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Abstract 

In this paper, parabolic initial-boundary value problems and variational 

inequalities in non-cylindrical domains are considered. A method is 

proposed which allows to transfer the problem from a non-cylindrical 

domain to a cylindrical one. 

1. Introduction 

In [2], a new method, called the transformation method, was 
introduced and applied. This method allowed to transfer a parabolic 
initial-boundary value problem in one space variable on some non-
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rectangular domain Q in the ( )tx, -plane into a parabolic problem on a 

rectangle .Q  The reason was that for a rectangle, Rothe’s method of time 

discretization can be efficiently applied, and the (approximative) solution 

to the initial problem on Q can be obtained by the inverse transform. 

Of course, the application of Rothe’s method has had only an 

auxiliary character. Here, we will show, that the method from [2], used 
there for linear parabolic problems with uniformly elliptic part, can be 

applied also to parabolic problems with degeneration and/or singularity, 
to nonlinear problems and even to problems in more (space) dimensions. 

In Section 2, we work in one space dimension. At first, we repeat the 

considerations from [2] and we will show that the same approach works 
also for parabolic problems with degeneration and/or singularity in the 
elliptic part, and for nonlinear problems. In Section 3, we will consider 

the case of more space dimensions, where we have of course to restrict the 
admissible domains. Finally, in Section 4, we describe the procedure for 

the more general case of parabolic variational inequalities with a linear 

operator A. 

The results of this paper form a part of the Ph.D. theses of the second 

and third authors, defended in June 2007 at the University of West 
Bohemia, Pilsen (see [8] and [9]). 

2. The Transformation Method in One Space Dimension 

2.1. The linear problem: The uniformly elliptic case 

Let Q be a domain in the ( )tx, -plane, bounded by the lines ,0=t  

,Tt =  0=x  and by the curve ( ),tgx =  where g is in [ ]TC ,01  and such 

that ( ) ,10 =g  ( ) .0≥′ tg  

The substitution 

 ( )tgx ξ=  (2.1) 

maps the domain Q onto the rectangle Q  in the ( )t,ξ -plane: 

( ){ }.0,10:, TttQ <<<ξ<ξ=  
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The parabolic equation 

 ( ) ( )txf
x
u

txa
xt

u
,, =








∂
∂

∂
∂

−
∂
∂

 on Q (2.2) 

with solution ( )txuu ,=  is then transformed into the parabolic equation 

 ( ) ( )
( )

( )tf
u

tg
tgu

ta
t
u

,, ξ=
ξ∂

∂
ξ

′
−








ξ∂
∂

ξ
ξ∂

∂
−

∂
∂

 on Q  (2.3) 

for the function 

 ( ) ( )( ),,:, ttgutu ξ=ξ  (2.4) 

where 

( ) ( )( )
( )

( ) ( )( ).,:,,
,

:,
2

ttgftf
tg

ttga
ta ξ=ξ

ξ
=ξ  

If the “elliptic part” in (2.2) is uniformly elliptic and bounded, i.e., if there 

exist constants 0, 10 >cc  such that 

 ( ) 10 , ctxac ≤≤  for all ( ) ,, Qtx ∈  (2.5) 

then the same is true for (2.3) since, due to our assumptions on the 

function g, we have that 

( ) 10 ,0 ctac ≤ξ≤<  for all ( ) ,, Qt ∈ξ  

with 

( ) ( )
.

0
,

2
1

12
0

0
g

c
c

Tg

c
c ==  

Hence, the character of the problem (2.2) remains after the substitution 

(2.1) unchanged: the problem (2.3) is of the same type. 

Let us denote by ,1S  2S  the left and right “sides” of Q and by 0S  its 

“bottom”, i.e., 

( ){ },10:0,0 <<= xxS  

( ){ },0:,01 TttS <<=  

( )( ){ }.0:,2 TtttgS <<=  (2.6) 
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For the purpose of a (weak) solution of the parabolic initial-boundary 

value problem 

( ) ( )txf
x
utxa

xt
u ,, =







∂
∂

∂
∂−

∂
∂  on Q, 

( ) 0, =txu  on ,21 SS ∪  

( ) ( )xuxu 00, =  on 0S  (2.7) 

(i.e., with homogeneous Dirichlet conditions), in [2], there was introduced 

the (anisotropic Sobolev) space 

( )QW 2;0,1  

as the set of all ( ) ( )QLtxuu 2, ∈=  such that the (distributional) 

derivative 
x
u

∂
∂

 belongs to ( ),2 QL  equipped with the norm 

 ( ) ( ) ( ) ,,,:
2
1

2
2

2;0,1 







∂
∂+= ∫∫ QQQW dxdttx
x
udxdttxuu  (2.8) 

and it was shown (see [2, Lemma 3.1]) that if ( ),2;0,1 QWu ∈  then the 

function u  from (2.4) belongs to ( )QW 2;0,1  and we have that 

 ( ) ( ) ( )QWQWQW ucuuc 2;0,12;0,12;0,1 21 ≤≤  (2.9) 

with 0, 21 >cc  independent on u (more precisely, ( )
( )

,
1

,0min2
1







=

Tg
gc  

( )
( )

.)
0

1
,max2

2






=

g
Tgc  

Hence, we can solve the transformed problem 

( ) ( )
( )

( )tf
u

tg
tgu

ta
t
u

,, ξ=
ξ∂

∂
ξ

′
−








ξ∂
∂

ξ
ξ∂

∂
−

∂
∂

 on ,Q  

( ) ( ) ( ),,0,0,1,0 Tttutu ∈==  

( ) ( ) ( )1,0,0, 0 ∈ξξ=ξ uu  (2.10) 
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(e.g., by Rothe’s method) and then we have the (weak) solution u of the 

initial problem (2.7) by the inverse transform: 

( ) ( ) .,, 




= t

tg
xutxu  

2.2. Degeneration and/or singularity 

Consider again equation (2.2) on Q, now with a coefficient ( )txa ,  

which fails to satisfy (2.5), but is still non-negative and tends to zero ( = 

degeneration) or to infinity (= singularity) either on the “left side” ,1S  or 

on the “right side” ,2S  or on both sides simultaneously. Let us illustrate 

the approach on hand of a simple example. 

Example 2.1. Consider equation (2.2) with ( )txa ,  replaced by 

( ) ( )txaxtgx ,1
µλ −  

with R∈µλ,  and 1a  satisfying (2.5). Then the equation 

 ( ) ( ) ( )txf
x
u

txaxtgx
xt

u
,,1 =








∂
∂

−
∂
∂

−
∂
∂ µλ  on Q (2.11) 

is in general no more uniformly elliptic in its “elliptic part” and has a 

degeneration ( )0,0 >µ>λ  or singularity ( )0,0 <µ<λ  on the 

corresponding side. After substitution (2.1) we get the equation 

 ( ) ( )( )
( )

( )
( )

( )tf
u

tg
tgu

tg

ttga
t
u

,
,

1
2

1 ξ=
ξ∂

∂
ξ

′
−








ξ∂

∂ξ
ξ−ξ

ξ∂
∂

−
∂
∂

µ−λ−
µλ  on Q  (2.12) 

with the same behavior on ( )11 SS =  and ( ){ },0:,12 TttS <<=  

respectively. 

Moreover, the appropriate space for a (weak) solution of (2.7) will be a 

weighted Sobolev space, characterized by the claim that 

( ),,;2 µλ∈
∂
∂ QL
x
u  
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i.e., 

( )
( ) ( )

2
1

2

,;
,:

2 









−

∂
∂

=
∂
∂ ∫ µλ

µλ QQL
dxdtxtgxtx

x
u

x
u

 

( ) ( )
( )

.,
2
1

0 0

2
∞<










−

∂
∂

= ∫ ∫ µλ
T tg

dxdtxtgxtx
x
u

 

(We omit for a while the behavior of the function u itself.) For the 

transformed function u  from (2.4) we then have 

( )
( ) ( )

( )

∫ ∫ µλ

µλ
−

∂
∂

=
∂
∂ T tg

QL
dxdtxtgxtx

x
u

x
u

0 0

22

,;
,

2
 

( ) ( ) .1,
1

0

2

0

1 ∫∫ ξξ−ξξ
ξ∂

∂
= µλ−µ+λ dtdt

u
tg

T
 

If we denote 

( )
( ) ,1,:

2
1

2

,;2 









ξξ−ξξ

ξ∂
∂

=
ξ∂

∂ ∫ µλ

µλ QQL
dtdt

uu
 

then we have the equivalence relation 

( ) ( ) ( )µλµλµλ ξ∂
∂

≤
∂
∂

≤
ξ∂

∂

,;
2

,;,;
1

222 QLQLQL

u
c

x
uu

c  

with 
[ ]

( ) ,min 1

,0

2
1

−µ+λ= tgc
T

 
[ ]

( ) .max 1

,0

2
2

−µ+λ= tgc
T

 

Hence, we can instead of the initial problem, consisting of the 

equation (2.11) and the conditions 

( ) 0, =txu  on ,21 SS ∪  

( ) ( )xuxu 00, =  on 0S  

solve the transformed problem consisting of the equation (2.12) and the 

conditions 
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( ) ( ) 0,1,0 == tutu  for ( ),,0 Tt ∈  

 ( ) ( )ξ=ξ 00, uu  for ( ).1,0∈ξ  (2.13) 

If we look for the (weak) solution u  of the second problem in a space 

characterized by the claim that 

( ),,,2 µλ∈
ξ∂

∂
QL

u
 

then we obtain again a weak solution u of the initial problem by the 

inverse transform: 

( )
( )

.,, 





= t

tg
x

utxu   

More generally, we could consider (2.2) with a coefficient ( )txa ,  

which behaves like ( )( ),, txdω  

( ) ( )( ),,, txdtxa ω≈  

where ( )sω=ω  is a positive function on ( )∞,0  and ( )txd ,  is the distance 

of the point ( ) Qtx ∈,  from the “sides”, i.e., from .21 SS ∪  

For simplicity, we have chosen a very special degeneration 

(singularity) characterized by the distance to the “sides” ,1S  2S  of Q, but 

a similar approach can be used for more general degenerations/ 
singularities, and even for the case when the singularity or degeneration 

appears at the term ,
t
u

∂
∂

 i.e., for equations of the form 

( ) ( ) ( )txf
x
u

txa
xt

u
txd ,,, =








∂
∂

∂
∂

−
∂
∂κ  on Q 

with R∈κ  (see [7]). 

2.3. The nonlinear problem 

In this subsection we consider a nonlinear parabolic problem, namely 

( )txf
x
u

txa
xt

u
,;, =
















∂
∂

∂
∂

−
∂
∂

 on Q, 
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( ) 0, =txu  on ,21 SS ∪  

( ) ( )xuxu 00, =  on 0S  (2.14) 

with ( )η= ;, txaa  defined on .R×Q  

At first we start with a simple example. 

Example 2.2. Let us consider the following problem: 

( ) ( )txf
x
u

x
u

txa
xt

u p
,,

2
=











∂
∂

∂
∂

∂
∂

−
∂
∂ −

 on Q, 

( ) 0, =txu  on ,21 SS ∪  

( ) ( )xuxu 00, =  on ,0S  (2.15) 

where .1 ∞<< p  Suppose that the coefficient ( )txa ,  satisfies condition 

(2.5). 

After the substitution (2.1), we have for 

( ) ( )( )ttgutu ,, ξ=ξ  

the following problem: 

( ) ( )
( )

( )tf
u

tg
tguu

ta
t
u p

,,
2

ξ=
ξ∂

∂
ξ

′
−











ξ∂
∂

ξ∂
∂

ξ
ξ∂

∂
−

∂
∂ −

 on ,Q  

( ) ( ) 0,1,0 == tutu  for ( ),,0 Tt ∈  

( ) ( )ξ=ξ 00, uu  for ( ),1,0∈ξ  (2.16) 

where 

( ) ( )( )
( )( )

( ) ( )( ).,:,,
,

:, ttgftf
tg

ttga
ta

p
ξ=ξ

ξ
=ξ  

Moreover, the appropriate space for a weak solution of (2.14) will be the 

Sobolev space ( )QW p;0,1  characterized by the norm 

( ) ( ) ( ) ,,,:

1

;0,1
pp

QQ

p
QW dxdttx

x
u

dxdttxuu p 










∂
∂

+= ∫∫  
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and it can be shown (similarly as in [2]) that if ( ),;0,1 QWu p∈  then 

( )QWu p;0,1∈  and we have the equivalence 

( ) ( ).;0,1;0,1 QWQW pp uu ≈  

So, we have a nonlinear parabolic problem on the rectangle .Q  The 

problem (2.16) can be solved by Rothe’s method if we assume additionally, 

that the derivatives ,
t
a

∂
∂  

2

2

t

a

∂
∂  and 

tx
a
∂∂

∂2
 exist and are bounded on Q (for 

details see [3], [4]). Hence, we obtain the weak solution ( )QWu p;0,1∈  

and we get finally the weak solution ( )QWu p;0,1∈  of the initial problem 

(2.15) by the inverse transformation: 

 ( )
( )

.,, 





= t

tg
x

utxu   

Now we consider the more general problem (2.14). After substitution 

(2.1), we have for ( )tu ,ξ  the following parabolic problem in the rectangle 

:Q  

( )
( )

( )tf
u

tg
tgu

ta
t
u

,;, ξ=
ξ∂

∂
ξ

′
−
















ξ∂
∂

ξ
ξ∂

∂
−

∂
∂

 on ,Q  

( ) ( ) ( ),1,0,0,1,0 ∈== ttutu  

( ) ( ) ( ),1,0,0, 0 ∈ξξ=ξ uu  (2.17) 

where 

( )
( )

( )
( )

,;,
1

;, 





 η
ξ=ηξ

tg
ttga

tg
ta  

( ) ( )( ).,, ttgftf ξ=ξ  

This problem can be solved (in the weak sense) in ( ),;0,1 QW p  if we make 

the following assumptions. 

Assumption 2.3. Let ( )Tt ,0∈  and denote tΩ  the segment ( )( ).,0 tg  
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(A1) ( )η;, txa  satisfies the Carathéodory condition, i.e., ( )η⋅ ;, ta  is 

measurable in tΩ  for every R∈η  and ( )⋅;, txa  is continuous in R  for 

a.e. .tx Ω∈  

(A2) ( )η;, txa  satisfies the growth condition 

( ) ( ( ) )1;, −η+≤η pxgCtxa  

for a.e. tx Ω∈  and every ;R∈η  here C is a given positive constant and g 

is a given function from ( ),tpL Ω′  .
1−

=′
p

p
p  

(A3) ( )η;, txa  satisfies the monotonicity condition, i.e., 

( ) ( )( ) ( ) 0;,;, >ζ−ηζ−η txatxa  

for a.e. tx Ω∈  and for all ,, R∈ζη  .ζ≠η  

(A4) ( )η;, txa  satisfies the coercivity (ellipticity) condition 

( ) pCtxa η≥ηη;,  

for a.e. tx Ω∈  and for every R∈η  with the constant 0>C  

independent of η and t. 

(A5) There exist the partial derivatives 

( ) ( ) ( ) ( )η
η∂

∂
η

∂∂
∂

η
∂

∂
η

∂
∂

;,,;,,;,,;,
2

2

2
tx

a
tx

tx
a

tx
t

a
tx

t
a

 

and satisfy the growth condition (A2). 

(A6) The function f satisfies the Lipschitz condition, 

( ) ( ) ( ) ( )ttCtftf
tL ′−≤′⋅−⋅
′Ω2

,,  for all ( ) .,,0, ttTtt ′>∈′  

Assumption 2.3 guarantees, that if we apply to (2.17) Rothe’s method, 

then we can obtain a uniquely determined solution ( )txuu ,=  using for 

the corresponding elliptic problems the theory of monotone operators. 
(For details, see [3], [4]; the assumptions are caused by the need to use 

the theory of monotone operators). 
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The solution of the previous problem (2.14) is taken with applying the 

inverse transform 

( )
( )

.,, 





= t

tg
x

utxu  

3. Generalization to More Space Dimensions 

3.1. The transformation method in more space dimensions 

Let Q be a non-cylindrical domain in ,1+NR  

 ( ) ( ){ },,0,:, TtxtxQ t ∈Ω∈=  (3.1) 

where ( )T,0  is a finite interval, tΩ  is a domain in NR  with Lipschitzian 

boundary tΩ∂  and for every ( ),,0, Tst ∈  ,st <  it is 

,0 Tst Ω⊂Ω⊂Ω⊂Ω≠∅  

where 
( )

,int
,0

0 ∩
Tt

t
∈

Ω=Ω  and 
( )
∪

Tt
tT

,0∈
Ω=Ω  is bounded domain. Let 

( )TQ ,00 ×Ω=  be a cylindrical domain in 1+NR  and consider the 

mapping 

,: QQ →π  

which is defined as ( ) ( )( ) ( ),,,,, tttxHtx ξ==π  where 

 ( ) ( ) ( ) ( )( ) .,,...,,,,,, 21 tN xtxHtxHtxHtxH Ω∈==ξ  (3.2) 

Let us assume that the mapping H satisfies the following conditions: 

(A1) There exist positive constants ,1C  2C  such that for any fixed 

( )Tt ,0∈  the mapping ( ) 0:, Ω→Ω⋅ ttH  satisfies the condition: 

( ) ( ) ,,, 21 yxCtyHtxHyxC −≤−≤−  for all ., tyx Ω∈  

(A2) If we denote by ( ) ttG Ω→Ω⋅ 0:,  the inverse transform to 

( ),, tH ⋅  for any fixed ( ),,0 Tt ∈  i.e., 
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( ) ( ) ( ) ( )( ) ( ),,,...,,,,,, 1
21 tHtGtGtGtG N ⋅=⋅⋅⋅=⋅ −  

then the derivatives ( ),, tx
t

Hi
∂

∂
 ( ) ( )Nit

t
Gi ...,,1, =ξ
∂

∂
 exist and are 

bounded in Q, ,Q  respectively. 

Let u be a function defined in Q and let us define the transform T  as 

 ( ) ( ) ( ) ( )( ).,,,, ttGututu ξ=ξ=ξ T  (3.3) 

Then the inverse transform to T  takes the form 

 ( ) ( ) ( ) ( )( ).,,,, 1 ttxHutxutxu == −T  (3.4) 

Lemma 3.1. Let ( )QWu 2,1∈  and let u  be given by (3.3). Then there 

exist positive constants 3C  and 4C  such that 

( ) ( ) ( ).2,12,12,1 43 QWQWQW uCuuC ≤≤  

To prove this lemma we need the following assertion. 

Lemma 3.2. Let 0Ω  and tΩ  be two bounded open subsets of .NR  Let 

( )Tt ,0∈  and ( )tG ,⋅  be a mapping from 0Ω  onto tΩ  satisfying the 

following condition: 

There exist 0, >dc  such that 

 ( ) ( ) η−ξ≤η−ξ≤η−ξ ctGtGd ,,  (3.5) 

for all ., tΩ∈ηξ  

Let [ ).,1 ∞∈p  Then the mapping T  defined by (3.3) is a continuous 

linear operator from ( )0
,1 ΩpW  into ( ).,1

t
pW Ω  

Proof. The proof is similar to the proof of Lemma 5.7.3 in [6] so we 

omit the details. 

Proof of Lemma 3.1. Due to Lemma 3.2, we have 

( )
( )

( )
( )

( )
( )

,,,, 2
2

22
1

0
2,12,1

0
2,1 Ω

∗
ΩΩ

∗ ⋅≤⋅≤⋅
WWW

tuCtutuC
t
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since ( )tG ,⋅  satisfies the condition (3.5) with the constants ,1
2C

d =  

,1
1C

c =  which immediately follows from the condition (A1). The constants 

,1
∗C  ∗

2C  are independent on t, due to the conditions (A1), (A2). From these 

and from the definition of the norm of the space ( ),2,1 QW  i.e., 

( )
( )

( )
( )

( )∫∫ ΩΩ
⋅

∂
∂

+⋅=
T

L

T

WQW
dtt

t
u

dttuu
tt 0

2

0

22

2
2,12,1 ,,  

we have the proof.  

4. Parabolic Variational Inequalities 

4.1. Variational inequalities in non-cylindrical domains 

For Ω a domain in ,NR  we denote by ( )ΩK  a closed convex subset of 

the Sobolev space ( )Ω2,1
0W  and define 

( )tt KK Ω=:  

as subset of ( ).2,1
0 tW Ω  

Let us consider the parabolic variational inequality in Q: 

( ) ( ) ( )( ) ( ) ( ) ( )( )ttt tuvtutbtuvtuaKtu −′+−∈ ,,:  

( ) ( )( )ttuvtf −≥ ,  for all ,tKv ∈  (4.1) 

for a.e. ( ),,0 Tt ∈  with the initial condition 

 ( ) ,0 0uu =  (4.2) 

where ( )ta ⋅⋅,  is a bilinear form which is defined as 

( ) ( )( ) ( ) ( ) ( ) ,,,,,
1,

, dxtxvtxutxatvtua
ji

ji
jit

t
∑ ∫

≤
Ω

∂∂=  

and ( )t⋅⋅,  is the scalar product in ( ).2 tL Ω  The coefficients jia ,  of the 

bilinear form, b and f are functions defined a.e. in Q. 
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The transform T  defined by (3.3) maps ( )QW 2,1  into ( ),2,1 QW  due 

to Lemma 3.1. Then (4.1) is transformed to the following variational 

inequality 

( ) ( ) ( )( ) ( ( ) ( ) ( ))000 ,,: tuvtutbtuvtuaKtu −′+−∈  

( ( ) ( ))0, tuvtf −≥  for all ,0Kv ∈  (4.3) 

with the initial condition 

 ( ) ( )( ).0,0 00 ⋅== Guuu  (4.4) 

Here ( )0, ⋅⋅a  is a bilinear form defined as 

( ) ( )( ) ( ( ) ( ))ttvtuatvtua 11
0 ,, −−= TT  

( ) ( )( ) ( ) ( ) ,,,,,,
1 0

ξξξ
ξ∂

∂
ξ

∂
∂

ξ+ ∑ ∫
=

Ω
dtvt

u
ttG

t
H

tb
k

N

k

k  (4.5) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tGJtftftGJtbtb ,,,,,,, ξξ=ξξξ=ξ TT  

and ( ) ( )tGJ ,ξ  is the Jacobian of the mapping ( )., tG ⋅  

If the bilinear form ( )tvua ,  in (4.1) is bounded and uniformly elliptic, 

i.e., if there exist constants 0, 10 >CC  such that 

( ) ( ) ( )tt WWt vuCvua ΩΩ≤ 2,12,11,  for all ( );, 2,1
tWvu Ω∈  (4.6) 

( )
( )

2
0 2,1,

tWt uCuua
Ω

≥  for all ( ),2,1
0 tt WVu Ω=∈  (4.7) 

then the same is true for (4.5) if we, in addition to conditions (A1), (A2) 

from Section 3, assume that 

(A3) The function b is positive and satisfies the Lipschitz condition in 

x, i.e., 

there exists a constant 4C  such that for any fixed ( )Tt ,0∈  

( ) ( ) ,,, 4 yxCtybtxb −≤−  for all ;, tyx Ω∈  
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(A4) For any fixed ( ),,0 Tt ∈  the function 

( ) ( )( )ttG
t

H
tb k ,,, ⋅

∂
∂

⋅  

belongs to ( )0
,1 Ω∞W  and the derivatives 

( ) ( )( ) 0,,, ≤



 ξ

∂
∂

ξ
ξ∂
∂

ttG
t

H
tb k

k
 a.e. in ....,,2,1,0 Nk =Ω  

According to (4.6), (A3), (A4), Lemma 3.2 and the Schwarz inequality, 

we have 

• Boundedness: 

( ) ( )( ) ( ( ) ( ))ttvtuatvtua 11
0 ,, −−≤ TT  

( ) ( )( ) ( ) ( ) ξξξ
ξ∂

∂
ξ

∂
∂

ξ+ ∑ ∫
=

Ω
dtvt

u
ttG

t
H

tb
N

k k

k

1 0
,,,,,  

( ( ) ( ) ( ) ( )tt WW tvtuC Ω
−

Ω
−≤ 2,12,1

11
1 TT  

( )

( )

( ) ( )02

021
2 Ω

Ω=
∑ ξ∂

∂
+ L

L

N

k k
tv

tu
C  

( ) ( ) ( ) ( )0
2,1

0
2,13 ΩΩ≤ WW tvtuC  for all ( ) ( ) ( );, 0

2,1 Ω∈Wtvtu  

• Ellipticity: 

( ) ( )( )0, tutua  

( ( ) ( )) ( ) ( )( ) ( ) ( ) ξξξ
ξ∂

∂
ξ

∂
∂

ξ+= ∑ ∫
=

Ω

−− dtut
u

ttG
t

H
tbtutua

N

k k

k
t

1

11

0
,,,,,, TT  

( )
( )

( ) ( )( ) ( ) ( ) ξ







ξξ

ξ∂
∂





 ξ

∂
∂

ξ+≥ ∑∫
=

ΩΩ
− dtut

u
ttG

t
H

tbtuC
N

k k

k
W t 1

21
0

0
2,1 ,,,,,T  

( )
( )

( ) ( )( ) ( )[ ] ξξ



 ξ

∂
∂

ξ
ξ∂
∂

−≥ ∑ ∫
=

ΩΩ
dtuttG

t
H

tbtuC
N

k

k

kW
1

22
4

00
2,1 ,,,,

2
1
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( )
( )

2
4

0
2,1 Ω

≥
W

tuC  for all ( ) ( ),0
2,1

0 Ω∈ Wtu  

since the expression 

( ) ( )( ) ( )[ ] ξξ



 ξ

∂
∂

ξ
ξ∂
∂

− ∑ ∫
=

Ω
dtuttG

t
H

tb
N

k

k

k1

2

0
,,,,

2
1

 

is nonnegative due to (A4). 

Hence, we can solve the transformed parabolic variational inequality 

(4.3), (4.4) by Rothe’s method, applying, e.g., the results of Bock and 

Kačur in [1], Kačur in [5], and finally we have the solution u (in the sense 

of Definition 4.1, below) of the initial problem (4.1), (4.2) by the inverse 

transform (3.4). 

Now we give the definition of the weak solution of our problem. First 

we denote 

{ ( ) ( ) }.ina.e., 0
2,1 IKtvQWvKQ ∈∈=  

Definition 4.1. A function ( )tu  is called a weak solution of the 

problem (4.1), (4.2) if the transformed function ( )tu  defined by (3.3) 

satisfies the following conditions: 

(1) ( )( ),, 02 Ω∈ LIACKu Q ∩  

(2) ( ) ,0 0uu =  

(3) 

( ) ( ) ( )( ) ( ( ) ( ) ( ) ( ))∫∫ −′+−
TT

dttutvtutbdttutvtua
0

0
0

0 ,,,  

( ( ) ( ) ( ))∫ −≥
T

dttutvtf
0

0,  for all .QKv ∈  

Thus, we have proved the following theorem. 

Theorem 4.2. Under the assumptions (A1)-(A4) the problem (4.1), 

(4.2) has exactly one weak solution. 
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4.2. Some examples and remarks 

In this subsection we illustrate all considerations from the previous 

sections on some concrete cases. In Example 4.3, we extend the approach 

used in [2] for 1=N  and for a parabolic equation to the case of a 

parabolic variational inequality. In Example 4.4 a similar approach is 

used for the more dimensional cases. In Example 4.5, we consider again 

the case 1=N  for a more general domain Q. In all examples, we suppose 

for simplicity that the function ( )txb ,  in (4.1) depends only on t. 

Example 4.3. Let Q be a domain in the ( )tx, -plane, bounded by the 

lines ,0=t  ,Tt =  0=x  and by the curve ( ),tgx =  where g is in 

[ ]TC ,01  and such that ( ) ,10 =g  ( ) .0≥′ tg  Let 

( ){ }.0,10:, TttQ <<<ξ<ξ=  

Then we can define the mapping π in the form 

( )
( )

( ),,,, tt
tg

x
tx ξ=






=π  

i.e., 

( )
( )

.,
tg

x
txH ==ξ  

In this case the transform T  takes the form 

 ( ) ( ) ( ) ( )( ),,,:, ttgututu ξ=ξ=ξ T  (4.8) 

since ( ) ( ) ( ).,, 1 tgtHtG ξ=ξ=ξ −  

If we consider the variational inequality (4.1) (in the case )1=N  

with 

 ( ) ( )( ) ( ) ( ) ( )
,

,,
,, ∫Ω ∂

∂
∂

∂
=

t

dx
x

txv
x

txu
txatvtua t  (4.9) 

then after the transformation (4.8) the transformed bilinear form (4.5) of 

the variational inequality (4.3) has the form 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ,,,
,,

,,
00

0 ∫∫ ΩΩ
ξξξξ

ξ∂
∂′−ξ

ξ∂
ξ∂

ξ∂
ξ∂

ξ= dtvt
u

tgd
tvtu

tatvtua  
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and 

( ) ( )( )
( )

( ) ( )( ) ( ).,,,
,

, tgttgftf
tg

ttga
ta ξ=ξ

ξ
=ξ  

If the bilinear form (4.9) is uniformly elliptic and bounded, then the same 

is true for the transformed bilinear form ( ) ( )( ) ,, 0tutua  since the mapping 

H and the function b satisfy the conditions (A1)-(A4). 

The following example is generalization of the previous one. 

Example 4.4. Let us consider the domain Q in 1+NR  defined as 

 ( ) ( )
( )

( )
( )

( )
( )

( ) ,,0,...,,,:,: 0
2

22

1

11







 ∈Ω∈







 φφφ
= Tt

tg
x

tg
x

tg
x

txQ
N

NN  (4.10) 

where 0Ω  is a bounded domain in NR  starshaped at the origin and 

( ),2 RCi ∈φ  ,0>φ′i  0≥φ′′i  and [ ],,01 TCgi ∈  ,0≥′ig  ( ) .10 =ig  Let us 

denote by sΩ  be the intersection of Q with the hyperplane ,st =  so that 

 ( ) ( ){ },,,0:,: txTttxQ Ω∈∈=  (4.11) 

and tΩ∂  will denote the boundary of the domain tΩ  in .NR  

Let ( )TQ ,00 ×Ω=  and define the mapping QQ →π :  as: 

( ) ( )
( )

( )
( )

( )
( )

( ).,,...,,,,
2

22

1

11 tt
tg

x
tg

x
tg

x
tx

N

NN ξ=






 φφφ
=π  

Then we have that 

( ) ( )
( )

( )
( )

( )
( )

....,,,,
2

22

1

11 






 φφφ
==ξ

tg
x

tg
x

tg
x

txH
N

NN  

It is easy to show that the mapping H satisfies the conditions (A1)-(A4). 

The following example also generalizes Example 4.3. 

Example 4.5. Let 2R⊂Q  be a non-cylindrical domain defined by: 

( ) ( ) ( )( ) ( ){ },1,0,,,, ∈ψ−∈= ttgtxtxQ  
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where [ ]TCg ,0, 1∈ψ  are nondecreasing functions on [ ]T,0  and ( ) =0g  

( ) .10 =ψ  

Let ( ) ( )TQ ,01,1 ×−=  and define the mapping QQ →π :  as: 

( ) ( )( ) ( ),,,,, tttxHtx ξ==π  

where 

( ) ( )
( )[ )

( )
( )( )










ψ−∈
ψ

∈
==ξ

.0,,

,,0,
,

tx
t

x

tgx
tg

x

txH  

This mapping satisfies the condition (A1) with the constants 

( ) ( ){ } ( ) ( ){ }
,1

0,0min
1

,
,max

1
21 =

ψ
=

ψ
=

g
C

TTg
C  

since 

( ) ( )

( ) ( )
( )[ )

( ) ( )
( )[ ) ( )( )

( ) ( )
( )( )














ψ−∈′′′
ψ

′′
−

ψ
′

ψ−∈′′∈′
ψ

′′
−

′

∈′′′
′′

−
′

=′′−′

.0,,

,0,,,0

,,0,

,,

txx
t

x
t

x

txtgx
t

x
tg

x

tgxx
tg

x
tg

x

txHtxH  

It is easy to show that this mapping also satisfies the conditions (A2)-

(A4). 

Remark 4.6. In the foregoing examples, only linear operators A have 

been considered, but obviously, all considerations can be repeated for 

nonlinear operators which lead to quasilinear forms as: 

( ) ( )( ) ( )∑ ∫
≤α

Ω

α
α ∂δ=

k
kt

t

dxxvxutxavua ,;,,  

where the coefficients ( )ξα ;, txa  satisfy the growth condition 

( ) ( )













ξ+≤ξ ∑

≤β

−
βααα

k

pxgCtxa 1;,  
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for a.e. Tx Ω∈  and every ,mR∈ξ  with αC  a given positive constant 

and αg  a given function from ( ),TpL Ω′  .
1−

=′
p

pp  Then we have to use 

the corresponding Sobolev space ( ).;0, QW pk  
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