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Abstract

In this paper, parabolic initial-boundary value problems and variational
inequalities in non-cylindrical domains are considered. A method is
proposed which allows to transfer the problem from a non-cylindrical

domain to a cylindrical one.
1. Introduction

In [2], a new method, called the transformation method, was
introduced and applied. This method allowed to transfer a parabolic

initial-boundary value problem in one space variable on some non-
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rectangular domain @ in the (x, ¢)-plane into a parabolic problem on a

rectangle @. The reason was that for a rectangle, Rothe’s method of time

discretization can be efficiently applied, and the (approximative) solution

to the initial problem on @ can be obtained by the inverse transform.

Of course, the application of Rothe’s method has had only an
auxiliary character. Here, we will show, that the method from [2], used
there for linear parabolic problems with uniformly elliptic part, can be
applied also to parabolic problems with degeneration and/or singularity,

to nonlinear problems and even to problems in more (space) dimensions.

In Section 2, we work in one space dimension. At first, we repeat the
considerations from [2] and we will show that the same approach works
also for parabolic problems with degeneration and/or singularity in the
elliptic part, and for nonlinear problems. In Section 3, we will consider
the case of more space dimensions, where we have of course to restrict the
admissible domains. Finally, in Section 4, we describe the procedure for
the more general case of parabolic variational inequalities with a linear
operator A.

The results of this paper form a part of the Ph.D. theses of the second
and third authors, defended in June 2007 at the University of West
Bohemia, Pilsen (see [8] and [9]).

2. The Transformation Method in One Space Dimension

2.1. The linear problem: The uniformly elliptic case
Let @ be a domain in the (x, ¢)-plane, bounded by the lines ¢t = 0,

t =T, x =0 and by the curve x = g(t), where gis in C'[0, T] and such
that g(0) =1, g'(¢) > 0.

The substitution
x =E&g(t) 2.1
maps the domain @ onto the rectangle 6 in the (&, ¢)-plane:

Q=1{E1):0<e<1,0<t<T}.
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The parabolic equation

‘Z_Lt‘ _ %(a(x, t)Z—Z) = f(x,t) on @ (2.2)

with solution u = u(x, t) is then transformed into the parabolic equation

w0 (o \Om)_ gl 0w _ ¢ o
e S T e .3
for the function

u(g, t) = ulEg(), 1), (2.4)

where

ale, 1) = 2CE0D | Fe o) fego), o)
g7(t)

If the “elliptic part” in (2.2) is uniformly elliptic and bounded, i.e., if there
exist constants cg, ¢; > 0 such that

co <alx,t)<c forall (x,t) e @, (2.5)

then the same is true for (2.3) since, due to our assumptions on the

function g, we have that
0<cy<algt)<q forall (¢ ¢t)e@Q,
with
- Co — ]

, G = .
g%(0)

Hence, the character of the problem (2.2) remains after the substitution

(2.1) unchanged: the problem (2.3) is of the same type.

Let us denote by S;, Sy the left and right “sides” of @ and by S its

“bottom”, i.e.,
Sp ={(x,0):0<x <1},
S; ={0,t):0<t<T},

Sy ={(g(t), ¢t): 0<t < T} (2.6)
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For the purpose of a (weak) solution of the parabolic initial-boundary

value problem

ou _ i(a(x, t)g—;j = f(x, t) on @,

u(x, t) =0 on S; U Sg,
u(x, 0) = up(x) on Sy 2.7

(i.e., with homogeneous Dirichlet conditions), in [2], there was introduced

the (anisotropic Sobolev) space
wh(@Q)
as the set of all u = u(x,t)e L?(Q) such that the (distributional)

derivative Z—u belongs to L (®), equipped with the norm
x

ST
g—z(x, t)‘ dxdt] Y

w02y = [IQ| ulx, t) [Pdxdt + IQ

and it was shown (see [2, Lemma 3.1]) that if u € W"%2(Q), then the

function % from (2.4) belongs to W %2(Q) and we have that

al @ [lyrozgy < [ ulprozg) < cof @ lyrozg) (2.9)
with ¢, ¢ > 0 independent on u (more precisely, ¢ = min{g(O), %},
g

3 = max{g(T), io)})
Hence, we can solve the transformed problem
W _ 0 (e nOa)_gW U _ 5 ]
- taenE]-LHeE - fep @

u(0,t)=u(1,t)=0, te(0,T),

u(&, 0) = ug(8). £<(0,1) (2.10)
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(e.g., by Rothe’s method) and then we have the (weak) solution u of the

initial problem (2.7) by the inverse transform:

u(x, t) = ﬁ(%, t).

2.2. Degeneration and/or singularity

Consider again equation (2.2) on @, now with a coefficient a(x, ¢)

which fails to satisfy (2.5), but is still non-negative and tends to zero (=
degeneration) or to infinity (= singularity) either on the “left side” S;, or

on the “right side” Sy, or on both sides simultaneously. Let us illustrate

the approach on hand of a simple example.

Example 2.1. Consider equation (2.2) with a(x, ¢) replaced by

x* g(t) - x Fay(x, t)
with A, p € R and a; satisfying (2.5). Then the equation

a—”-i(m g(t) - x s (x, t)a—“j = f(x, ) on Q @.11)
ot oOx ox
is in general no more uniformly elliptic in its “elliptic part” and has a

degeneration (A >0, >0) or singularity (A <O0,u<0) on the

corresponding side. After substitution (2.1) we get the equation

@0 (e o aliel) ) 0T g), 0w _ - _
ot a(: [E_v (1 &) g2—7\,—p,(t) aa} g(t) é 8& = f(é, t) on Q (212)

with the same behavior on Sj(=S;) and Sy ={1,%):0<t<T},
respectively.

Moreover, the appropriate space for a (weak) solution of (2.7) will be a

weighted Sobolev space, characterized by the claim that

ou 2/A.
ax € L (Q7 }\'7 H),
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le.,

ou

ox

ou

e

2 2
x| g(t) - x |”dxdtJ

2@ n) a U Q
U Ig()

(We omit for a while the behavior of the function u itself.) For the
transformed function # from (2.4) we then have

8(t)
‘ % 2@, ) J.Jh
- [ et | : o

2 2
b))« gt) - x |“dxdt} < o0,

_”
ox

ou 8u

7“| g(t) - x |Mdxdt

2
£, t)‘ M1 - &' dedt.

If we denote
1

_ 2
ou a”ll—r;l“d&dt]z,

23

LA(@;2,p) ._{ Q E3

then we have the equivalence relation

o e Nk
G 2@ nw 1ox 2@ % r2@; )
with ¢ = [%nn] g™, & = max g(t) ™

Hence, we can instead of the initial problem, consisting of the
equation (2.11) and the conditions

u(x,t)=0 on S; US,,
u(x, 0) = ug(x) on Sy

solve the transformed problem consisting of the equation (2.12) and the

conditions
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u(0,t)=u(1,t)=0 for t € (0, T,

@(2, 0) = ug(e) for & e (0, 1). (2.13)

If we look for the (weak) solution z of the second problem in a space

characterized by the claim that
ou —
A L ) 7\'7 )
o © 2(@, 1, 1)

then we obtain again a weak solution u of the initial problem by the

inverse transform:

u(x, t) = E(ﬁ, t}. [ |

More generally, we could consider (2.2) with a coefficient al(x, )

which behaves like w(d(x, t)),

a(x, t) = o(d(x, t)),
where ® = o(s) is a positive function on (0, ) and d(x, t) is the distance
of the point (x, t) € @ from the “sides”, i.e., from S; U Ss.

For simplicity, we have chosen a very special degeneration

(singularity) characterized by the distance to the “sides” S;, Sy of @, but

a similar approach can be used for more general degenerations/

singularities, and even for the case when the singularity or degeneration

appears at the term (Z—L: , 1.e., for equations of the form

K ou 0 ou _
d"(x, t)a—a(a(x, t)a) = f(x,t) on @

with k € R (see [7]).
2.3. The nonlinear problem

In this subsection we consider a nonlinear parabolic problem, namely

‘Z_;‘ - %(a(x, t; Z—ZD = f(x, t) on @,
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u(x, t) =0 on S; U Sy,
u(x, 0) = ug(x) on S, (2.14)
with @ = a(x, t; n) defined on @ x R.
At first we start with a simple example.

Example 2.2. Let us consider the following problem:

ou 0
——-—alx,t
ot ax{( )

P2 5y

&J = f(x’ t) on @,

u
ox

w(x,t)=0 on S; USs,
u(x, 0) = ug(x) on Sy, (2.15)

where 1 < p < o. Suppose that the coefficient a(x, t) satisfies condition
(2.5).

After the substitution (2.1), we have for

u(g t) = u&g() t)
the following problem:

o o f_ owPPom) gt),u - —
E—a—é(a(i,t) 3 a—a]—wﬁa—a—f@” on @,
u(0,t)=u(,t)=0 for t € (0, T),

u(&, 0) = up(g) for & € (0, 1), (2.16)

where

al — a(ég(t)? t) r —
0= TESD e 0= e )

Moreover, the appropriate space for a weak solution of (2.14) will be the

Sobolev space W% P(Q) characterized by the norm

ou p P
. - 4
| lyt.0ip ) == UQ|u(x, ) P dxdt + IQ‘ - (x, t)‘ dxdt] ,
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and it can be shown (similarly as in [2]) that if u e W"%P(Q), then

7 e Wh%P(Q) and we have the equivalence
1% Iyring) = 1yt m gy

So, we have a nonlinear parabolic problem on the rectangle 6_2 The

problem (2.16) can be solved by Rothe’s method if we assume additionally,

C da 0% 0 .
that the derivatives —, —— an exist and are bounded on @ (for
ot o2 OxOt
details see [3], [4]). Hence, we obtain the weak solution 7 € W"-%? (@)

and we get finally the weak solution u € W% P(Q) of the initial problem

(2.15) by the inverse transformation:

u(x, t) = ﬂ(% t). .

Now we consider the more general problem (2.14). After substitution

(2.1), we have for u(€, t) the following parabolic problem in the rectangle
Q:

ow 0 (— ow)) g .om - —

. T 9 t; T~ - T N - = 9 t b

o (a(g % D o0 i TGN

u(0,t)=u(l,t)=0, te(0,1),

u(g, 0) =1up(€), &e<(0,1), (2.17)
where
G )= ——a .
e, £ ) = i of at) 6 ).

f(‘:’ t) = f(ég(t), t)'

This problem can be solved (in the weak sense) in W% P(@), if we make

the following assumptions.

Assumption 2.3. Let ¢ € (0, T') and denote Q, the segment (0, g(¢)).
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(A1) alx, t; n) satisfies the Carathéodory condition, i.e., a(- t; ) is
measurable in Q; for every n € R and a(x, ¢; -) is continuous in R for

a.e. x € (.

(A2) a(x, t; n) satisfies the growth condition

-1
lalx, t; )| < Clglx) +[n ")
for a.e. x € Q; and every 1 € R; here Cis a given positive constant and g

is a given function from L, (Q;), p' = N

(A3) al(x, t; ) satisfies the monotonicity condition, i.e.,

(a(x, t; m) - alx, t; ())(n-€) > 0
forae. x € Q; andforall n, L e R, n = C.

(A4) alx, t; n) satisfies the coercivity (ellipticity) condition

alx, t; m)n = C|n |
for ae. xe€Q, and for every me R with the constant C >0
independent of n and ¢.
(Ab) There exist the partial derivatives
2

oa 0“a o%a oa
—-— X, t7 , —5 X, t> , —— X, t7 , —\X, t7
PR povs (x, & m), —— (x, ;m) an( n)

and satisfy the growth condition (A2).
(A6) The function f satisfies the Lipschitz condition,

[ £ t)—f( 1) "Lz(Qt') <C@-t)forall ¢, ¢ (0, T), t >t

Assumption 2.3 guarantees, that if we apply to (2.17) Rothe’s method,
then we can obtain a uniquely determined solution u = u(x, ¢) using for
the corresponding elliptic problems the theory of monotone operators.

(For details, see [3], [4]; the assumptions are caused by the need to use
the theory of monotone operators).
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The solution of the previous problem (2.14) is taken with applying the

inverse transform

ux, t) = ﬁ($ tj.

3. Generalization to More Space Dimensions

3.1. The transformation method in more space dimensions

Let @ be a non-cylindrical domain in RrRY 1

Q={x1t):xeQ,te(0,T) 3.1)

where (0, T') is a finite interval, Q, is a domain in R with Lipschitzian

boundary 0Q; and for every ¢, s € (0, T'), ¢ < s, itis
D#QycQ cQ cQp,

where Qg =int (] @, and Q7 = [J €, is bounded domain. Let
te(0,T) t<(0,7)

Q@ =Qyx(0,T) be a cylindrical domain in RY*! and consider the

mapping
Q- Q,
which is defined as n(x, t) = (H(x, t), t) = (&, ¢), where
€ = H(x, t) = (H(x, t), Hy(x, t), ..., Hy(x, 1)), x € Q. (3.2)
Let us assume that the mapping H satisfies the following conditions:

(A1) There exist positive constants C;, Cy such that for any fixed
t € (0, T) the mapping H(, t): Q, — Qg satisfies the condition:

Ci|x—y|<|H(x,t)- H(y, t)| < Co|x — y|, forall x, y € Q.

(A2) If we denote by G(,t): Qy — Q, the inverse transform to
H(, t), for any fixed ¢ € (0, T), i.e.,
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G(" t) = (Gl(" t)’ GZ(" t)’ () GN(» t)) = H_l(" t)’

then the derivatives aa—hzl(x, t), aaczi (t,¢)i=1,.. N) exist and are
bounded in Q, @, respectively.
Let u be a function defined in @ and let us define the transform 7 as
u(g 1) = (Tu)(E t) = w(G(E, 1), ©). (3.3)
Then the inverse transform to 7 takes the form

ulx, t) = (T71%) (x, t) = w(H(x, t), t). (3.4

Lemma 3.1. Let u € WI’Z(Q) and let w be given by (3.3). Then there

exist positive constants Cs and C, such that
Csl| @ llyr2g) <l wlwrzq) < Cal @ lyr2g)y,
To prove this lemma we need the following assertion.

Lemma 3.2. Let Q, and Q; be two bounded open subsets of RY. Let
t €(0,T) and G(,t) be a mapping from Qu onto Q, satisfying the
following condition:

There exist ¢, d > 0 such that

dlg-n[<[G(E ) -G, 1) < & -] (3.5)
forall & n e Q.

Let p € [1, ©). Then the mapping T defined by (3.3) is a continuous

linear operator from W% P(Qq) into Wb P(Q,).

Proof. The proof is similar to the proof of Lemma 5.7.3 in [6] so we
omit the details.

Proof of Lemma 3.1. Due to Lemma 3.2, we have

CT Oy ) <N D) = CITC O,
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since G(., t) satisfies the condition (3.5) with the constants d = CL’
2
c= CL’ which immediately follows from the condition (A1). The constants
1

C;, C; are independent on ¢, due to the conditions (A1), (A2). From these

and from the definition of the norm of the space W"2(Q), i.e.,

ou 2
= (-t
at( )

dt
Lo ()

sy = [ 1 0B 4]
WH4(Q) 0 WH=(Qy) 0

we have the proof. [
4. Parabolic Variational Inequalities

4.1. Variational inequalities in non-cylindrical domains
For Q a domain in RY, we denote by K(Q) a closed convex subset of
the Sobolev space W(}’z(Q) and define
K; = K(%)
as subset of Wol’z(Qt).

Let us consider the parabolic variational inequality in Q:
ut) e K; : alu(t), v — u(?)), + (bE)u'(t), v - u@)),
> (f(t), v — ult)), for all v e K;, 4.1)

for a.e. t € (0, T), with the initial condition
u(0) = uy, (4.2)
where af-, ), is a bilinear form which is defined as
ault) v@), = Y j a; (x, )ou(x, H)div(x, t)dx,
il [jl<1™
and (-, -), is the scalar product in Ly(€;). The coefficients a; j of the

bilinear form, b and f are functions defined a.e. in Q.
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The transform 7 defined by (3.3) maps W"2(Q) into W>2(Q), due

to Lemma 3.1. Then (4.1) is transformed to the following variational

inequality
u(t) € Ky: a(w(), v—-ut)), + b@)@'@), v - u(t)),
> (f(t), v - ©(t)), forall v e Ky, 4.3

with the initial condition

u(0) =y = up(G(-, 0)). (4.4)

Here af(, -), is a bilinear form defined as

a(@(t), vt)y = (T 'a(t), T-'0()),

S b 02k 666 0,0 2 6 ote s @
o, 7 o T e, T T

where
b(g 1) = (Tb) (& D JG)E D], & 6)=(TNE )IIG)E 1)
and | J(G)(g, t)| is the Jacobian of the mapping G(, £).
If the bilinear form a(u, v), in (4.1) is bounded and uniformly elliptic,

i.e., if there exist constants Cy, C; > 0 such that
|a(u, v), | < G uw "WLZ(Qt)" v "Wl’z(Qt) for all u, v e Wh2(Q,);  (4.6)
alu, u), > Cy| u "3Vl>2(9t) forall u e V, = W01’2(Qt), 4.7
then the same is true for (4.5) if we, in addition to conditions (A1), (A2)

from Section 3, assume that

(A3) The function b is positive and satisfies the Lipschitz condition in

x, 1.e.,

there exists a constant C, such that for any fixed ¢ € (0, T')

blx,t)—b(y, t)| < Cylx —y]|, forall x, y € Q,;
4 ¢
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(A4) For any fixed t € (0, T'), the function
5(, ) 2E (G, 1), )
ot
belongs to Wh*(Qq) and the derivatives
aé{ @tf”%(agt)n}<0aelngm k=12 . N

According to (4.6), (A3), (A4), Lemma 3.2 and the Schwarz inequality,

we have

¢ Boundedness:

\@@(t), 70 | < |a(T7(), T (), |

ZI

< G| (T ") w20, 77'0() lw-2(,)

ble. 072 (66, 1), )2 ;k (& )5 1) |de

9@ 1, 0)
Ly(Q9)

<Gy ﬁ(t)||W1,2(QO)|| U(t)||W1,2(QO) for all @(t), v(t)e WH2(Qp);

e Ellipticity:

a(m(t), u(t))
Ay 1 (-, o OH o,
= a(T lu(t)’ T lu(t))t + kZ:;J-Q() b(‘?;’ t)a_tk(G(é’ t)v t)@(&w t)u(&, t)dE_v

oH,,

> Gl TG0 Zj [pte 0%k G 00| S e 0o

N
> TR0 5 2 oy 7 2|5 0Bk (GG 0, 0)|lwte, OFa
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> Cyl| @) | for all @(t) e Wy 2(Qp),

Wl 2( )

since the expression
“ZI Qp 05 { aHk (GG, 1), t)} [@(e, P de

1s nonnegative due to (A4).

Hence, we can solve the transformed parabolic variational inequality
(4.3), (4.4) by Rothe’s method, applying, e.g., the results of Bock and
Kacur in [1], Kac¢ur in [5], and finally we have the solution u (in the sense
of Definition 4.1, below) of the initial problem (4.1), (4.2) by the inverse
transform (3.4).

Now we give the definition of the weak solution of our problem. First

we denote
Kg=1e Wh2(@), o(t) € K a.e. in I},

Definition 4.1. A function u(¢) is called a weak solution of the
problem (4.1), (4.2) if the transformed function u(¢) defined by (3.3)

satisfies the following conditions:

() @ e K NAC(I, Ly(Q)),
(2) w(0) = ugp,
3)

T T _
[, @@, o) - wepe + [ @, 7). ofe) - Tegal

> j OT (F(0). v(t) ~ @(t))ydt for all v € K.

Thus, we have proved the following theorem.

Theorem 4.2. Under the assumptions (Al)-(A4) the problem (4.1),
(4.2) has exactly one weak solution.
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4.2. Some examples and remarks

In this subsection we illustrate all considerations from the previous
sections on some concrete cases. In Example 4.3, we extend the approach
used in [2] for N =1 and for a parabolic equation to the case of a
parabolic variational inequality. In Example 4.4 a similar approach is
used for the more dimensional cases. In Example 4.5, we consider again
the case N =1 for a more general domain @. In all examples, we suppose
for simplicity that the function b(x, ¢) in (4.1) depends only on ¢.

Example 4.3. Let @ be a domain in the (x, t)-plane, bounded by the

lines t =0, t=7T, x=0 and by the curve x = g(t), where g is in
C[0, T] and such that g(0) =1, g'(t) > 0. Let

Q=1{&1):0<e<1,0<t<T}.

Then we can define the mapping 7 in the form

n(x, t) = (ﬁ tj = (& 1),

&= H(x, 1) =

le.,

(t)

In this case the transform 7 takes the form

ﬁ(&v t) = (Tu) (i, t) = u(gg(tl t)’ (4.8)
since G(¢, t) = HY(&, t) = £g(¢).

If we consider the variational inequality (4.1) (in the case N =1)
with
6ugx, t) ov(x, t) dx,

- (4.9)

aluft) ), = [ alx. )

then after the transformation (4.8) the transformed bilinear form (4.5) of
the variational inequality (4.3) has the form

(), 50 = [, aen@ATEar g0 T ozt nd
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and

ae 1) = LEOD 7 o) peg) g0).
g(t)

If the bilinear form (4.9) is uniformly elliptic and bounded, then the same
is true for the transformed bilinear form @(w(¢), %(t)),, since the mapping

H and the function b satisfy the conditions (A1)-(A4).

The following example is generalization of the previous one.

Example 4.4. Let us consider the domain @ in RN+ defined as

ey [9G1) ba(xe) on(rn)) e
o {m0: (B 38 ) o e ). @i

where Qg is a bounded domain in RN starshaped at the origin and

o; € CER), ¢, >0, ¢! 20 and g; € C}[0, T], g >0, g;(0)=1. Let us
denote by Q, be the intersection of € with the hyperplane ¢t = s, so that

Q:={(x,t):te(0,T),x el (4.11)
and 0Q; will denote the boundary of the domain Q; in RrY.

Let @ = Qg x (0, T') and define the mapping © : @ — Q as:

e 1) = [913)  9a(xs) on(en) ) _
wo- (B )0

Then we have that

- H(x. t) = 01(x1)  alxz) on(xn)
5= Hx 1) (gm:)’ 50 en) j

It is easy to show that the mapping H satisfies the conditions (A1)-(A4).

The following example also generalizes Example 4.3.

Example 4.5. Let @ R? be a non-cylindrical domain defined by:

Q = {(x, 2), x e (~y(t), 8()). ¢ (0, 1)},
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where vy, g € CY[0, T'] are nondecreasing functions on [0, 7] and g(0) =
w(0) = 1.

Let @ = (-1, 1) x (0, T') and define the mapping 7 : @ - @ as:

TE(.’X?, t) = (H(x’ t)9 t) = (Eﬁ t),

where
=, x<[0, g0)),
e = Hix, 1) = {51)
W’ x e (—y(t), 0).

This mapping satisfies the condition (A1) with the constants

) 1 S S
G @@ 2T minfg0), vo)
g_f) - g_f) x', x" € [0, g(¢)),
|H(x', t) - H(x", t)| = ?{) - W x" € [0, g(t)) x" € (—y(?), 0),
Wt) - W x', x" e (—y(¢), 0).

It is easy to show that this mapping also satisfies the conditions (A2)-
(A4).

Remark 4.6. In the foregoing examples, only linear operators A have
been considered, but obviously, all considerations can be repeated for
nonlinear operators which lead to quasilinear forms as:

a(u, v), = Z J. ag(x, t; Spu(x))o%v(x)dx,

la <k ™7

where the coefficients a (x, ¢; &) satisfy the growth condition

| ag(x, £ 8)] < Cof gal@)+ D 57"

|Bl<k
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for a.e. x € Qp and every & € R™, with C, a given positive constant

and g, a given function from L, (Qr), p' = ﬁ Then we have to use
the corresponding Sobolev space W5 %P (®).
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