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Abstract 

Let ,0 ∞<≤ r  G be a compact definable rC  group, X be a compact 

affine definable GCr  manifold and f be an equivariant definable Morse 

function on X. We prove that if f has no critical value in [ ],, ba  then 

( ]( )af ,1 ∞−−  is definably GCr  diffeomorphic to ( ]( ).,1 bf ∞−−  

Moreover we prove that the set of equivariant definable Morse functions 

on X whose critical loci are finite unions of nondegenerate critical orbits 

is dense in the set of G invariant rC  functions on X with respect to the 

rC  Whitney topology. 

We also prove that if G is a compact definable group and X is a definable 

G manifold, then X is definably G homeomorphic to an open definable G 

CW complex. 
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1. Introduction 

In Morse theory it is proved that the topological data of a given space 

can be described via data given by Morse functions defined on the space. 

We refer the reader to the book by Milnor [17] for Morse theory on 

compact ∞C  manifolds, and to the book by Goresky and MacPherson [4] 

on singular spaces. Its equivariant versions are studied in Wasserman 

[23], Mayer [16], Datta and Pandey [1], and its definable versions are 

studied in Peterzil and Starchenko [19], Loi [15]. 

Let ( )...,,,, <⋅+= RM  be an o-minimal expansion of the standard 

structure ( )<⋅+= ,,,RR  of the field of real numbers. The term 

“definable” means “definable with parameters in ”.M  General references 

on o-minimal structures are [2], [3], see also [22]. It is known in [20] that 

there exist uncountably many o-minimal expansions of .R  

In this paper we consider its equivariant definable rC  version of 

Morse theory. Everything is considered in ,M  ,2 ∞<≤ r  every definable 

map is continuous and every definable rC  manifold does not have 

boundary unless otherwise stated. Remark that the condition that 2≥r  

is necessary to define Morse functions. Definable GCr  manifolds are 

studied in [11], [9]. 

Let X be an n-dimensional definable rC  manifold and R→Xf :  be 

a definable rC  function. We say that a point Xp ∈  is a critical point of f 

if the differential of f at p is zero. If p is a critical point of f, then ( )pf  is 

called a critical value of f. Let p be a critical point of f and ( )uU ,  be a 

definable rC  coordinate system on X at p (i.e., U is a definable open 

subset of X containing p and u is a definable rC  diffeomorphism from U 

onto a definable open subset of nR  with ( ) ).0=pu  The critical point p is 

nondegenerate if the Hessian matrix of 1−uf D  at 0 is nonsingular. Direct 

computations show that the notion of nondegeniricity does not depend on 

the choice of a local coordinate system. In the non-equivariant setting, 
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Peterzil and Starchenko [19] introduced definable rC  Morse functions in 

an o-minimal expansion of the standard structure of a real closed field. 

Let G be a definable rC  group, X be a definable GCr  manifold and 

R→Xf :  be a G invariant definable rC  function on X. A closed 

definable GCr  submanifold Y of X is called a critical manifold (resp. a 

nondegenerate critical manifold) of f if each Yp ∈  is a critical point 

(resp. a nondegenerate critical point) of f. We say that f is an equivariant 
definable Morse function if the critical locus of f is a finite union of 
nondegenerate critical manifolds of f without interior. 

Theorem 1.1. Let G be a compact definable rC  group and f be an 

equivariant definable Morse function on a compact affine definable GCr  

manifold X. If f has no critical value in [ ],, ba  then ( ]( )aff a ,: 1 ∞−= −  is 

definably GCr  diffeomorphic to ( ]( ).,: 1 bff b ∞−= −  

Theorem 1.1 is an equivariant definable rC  version of Theorem 4.3 

[23]. 

In the non-equivariant definable case, Loi [15] proved the density of 
definable Morse functions. 

Let ( )nrfDe R  denote the set of definable rC  functions on .nR  For 

each ( )nrfDef R∈  and for each positive definable function ,: RR →ε n  

the ε-neighborhood ( )ε;fN  of f in ( )nrfDe R  is defined by { ∈h  

( ) ( ) ,ε<−∂α fhfDe nr R  ,nN∈α∀  },r≤α  where ( ) ∈αα=α n...,,1  

,nN  ,1 nα++α=α "  .
1

1
n

nxx

F
F

αα

α
α

∂∂

∂
=∂

"
 We call the topology 

defined by these ε-neighborhoods the definable rC  topology. 

Theorem 1.2 [15]. Let X be a definable rC  submanifold of .nR  Then 

the set of definable rC  functions on nR  which are Morse functions on X 

and have distinct critical values are open and dense in ( )nrfDe R  with 

respect to the definable rC  topology. 
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Remark that the definable rC  topology and the rC  Whitney topology 

do not coincide in general. If X is compact, then these topologies of the set 

( )XfDe r  of definable rC  functions on X are the same ([22, p.156]). 

A nondegenerate critical manifold of an equivariant Morse function 

on a definable GCr  manifold is called a nondegenerate critical orbit if it is 

an orbit. The following is the density of equivariant definable Morse 

functions.  

Theorem 1.3. Let G be a compact definable rC  group and X be a 

compact affine definable GCr  manifold. Then the set ( )XfDe oMorseequi ,−  

of equivariant definable Morse functions on X whose critical loci are finite 

unions of nondegenerate critical orbits is dense in the set ( )XCr
inv  of G 

invariant rC  functions on X with respect to the rC  Whitney topology. 

Moreover ( )XfDe oMorseequi ,−  is open and dense in the set ( )XfDe r
inv  of G 

invariant definable rC  functions with respect to the definable rC  

topology. 

Definable G CW complexes are introduced in [7]. Moreover it is 

proved that if G is a compact definable group, then every definable G set 

is definably G homeomorphic to a G invariant definable subset of a 

definable G CW complex obtained by removing some open G cells ([7, 

1.1]). Here definable G set means a G invariant definable subset of some 

representation of G. 

In this paper we consider open definable G CW complexes (See 
Definition 4.1) which are more general than 2.2 [7]. 

We say that a definable GC0  manifold is a definable G manifold. 

Theorem 1.4. Let G be a compact definable group and X be a 

definable G manifold. 

(1) X is definably G homeomorphic to an open definable G CW complex 

in the sense of Definition 4.1. 

(2) If X is compact, then X is definably G homeomorphic to a complete 
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definable G CW complex in the sense of Definition 4.1. In particular, X is 

G homeomorphic to a finite G CW complex. 

Theorem 1.4 is somewhat stronger than the following usual 

equivariant ∞C  version [16]. 

Theorem 1.5 [16]. Let G be a compact Lie group and f be a special 

equivariant Morse function on a GC∞  manifold X such that every af  is 

compact. Then X is G homotopy equivalent to a G CW complex. If X is 
compact, then X is G homotopy equivalent to a finite G CW complex. 

The following is a definable version of a well-known topological result 
(e.g. [5, 6.2.4]). 

Theorem 1.6. Let X be an n-dimensional compact definable rC  

manifold admitting a definable Morse function R→Xf :  with only two 

critical points. Then X is definably homeomorphic to the n-dimensional 

unit sphere .nS  If ,6≤n  then X is definably rC  diffeomorphic to .nS  

Remark that if ,7=n  then Milnor [18] found a ∞C  manifold which is 

homeomorphic to ,7S  but not ∞C  diffeomorphic to .7S  Since every rC  

manifold admits a unique ∞C  manifold structure up to ∞C  

diffeomorphism (e.g. [5, 2.3.4]), this result holds in the rC  setting. 

2. Preliminaries and Proof of Theorem 1.1 

A definable rC  manifold is a rC  manifold with a finite system of 

charts whose transition functions are definable, and definable rC  maps, 

definable rC  diffeomorphisms and definable rC  imbeddings are defined 

similarly ([11], [9]). A definable rC  manifold is affine if it is definably rC  

imbeddable into some .nR  If ,RM =  a definable ωC  manifold (resp. an 

affine definable ωC  manifold) is called a Nash manifold (resp. an affine 

Nash manifold). By [10], every definable rC  manifold is affine. The 

definable ωC  case is complicated. Even if ,RM =  it is known that for 

every compact or compactifiable ωC  manifold of positive dimension 
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admits a continuum number of distinct nonaffine Nash manifold 
structures [21], and its equivariant version is proved in [12]. 

A group G is a definable rC  group if G is a definable rC  manifold 

such that the group operations GGG →×  and GG →  are definable rC  

maps. Let G be a definable rC  group. A definable GCr  manifold is a pair 

( )φ,X  consisting of a definable rC  manifold X and a group action 

XXG →×φ :  such that φ is a definable rC  map. For simplicity, we 

write X instead of ( )., φX  

Let G be a definable rC  group. A representation map of G means a 

group homomorphism from G to some ( )RnO  which is of class definable 

rC  and the representation of this representation map is nR  with the 

orthogonal action induced by the representation map. In this paper, we 

always assume that every representation is orthogonal. A definable GCr  

submanifold of a representation Ω of G is a G invariant definable rC  

submanifold of Ω. We say that a definable GCr  manifold is affine if it is 

definably GCr  diffeomorphic to a definable GCr  submanifold of some 

representation of G. 

Theorem 2.1 [8]. Let X and Y be compact affine definable GCr  

manifolds possibly with boundary and .2 ∞<≤ r  Then the following 

three conditions are equivalent. 

(1) X and Y are GC1  diffeomorphic. 

(2) X and Y are definably GCr  diffeomorphic. 

(3) The interior of X is definably GCr  diffeomorphic to that of Y. 

Proof of Theorem 1.1. By the proof of Theorem 4.3 [23], =af  

( ]( )af ,1 ∞−−  is GCr 1−  diffeomorphic to ( ]( ).,1 bff b ∞−= −  Since X is 

compact and affine, these two manifolds are compact affine definable 

GCr  manifolds with boundary. Thus Theorem 2.1 proves Theorem 1.1. � 
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Remark that the method of the proof of Theorem 4.3 [23] is the 

integration of a G invariant ∞C  vector field. This method does not work 

in the definable category because the integration of a G invariant 

definable rC  vector field is not always definable. 

Example 2.2. (1) Let RM =  and ,: RR →f  ( ) .
1

1
2 +

=
x

xf  Then f 

is a definable ωC  function, but ( ) ( ) ( )∫ −==
x

xdttfxF
0

1tan:  is not 

definable in .M  

(2) Let ( )xe,,,,exp <⋅+== RRM  and ,: RR →f  ( ) .
2xexf =  Then 

f is a definable ωC  function, but ( ) ( )∫=
x

dttfxF
0

:  is not definable in .M  

3. Proof of Theorem 1.3 

Let G be a compact definable rC  group. Let f be a map from a GCr  

manifold X to a representation Ω of G. Denote the Haar measure of G by 

dg and let ( )Ω,XCr  denote the set of rC  maps from X to Ω. Define 

( ) ( ) ( ) ( ) ( )∫ −=Ω→Ω
G

rr dggxfgxfAXCXCA .,,,: 1  

We call A the averaging function. In particular, if { },...,,1 nggG =  

then ( ) ( ) ( )∑ =
−=

n
i ii xgfg

n
xfA

1
1 .

1
 

Observations similar to 2.6 [13], 4.3 [9] and 2.35 [14] show the 
following proposition. 

Proposition 3.1 ([13], [9], [14]). Let G be a compact definable rC  

group. 

(1) ( )fA  is equivariant, and ( ) ffA =  if f is equivariant. 

(2) If ∞≤≤ r0  and ( ),, Ω∈ XCf r  then ( ) ( )., Ω∈ XCfA r  

(3) If f is a polynomial map, then so is ( ).fA  
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(4) If ∞<≤ r0  and X is compact, then ( ) ( )Ω→Ω ,,: XCXCA rr  is 

continuous in the rC  Whitney topology. 

(5) If G is a finite group and ,0 ω≤≤ r  X is a definable GCr  

manifold and f is a definable rC  map, then ( )fA  is a definable GCr  

map. 

We say that a rC  manifold G is a rC  group if G is a group and the 

group operations GGG →×  and GG →  are rC  maps. By the proof of 

Lemma 4.8 [23] proves the following. 

Theorem 3.2 [23]. Let G be a compact rC  group and X be a compact 

GCr  manifold. Then the set ( )XCr
oMorseequi ,−  of equivariant Morse 

functions on X whose critical loci are finite unions of nondegenerate 

critical orbits is open and dense in the set ( )XCr
inv  of G invariant rC  

functions on X with respect to the rC  Whitney topology.  

Proof of Theorem 1.3. Let ( )XCf r
inv∈  and ( )XCr

inv⊂N  be an 

open neighborhood of f in ( ).XCr
inv  By Theorem 3.2, there exists an open 

subset NN ⊂′  such that each N ′∈h  is an equivariant Morse function 

whose critical locus is a finite union of nondegenerate critical orbits. Let 

( )XCr  denote the set of rC  functions on X. Since ( ) ( )XCXCA rr →:  is 

continuous and ( ( )) ( ),XCXCA r
inv

r =  ( ) ( )XCXCA r
inv

r →:  is continuous. 

Fix .N ′∈h  Since ( ) ,hhA =  ( )N ′−1A  is an open neighborhood of h in 

( ).XCr  Applying the polynomial approximation theorem, we have a 

polynomial function h′  lies in ( ).1 N ′−A  Applying the averaging function, 

we have a G invariant polynomial function ( )hAF ′=:  lies in .N ′  Since F 

is a G invariant polynomial function, it is a G invariant definable rC  

function. Thus F is an equivariant definable Morse function lies in .N  

We now prove the second part. Since X is compact, the definable rC  

topology and the rC  Whitney topology coincide [22, p. 156]. By the first 
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part, ( )XfDe oMorseequi ,−  is dense in ( ).XCr
inv  Thus it is dense in 

( ).XfDe r
inv  

Let ( )., XfDeh oMorseequi−∈  By Theorem 3.2, there exists an open 

neighborhood V  of h in ( )XCr
inv  such that each V∈h  is an equivariant 

Morse function whose critical locus is a finite union of nondegenerate 

critical orbits. Thus ( )XfDe inv∩V�  is the required open neighborhood of 

h in ( ).XfDe inv  � 

4. Proof of Theorem 1.4 

Let G be a definable group. A definable set with a definable G action 

is a pair ( )θ,X  consisting of a definable set X and a group action 

XXG →×θ :  such that θ is a definable map. This action is not 

necessarily linear (orthogonal). We simply write X instead of ( )., θX  

A definable map between definable sets with definable G actions is a 

definable G map if it is a G map. A definable G map is a definable G 

homeomorphism if it is bijective and its inverse is a definable G map. 

We consider the definition of open definable G CW complexes which is 
more general than 2.2 [7]. 

Definition 4.1. Let G be a compact definable group. 

(1) An open definable G CW complex is a pair of { }( )IicX i ∈|,  

consisting of a Hausdorff definable G space X and a finite family of open 

G cells { }Iici ∈|  such that 

(a) The underlying space X  of X is a definable set with a definable 

G action. 

(b) The orbit space GX  is a definable subset of some .nR  

(c) For each open G n-cell ,ic  there exist a definable subgroup 
icH  of 

G and the characteristic map XcHGf icc ii
⊂→∆×:  such that 

icc cIntHGf
ii

→∆×|  is a definable G homeomorphism and the 
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boundary ic∂  is equal to ( ),∆∂×
ii cc HGf  where ∆ is a subset of the 

standard compact n-simplex n∆  obtained by removing some open lower 

dimensional faces of ,n∆  ic  denotes the closure of ic  in X, ∆Int  means 

the interior of ∆ and .∆−∆=∆∂ Int  

(d) For each ,ic  ii cc −  is a finite union of open G cells. 

(2) An open definable G CW complex is called a complete definable G 

CW complex if every ∆ is a standard compact simplex. 

In the above definition, if { }( )IicX i ∈|,  is complete and X  is a 

definable G set, then this coincides 2.2 [7]. Remark that a complete 

definable G CW complex is a compact standard G CW complex. 

The following is a generalization of 1.1 [7]. 

Theorem 4.2. Let G be a compact definable group and X be a 

definable set with a definable G action. 

(1) X is definably G homeomorphic to an open definable G CW 

complex. 

(2) If X is compact, then X is definably G homeomorphic to a complete 

definable G CW complex. 

To prove Theorem 4.2, we first prepare a piecewise equivariant 

definable trivialization theorem. Its non-equivariant version is proved in 
9.1.2 [2]. 

Let X be a definable set with a definable G action and nY R⊂  be a 

definable set, and YXf →:  be a G invariant definable map. We say 

that f is definably G trivial if there exist a definable set F with a 

definable G action and a definable G map FXh →:  such that 

( ) FYXhf ×→:,  is a definable G homeomorphism. In this case, each 

fiber ( )af 1−  of f over a is definably G homeomorphic to F. 

Theorem 4.3. Let G be a compact definable group and let X be a 

definable set with a definable G action. Let Y be a definable set in some 
nR  and let YXf →:  be a G invariant definable map. Then there exists 
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a finite partition { }iA  of A into definable sets such that each ( ) :1
iAff −|  

( ) ii AAf →−1  is definably G trivial. 

Using the following two theorems, the proof of 2.5 [9] proves Theorem 
4.3. 

Theorem 4.4 (10.2.18 [2]). Let G be a compact definable group and let 

X be a definable set with a definable G action. Then the orbit space GX  

exists as a definable subset of some nR  and the orbit map GXX →π :  

is G invariant, definable and proper. 

The following is a special case of 1.3 [6] 

Theorem 4.5 [6]. Let G be a compact definable group. Then every 

definable set with a definable G action has only finitely many orbit types. 

The following is a definable triangulation of a definable set 8.2.9 [2]. 

Theorem 4.6 (8.2.9 [2]) (Definable triangulation). Let kSS ...,,1  be 

definable subsets of a definable set S in .nR  Then there exist a finite 

simplicial complex nK R⊂  and a definable map nS R→φ :  such that φ 

maps S and each iS  homeomorphically onto unions of open simplexes of 

K. 

We call ( )K,φ  a definable triangulation of S compatible with 

....,,1 kSS  

Proof of Theorem 4.2. Let GXX →π :  be the orbit map. Then 

GX  is a definable set and π is a definable map. By Theorem 4.3, there 

exists a finite decomposition { }iA  of GX  into definable sets such that 

each ( ) ( ) iii AAA →ππ|π −− 11 :  is definably G trivial. Using Theorem 4.5, 

X has only finitely many orbit types ( ) ( ){ }....,,1 kHH  By Theorem 4.6, 

there exists a definable triangulation ( )K,φ  of GX  compatible with 

{ } ( )( ) ( )( ){ },...,,1 ki HXHXA ππ∪  where ( ) { xi GXxHX |∈=  is conjugate 

to }.iH  Then ( )GXφ  is a definable subset of K obtained by removing 

some open simplexes. 
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Let Y be the minimal simplicial complex of K containing ( ).GXφ  For 

each n-simplex n∆  of Y, there exists a definable section ( )ns ∆φ− int: 1  

X→  of π because ( )n∆φ− int1  is contained in some .iA  After replacing 

its subdivision, if necessary, we can extend the section s to a definable 

section ( ( )) .:~ 1 XGXs n →φ∆φ− ∩  Let ( ( )).int1 ns ∆φ=σ −  Then =σ  

( ( ( )))GXs n φ∆φ− ∩1~  and ,σ=σ GG  where σ  ( )σG.resp  denotes the 

closure of σ  ( )σG.resp  in X. Hence there exists a definable G map :σf  

( )( ) ( )( ) ( )( ) ,~ σ→φ∆×≅φ∆× GGXasGGXHG i ∩∩  ( ) ( )( )( )xsgxgHf φ=σ
~,  

such that σ→∆×|σ GHGf int  is a definable G homeomorphism, where 

ia  is any point in σ. 

By collecting open G cells ( ( )) ( ( ))nnsG ∆φπ=∆φ − intint~ 1  for all open 

simplices n∆int  of ( ),KXφ  we have the required open definable G CW 

complex.  � 

Theorem 4.7 [10]. If ,0 ∞<≤ r  then every definable rC  manifold is 

definably rC  imbeddable into some .nR  

Proof of Theorem 1.4. By Theorem 4.7, X is definably 

homeomorphic to a definable subset Y of some .nR  Thus this definable 

homeomorphism makes Y a definable set with a definable G action. 

Applying Theorem 4.2, we have Theorem 1.4.  � 

5. Proof of Theorem 1.6 

We now prepare two results. 

Lemma 5.1 (A.6 [19]) (Morse’s Lemma). Let ,0≥r  X be an 

n-dimensional definable 2+rC  manifold, R→Xf :  be a definable 2+rC  

function and Xp ∈  be a nondegenerate critical point of f. Then there 

exists a definable rC  coordinate system ( )φ,U  on X at p such that 

( ) ( ) ,22
1

22
1

1
nyyyypfyf +++−−−=φ +λλ

− ""D  where λ is the index of f 

at p. 
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Theorem 5.2 (e.g. 6.2.2 [5]). Let [ ]baXf ,: →  be a rC  map on a 

compact manifold X with boundary. If f has no critical points and ( )Xf ∂  

{ },, ba=  then there exists a 1−rC  diffeomorphism ( ) [ ] XbaafF →×− ,: 1  

such that Ff D  coincides the projection ( ) [ ] [ ].,,1 babaaf →×−  

Proof of Theorem 1.6. Using Morse’s Lemma and Theorems 2.1, 4.7 

and 5.2, a similar proof of 6.2.4 [5] proves the first half of Theorem 1.6. 

If ,6≤n  X is rC  diffeomorphic to .nS  Thus since X is compact and 

by Theorems 2.1 and 4.7, X is definably rC  diffeomorphic to .nS  � 
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