sigma}$, $f_{\sigma}(gH,x)=g(\widetilde{s}(\phi(x)))$ such that $f_{\sigma}|G/H\times\operatorname{int}\Delta\to G\overline{\sigma}$ is a definable G homeomorphism, where a_i is any point in σ .

By collecting open G cells $G\widetilde{s}(\phi(\operatorname{int}\Delta^n)) = \pi^{-1}(\phi(\operatorname{int}\Delta^n))$ for all open simplices $\operatorname{int}\Delta^n$ of $\phi(X/K)$, we have the required open definable G CW complex.

Theorem 4.7 [10]. If $0 \le r < \infty$, then every definable C^r manifold is definably C^r imbeddable into some \mathbb{R}^n .

Proof of Theorem 1.4. By Theorem 4.7, X is definably homeomorphic to a definable subset Y of some \mathbb{R}^n . Thus this definable homeomorphism makes Y a definable set with a definable G action. Applying Theorem 4.2, we have Theorem 1.4.

5. Proof of Theorem 1.6

We now prepare two results.

Lemma 5.1 (A.6 [19]) (Morse's Lemma). Let $r \ge 0$, X be an n-dimensional definable C^{r+2} manifold, $f: X \to \mathbb{R}$ be a definable C^{r+2} function and $p \in X$ be a nondegenerate critical point of f. Then there exists a definable C^r coordinate system (U, ϕ) on X at p such that $f \circ \phi^{-1}(y) = f(p) - y_1^2 - \dots - y_{\lambda}^2 + y_{\lambda+1}^2 + \dots + y_n^2$, where λ is the index of f at p.

Theorem 5.2 (e.g. 6.2.2 [5]). Let $f: X \to [a, b]$ be a C^r map on a compact manifold X with boundary. If f has no critical points and $f(\partial X) = \{a, b\}$, then there exists a C^{r-1} diffeomorphism $F: f^{-1}(a) \times [a, b] \to X$ such that $f \circ F$ coincides the projection $f^{-1}(a) \times [a, b] \to [a, b]$.

Proof of Theorem 1.6. Using Morse's Lemma and Theorems 2.1, 4.7 and 5.2, a similar proof of 6.2.4 [5] proves the first half of Theorem 1.6.

If $n \leq 6$, X is C^r diffeomorphic to S^n . Thus since X is compact and by Theorems 2.1 and 4.7, X is definably C^r diffeomorphic to S^n .

References

- M. Datta and N. Pandey, Morse theory on G-manifolds, Topology Appl. 123 (2002), 351-361.
- [2] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Notes Series, 248, Cambridge Univ. Press, 1998.
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] M. Goresky and R. MacPherson, Stratified Morse Theory, Springer, 1998.
- [5] M. W. Hirsch, Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, 1976.
- [6] T. Kawakami, Definable C^r groups and proper definable actions, to appear.
- [7] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 54 (2004), 1-15.
- [8] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55 (2005), 23-36.
- [9] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [10] T. Kawakami, Every definable C^r manifold is affine, Bull. Korean Math. Soc. 42 (2005), 165-167.
- [11] T. Kawakami, Imbeddings of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. 36 (1999), 183-201.

- [12] T. Kawakami, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321-331.
- [13] T. Kawakami, Simultaneous Nash structures of a compactifiable $C^{\infty}G$ manifold and its $C^{\infty}G$ submanifolds, Bull. Fac. Edu. Wakayama Univ. Natur. Sci. 49 (1999), 1-20.
- [14] K. Kawakubo, The Theory of Transformation Groups, Oxford Univ. Press, 1991.
- [15] T. L. Loi, Density of Morse functions on sets definable in o-minimal structures, Ann. Polon. Math. 89 (2006), 289-299.
- [16] K. H. Mayer, G-invariante Morse-funktionen, Manuscripta Math. 63 (1989), 99-114.
- [17] J. Milnor, Morse Theory, Princeton Univ. Press, 1963.
- [18] J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64(2) (1956), 399-405.
- [19] Y. Peterzil and S. Starchenko, Computing o-minimal topological invariants using differential topology, Trans. Amer. Math. Soc. 359 (2006), 1375-1401.
- [20] J. P. Rolin, P. Speissegger and A. J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777.
- [21] M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155-162.
- [22] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150 (1997).
- [23] G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150.