JP Jour. Geometry & Topology 1(1) (2001), 59-109

HOMOTOPY GROUPS OF THE HOMOGENEOUS
SPACES F,/Gy AND F,/Spin(9)

YOSHIHIRO HIRATO
The Graduate School of Natural Science and Technology,
Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

e-mail: hirato@math.okayama-u.ac.jp

HIDEYUKI KACHI
Department of Mathematical Sciences, Faculty of Science,
Shinshu University, Matsumoto 390-8621, Japan

e-mail: hkachi@ripms.shinshu-u.ac.jp

MAMORU MIMURA
Department of Mathematics, Faculty of Science, Okayama University,
3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

e-mail: mimura@math.okayama-u.ac.jp

Abstract

In this paper, we calculate 2-primary components of homotopy groups of

homogeneous spaces Fy /Gy and F,/Spin(9).
1. Introduction

Let Go and F, be the compact, connected, simply connected, simple,

exceptional Lie groups of rank 2 and 4, respectively. We consider the two

homogeneous spaces of F, : F;/Gy and F,/Spin(9) =1, where [I
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denotes the Cayley projective plane. The last author has determined
n;(Fy /Gy : 2) and m;(I1) for i <23 in [7] and the first author has
determined m;(F,; /Gy : 2) for i < 37 in his master’s thesis [3] under the
supervision of the second author, where we denote by =;(X : p) the
p-primary component of w;(X). In this paper, we calculate homotopy
groups T;(F;/Gq : 2) and m;(I] : 2) for i < 45 and i < 38, respectively,
by using the results in [2]. Summing up these results, we obtain the

following tables.

Theorem 1. We have the following results on m;(Fy/Gqy :2) for

i < 45.
i i<14 | 15 | 16 | 17 | 18 | 19,20 | 21 | 22
n;(Fy Gy : 2) 0 w | 2|28 0 2 | 0
23 24 | 25 | 26 | 27,28 | 29 30 31
o0 + 2 @7 | 2 | 64 0 2P | 128+2 | (2
32 33 34 35 | 36 37 38
@° | B2 +2 | 64+@7F | 8| @7 |8+4+(@27° | 256+8+(2)*
39 40 41 42 43 44 45
@) 2P | 8+4+2 | 64+2 | 8+2 @? | 8+ ()"

Theorem 2. We have the following results on m;(I1 : 2) for i < 38.

i i<7 8 9 10 11 12,13 14 15

m@:2) | 0 o0 2 2 8 0 2 8
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16 17 18 19 20 21 22 23
@° | @*|8+2 ]| 8+2 | o 2 4 o + 8 + (2)°
24 25 26 27 28 29 30
@? | 2" | 64+2 8+2 8 @)* 128 + (2)°

31 32 33 34 35 36
B2 +@° | @° |8+4+@2)° | 64+ (2)F° (8 +2 @)*

37 38
16 + 4 + (2)° 256 + 8 + (2)°

Here an integer ‘n’ indicates a cyclic group Z, of order n, the symbol
‘o0’ an infinite cyclic group Z, the symbol ‘+’ the direct sum of the group
and ‘(n)"” indicates the direct sum of k-copies of Z,. These results are

stated in Theorems 4.4 and 5.3 respectively, in which we also give their

generators.

The calculation will be done by making use of the homotopy exact

sequences associated with the 2-local fibration
s - F, /Gy, —» S§%3
and the fibration
ST 5 Qll —» 8%
given by Davis-Mahowald [2].

For the case F, /Gy, from the long exact sequence

a3 o\ s oy o .23
o= (877 0 2) 5 m(SY 2) > m(Fy /Gy 2) > (ST 2) >
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we obtain a short exact sequence
0 — CokerA;,; — m;(Fy/Gy : 2) > Ker A; — 0.

Then we determine the group extension by using a formula of Toda
brackets in homotopy groups of a fiber space which is proved by Mimura-
Toda (Theorem 2.1 of [9]). By virtue of the formula, we can determine the

group extension by investigating the corresponding Toda bracket.

For the case QII, we consider the long exact sequence

23 Air1 7 b P 23 Ai
> (RS 1 2) 5 (S 2)om(QIl: 2) > W (QSTY  2) >,
From this long exact sequence, we obtain a short exact sequence

0 — CokerA;;; — m;(QI1:2) > KerA; — 0.

Then we calculate m;(Q[1:2) by an argument similar to the case

In Section 2, we summarize for later use the results on the
2-primary components of the homotopy groups of S7, S and S%3. We

show in the same section some relations among the elements which are

necessary to calculate the boundary homomorphisms A; in the above

sequence. In Section 3, we calculate some Toda brackets which are used
to determine the group extensions. In Sections 4 and 5, we determine

2-components of homotopy groups of F, /Gy and [I, respectively.

The notations and the terminologies in [5], [6], [8], [9], [10], [11], [13],
[15] will be freely used in the present paper, and we also omit for

simplicity the notation ‘0’ indicating composition.

The results in the present paper shall be used to deduce m;(F;) from

7;(G9) and 7; (Spin(9)) in the forthcoming paper.
2. Homotopy Groups of Spheres

Let nZ +; denote the 2-primary component of the homotopy group
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n,4;(S™). Toda [15], Mimura-Toda [8], Mimura [6], Mimura-Mori-Oda
[10], and Oda [13] have determined “Zﬂ' for : £ 30. We recall here some

necessary results on it from these papers. We denote by G; the 2-primary

component of the i-th stable homotopy groups of spheres.

Table 2.1.
i 21 22 23
n 2o ®ZLy | g ®Zy ®ZLy ®ZLy | Zo®ZLy ®Zy ®Zy,

12

enerator | o6'cyy, ¥ " o'V ' & ’ EC B
g 14> K7 P, OVig, CE14, &7 O U4, » L7616, N7E8

15
Tfi Z2 Z16 Z2 @ Z2
generator Vir, O15 Vis5, €15
2 0 0 Z
generator l23
24 25 26 27 28
Zo ®Zy ®Zy ® Ly Zs ®Zy | Zs®Zy | Zg | 2507,
6'M14M15, V7K10> By, N7HgO17 | §7018, M7Hg &7, 07 K7 [N7Kg,0'K4
7o ®7Zy ®Z, 7, Z 0 0
3
V15, N15€165 M15 Ni5k16 Cis
Zo Z, Zg 0 0
9
N23 N23 Vas
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29

30

Zy ®Zy ®Zy ® Zy

Zy ®Zg ®Zy ® Ly ® Ly ® Zy

o'P14, V7K15, €7K15, V70710

V7K105 P's §7, K7Ve7 — V710, G'O14M91, 0014

Z, ®Z Zgy ® Zy
ois, K P155 €15
Z, Zyg
V3 023
31 32
Zog ®Zy ®Zy ®Zy ®Zy ®Zy ® Ly (Z, ©ZLg)®Zy Ly ® Ly

— = — — 9 — —
87, 7024, V7S10K17, G, OF, iy, G'@14M30 | 10, 70"}, 61415, Mg 7, N7H8025

Zo ®Zy ® Zy

X
n , 015, 01522

£ * _
G15M22H23, M N31s €155 V15K18, 15

7, ® Zy Zo ®Zy ® Zy
Vo3, €93 V33, E23M31, Mag
33 34
Zs ©Zy ®Zy ®Zy ® Ly ® Zy @ Zo Zs ® Zg @ Zo
7696, O'014V30, K7V37, 57026, d7V30, ViK13, N7Mas oi14, C3,7, V7015
o ®Zg @ Zo Zs ®Zy ® Zy
E15. E*L, nisMe Ci5, W15V31, Gis
Z, Zg
N23H24 Co3
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35

36

Zo ®Zy ®Zy ® Ly

Ty ®Zy ®Zy ®Zy ® Ly

0"'vsg, 6M14K15, V715, £7K]5

2 2 —
8", o'e14K99, G'®14V50, O7V50, N7EGKIG

Zg Zo ®Zy ®Zy
K15 MsK16, Oi5 E2Avas
0 0
37 38

Zy ®Zg ®Zy ® Ly @ Ly

Ty ®Zy ®Zy ®Zy ® Ly

o'P14, V7010%17, 'd14, G' W14, d7030

a3y, 6'Gly, 6'H14031, V7V15K18, 97031

* 1 2 —
O , ®15V31, €15K23, V15018

’o—r

- - —%
P15s V15K18s P15, W15, € »V

2 _
G93, Kog P23, €23
39 40

2 —
E”¢"c39,6'11314, 0 M14015H225 137032

Zo®Zy ®Zy ®Zy ®Zy ® Zy

Zs ®Zy ®Zy ® Zy

- - ~ * k1
815, O15H22, O15, &5, EC , 1

£15033, O15M22H23 H315, Diks1

Zy ® Zy

Zoy ®Zy ®Zy ® Ly

W93, Ga3Mlsg

— 3
G23U30M39, V23Kag, Hag, €93
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41 42 43 44
Zy ® Zy ® Z Zs Z, Zy ®Z,
31V 2= _ 4
E°t 7, viskar, Miskaie G315 €15K23 615039, Ly
7o ®Z, 7o ® 7, Z 7, ®Z,
x — = = — _ 3
Vo3, Nagloy Co3, Gag Kag Ko3MN43; 023
45 46
A\ II 1 ®1 *
0", 015K31, Y15038 p315: Dis Dl( Jog9, K, 05, Ki5
G393, £23K31, V23026 P23, VagKag, P23
Table 2.2.

1) o,Ny47 =V, + €, for n 210 by Lemma 6.4 of [15].

2) V,Mp+s = vi for n > 6 by Lemma 6.3 of [15].

\Y

0 for n > 12 by (7.20) of [15].

(3) CnVn+7

(4) 6,€,47 =0 for n 211 by Lemma 10.7 of [15].

\Y

(5) 6,V,,47 =0 for n =11 by (10.18) of [15].

6) 0,,8,,47 =0 for n 213 by (12.23) of [15].
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(7) 0,,%,47 = 0 for n =2 15 by Proposition 7.2 of [6].
(8) 6,¢,,7 =0 for n 210 by p. 317 of [6].
Table 2.3.

(1) c,0,.7 = ¢, mod{4v,x, s} for n>11 by Part I, Proposition
3.4.(4) of [13].

0 for n =210 by (2.3) of [10].

(2) G247

0 for n > 13 by Part I, Proposition 3.1(9) of [13].

(3) 6,8n+7
(4) 6,,6,47 = 0 for n = 14 by Part I, Proposition 6.4(10) of [13].

(5) 60 = v,&,.5 for n > 9 by Part II, Proposition 2.1(2) of [13].

(6) 0,,0,,47 = 0 for n > 11 by Part III, Proposition 2.5(6) of [13].
(7) 0,¥,47 = 0 for n > 13 by Part III, Proposition 2.5(6) of [13].
Table 2.4.

(1) 0'0124 = 0 by Part I, Proposition 3.1(7) of [13].

(2) 0’014p91 = 0 by Part III, Proposition 2.4(4) of [13].

We prepare some lemmas which will be needed later.

Lemma 2.5. We have the following relations:
(1) O15P22 = 80*’.
(2) o15829 = 815 mod {5039}

(3) o15vas = 2815033 mod{2075vay .

(4) 615Kg99 = 0.
(5) o1y = 0.

(6) 015p2 = 8x0" mod{160"} for some odd integer x.
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Proof. (1) By Part II, Proposition 2.1(4) of [13], we have
2015p22 = 0, 4p15030 = 0 and Oy5p92 = 2p15030-
Now, from Lemma 6.2(2) of [5], we have
2p15030 = 4Ec”" mod{2015p29, 4P15030}

where {2075p99, 4p15030} = 0 by the above observation. Also, from
Lemma 6.2(3) of [5], we have

4EG*” = 8(5*! mod{4615p22, 4p15(530},

where {4015p99, 4p15630} = 0 by the above observation. Thus we obtain

the relation y5p99 = 8" .
(2) By Lemma 12.15(1) of [15], we have
G15822 = O15022M38-
Here, by Table 2.3(1), we have

G15099M38 = $15M38 mod{4vy5K1gn3s ],

where {4V15E18n38}: 0 by the fact 27]38 = 0. That is G15W99M38 =
015M3s. By Part I, Proposition 3.5(9) of [13], we have

d15M38 = 815 mod{i15032, V15MisKig}-
Since visn18 = 0, by (5.9) of [15], the above relation reduces to
¢d15n38 = 815 mod{H;503s}.
Thus we obtain the relation 65859 = G15m99M3g = 815 Mod {5039}
(3) By Part II, Proposition 2.1(6) of [13], we have

* 4 *
o15Vee = E°E'o33 mod{2075vos |-



HOMOTOPY GROUPS OF THE HOMOGENEOUS SPACES ... 69

By Lemma 12.19 of [15], we have

E'E035 = 2815033
Thus we obtain the relation 6;5vgy = 2815633 mod{26;5Vas }.

(4) By Proposition 3.1 of [15], we have
015K22 = K15035.
By Part III, Proposition 2.2(5) of [13], we have
K15035 = 0mod{2E86' Ky, Vi5093) and 2K 5045 = O.
So, by Lemma 5.14 of [15], we have
2E86' K9y = 4015K99 = 4K 5035 = 0.

Now by Part II, Proposition 2.2(7) of [13], we have V5593 = Gi5V39 and
V15018 = 0. By Proposition 3.1 of [15], we have Gjzv3g9 = V15013-

Therefore, we have
V15693 = 0.
Thus we obtain the relation o;5K99 = 0.
(5) By Table 2.3(5) and Table 2.2(3), we have
Gy = O12Vigas = 0.
(6) By Part III, Proposition 2.5(2) of [13], we have oy5p99 =

2xp%s mod{o15099, O15Wa2 ), Where x is an odd integer. So, by (6) and (7)
of Table 2.3, we have

G15Pa2 = 2xPis.
Moreover, by Part III, (8.22) of [13], we have

2xp?s = 8x0" mod{160" }.

Thus we obtain the relation o;5pgg = 8x0V mod{169V}.
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Lemma 2.6. We have the following relations:
(1) o’o14m3; = N7Es + EC.

(2) 0'c14Ma1tos = L7

0.

(3) 0'14K9;

(4) o'c1409; = o'¢4 mod{dvyoygiy 7).

Proof. (1) By Table 2.2(1), we have

6'01411%1 = 0'Vi4Nag + O'814Mg2.
Here, we have
6'Vi4Ma2 = N7Es
by Proposition 2.1(2) of [14] and also
O'e1yNgg = OMyye15 = ET

by Proposition 3.1 of [15] and (12.4) of [15]. Thus we obtain the relation
o'o14m3; = MrEs + EY.

(2) By Table 2.2(1), we have

’ I, ’
G 014M21H22 = O Vig4Hlog + G &14H92.

By Theorem 14.1(iv) of [15], we have vu = 0. Since E : n}ofi — Gyq is

an isomorphism, we have
Viglgg = 0.
By (5.10) of [10], we have
o'e4log = Tf-
Thus we obtain the relation 6’cy4Ng1lee = Ch.

(3) By Proposition 7.2 of [6], we have

’
Ec O15K99 = 0.
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Since E : ngg - n§7 i1s a monomorphism, we obtain the relation

0'014K97 = 0.
(4) By Part I, Proposition 3.4(4) of [13], we have
6’01409 = 0'¢14 mod{do'vyyKy7 ).
By (7.19) of [15] and by the relation 8v;079k17 = 0, we have
46'v14K17 = 4v7010Kq 7.

Thus we obtain the relation ¢'c;409; = 6’914 mod{4v;619K;7}-

3. Determination of Toda Brackets

In this section, we calculate some Toda brackets which will be used
later to determine the group extension. Throughout this section, we work
in the 2-primary components of the homotopy groups of spheres. We use
freely the results on the order of an element which are given by [6], [10],
[13] and [15].

Lemma 3.1. We have the following relations:

(1) {013, Vag, 8lag} = xC;3 for some odd integer x.
(2) {015, 4022, 4199} 3 py5.

(3) {011, €15, 21261 3 0.

(4) {014, Co1, Buga} = xlyy + yor4vag

{015, Co9, 833} = —x{y5 for some odd integer x and even integer y.

(5) {015, Koz, 2135} 3 V1508 + XWy5V3; for some integer x.

(6) {014, 521, 2l36} 3 0.

Proof. (1) We can define a Toda bracket {oy3, Voq, 8lg3} by Table
2.2(3) and the fact 8vgy = 0. By (5.5) of [15] and Lemma 9.1 of [15], we

have a relation on the stable Toda bracket
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(o, v, 81) (o, 4v, 21) = (o, n?, 21) = { +2Gq;.

Since G4 =0 and Gy; = Zg, the indeterminacy of the stable Toda

bracket (o, v, 8t) is trivial. So we may put
(o, v, 81) = x{

for some odd integer x. Since E : n%‘i — Gq1 is an isomorphism, we

have
{013, Va0, 8lag} = xCy3.

(2) By Lemma 10.9 of [15], we have
(o, 40, 41) D (0, 20, 81) 3 p.
Since E” : 15} — G5 is an isomorphism, we have

{015, 4099, 4199} 3 p15.

(8) We can define a Toda bracket {611, €3, 2t9g} by Table 2.2(4) and
the fact that 2e;3 = 0. By (2) and (5) of Table 2.2, we have

3 —
611Vig = O11VigNae = 0.
By Table 2.2(4), we have
611€18N26 = 0.

Therefore the indeterminacy of {1, €15, 2l9g} is given by
18 11 3
1177 + 2My7 = {011Vg, O11€18N26, O11M18} = {O11M18)-

Since mby = {07118} = Zg, we have {077, €15, 2196} 3 0.

(4) We can define a Toda bracket {o14, {91, 8132}, by Table 2.2(6) and
the fact that 85 = 0. By Part I, Proposition 3.3(2) of [13], we have

(0, ¢, 81) c (o, 4¢, 21) = T + 2Gyg.
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Since Gy =0 and Gig = Zg @ Z5, the indeterminacy of the stable Toda

bracket (o, {, 8t) is trivial. Thus we may put
(o, C, 8) = xC

for some odd integer x. We compare mhi = {C14, ®14vs30, O14) = Zg ® Z,
@ Zz with G19 = {z, E} = ZS @ Z2. By the fact that P(V35) = Wy7V33 (p
170 of [15]), we have

01gV34 =0,

where P : ngg - n;lgg is the boundary homomorphism of the EHP-exact

sequence. So we may put
{614, Co1, Stgaly 3 —xlyy + ywi4V3o

for some integer y. We consider the generalized Hopf homomorphism

H : n}é — n§§ We have
H({o14, Ca1, 8u3a}y) < {H(o14), C21, Biza}y
= {0, a1, Bz}
= 0 mod 8137 = 0.
On the other hand, we have
H(xGy4 + yor4vs) = yH(wr4) vao
= yv%7 by Lemma 12.15 of [15].

Since vZ; is of order two, we see that y is an even integer. Since ngé =0,

the indeterminacy of {014, (o1, 8lgg} is 014m24 + 8mi% = 0. So we have

{014, Co1, 8taa} = {014, Ca1, Btgaly = —xlyg + yo014vs0.
Moreover, we have

{615, (a9, B33} D —E{o14, {21, Bt3a} = x{15 — yo15v3:.
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Since w;5vg; is of order two, we have

{o15, Ca2, i3z} > xy5.

Since n%i =0 and néi =723 ®Zy ®Zy, the indeterminacy of

{615, (o9, 833} is trivial. Thus we obtain the second formula.

(5) We can define a Toda bracket {075, Kgg, 2136}, by Table 2.2(7)
and the fact that 2x9; = 0. Since E : ngé - n%% is an isomorphism, we
have 015n§% = 015E1t§€1;. So we have

{o15, a2, 2136} = {015, Koz, 2136}y -
By Theorem 2.1(viii) of [11], we have

(o, k, 21) = VG.

We compare T[%% = {G*,, (,015V§1, €15K23; V15618} = Z16 ® ZZ @ Z2 @ Z2
with Goy = {ex, vo} = Zy @ Zy. By Lemma 6.2(4) of [5], we have
E%" = 2653 mod 023E8n%% + E7n§§038.
By Lemma 8.3 of [6], we have
2055 = 0.
By Part II, Proposition 2.1(4) of [13], we have o©93p39 = p930s3gs = 0. By
Proposition 3.1 of [15] and Table 2.2(8), we have €93035 = 093€39 = 0. So
we have
8,22 7.16 = =
093 B n37 + E'm31035 = {023030, 023€30, P23038, E23038} = 0.
Therefore, we have
E3* =o.
By the argument in the proof of Lemma 3.1(4), we have w;gvgy = 0. So

we have

2 _
W18V34 = 0.
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Therefore, we have
{015, K29, 2136}, 3 V15018 + X@5V3] + yG"

for some integers x and y. We consider the generalized Hopf

homomorphism H : n%‘? - n%%’ for which we have
H({o15, k29, 2136},) = {H(o15), K22, 2136}
= {0, kg9, 2136 1
= 0 mod 21‘5%3 = 0.
On the other hand, we have
H(vy5515 + xoy5v3; + y5™') = yH(c™")
= y(Vog + €99) by Lemma 6.2(3) of [5].

Since Vgg + €99 is of order two, we see that y is an even integer. By
Lemma 2.5(1) and Table 2.2(8), the indeterminacy of {05, Ka3, 2l3g} is
given by

22 15 - *r 1
O15M37 + 2M37 = {O15P22, O15822, 20 | = {20 }.
Thus we have {015, K99, 2l36} E) V15618 + .X,‘(D15V§1.

(6) We can define a Toda bracket {074, €51, 2135} by Table 2.2(8) and
the fact that 2€5; = 0. We have

{014, a1, 236} = {014, K91M35, 2136} by (10.23) of [15]

> {014K21, M35, 2136}

= {2EAv39, N35, 2136} by Proposition 7.2 of [6]

D 2EMvsg, N5, 2136}

Since {V32, N35, 2136} C TC%% = O, we have {014, 521, 2]’36} 5 0.
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Lemma 3.2. We have the following relations:

(1) {015, 2p99, 16137} 3> xP15 + 4avizKig + byi5 + 015 for some odd
integer x and integers a, b, c.

(2) {o15, Oa2Hzg, 238} 3 0.

(3) {015, 4v32, 20} > Vis5Ka1.

4) {015, Gog, 81} = %315 for some odd integer x.

(5) {o15, K2z, Bi4a} = 0.

(6) {o15, 032, 2143} > 0,

Proof. (1) By Lemma 2.5(1), we have 2c;5p99 = 166" = 0. Since
32p9; = 0, we can define {075, 2099, 16137};. By Part III, Proposition
2.3(6) of [13], we have

(o, 2p, 161) < (o, 4p, 81) > xp + 4yvk

for some odd integer x and integer y. By (2.3) of [10], we have qu = 0.
By Part I, Proposition 3.4(4) of [13], we have oo = ¢ mod{4vk}. So we

have oGjg = {co, o2u} = {§ + 42vk} where z =0 or 1. Therefore, the
indeterminacy of (o, 2p, 161) is {¢ + 4zvk} and the indeterminacy of

(o, 4p, 81) is {p + 42zvK, 8p}. So, for some odd integer x', we have
(o, 2p, 161) > x'p + 4yvk.
We compare w33 = {P15, VisKis, d15: V15, & » V' } = Zig ® Zg ® Zy @ Zy
® Zy ®Zy with Gyg = {p, VK, ¢} = Z1g ® Zg ® Zy. By Part I, Proposition
2.7(2) of [13], we have
v = 0 mod{4vx, ¢}.

By (3.4) of [10], we have
E%g = E*v" = o.
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So, for some integers a, b, ¢, d, e, we may put
— — — p—y
{015, 2p9g, 16137}, 3 x'py5 + 4avi5K g + b5 + cyys + dE +ev .

We consider the generalized Hopf homomorphism H : né‘g - ngg. We

have
H({o15, 2092, 16137}, ) € {H(015), 2p2s, 16137}
= {0, 2pg99, 16137}
= 0 mod 16n33 = 0.
On the other hand, by (3.4) of [10], we have

—r

H(X'Bl5 + 4av15E18 + b¢15 + CyYq15 t dg*’ + eV*' = dH(E*,) + eH(v

3
= dnggezg + evig.

Since Mgge3y and v3g are of order two, we see that d and e are even

integers. This leads to the required result.

(2) We can define a Toda bracket {ci5, Gaglag, 2133} by Table 2.3(2)
and the fact that 2ugq = 0. We have

{015, O2aMag, 2138} = {015, PagN37, 2138} by Proposition 12.20 of [15]
> {o15P22, N37, 2138}

= {86", n37, 2tag } by Lemma 2.5(1)

> 40" {2137, n37, 238}

Since n3¢ = {n3;} = Zy, we have 46"'{2137, N7, 2135} = 0. Thus we have

{15, O9akag, 2138} 3 0.



78 Y. HIRATO, H. KACHI and M. MIMURA

(3) We can define a Toda bracket {cy9, 4vig, 2137}; by Part I,

Proposition 5.1(3) of [13] and the fact 8vijg = 0. We consider the

generalized Hopf homomorphism H : né% - n%g, where

12 IV oIV — 9
mgg = {t ', EU" - 80", Ajkgy, ECikgy, 619019, Vi2K1g, NiaM313)

2Z26s @@Ly DLy ®ZLy DLy ®Zy DLy
and
38 = {23, Ta3} = Zap ® Zs.
We have
H({o19, 4vig, 2137};) < {H(o12), 4v19, 237}
= {0, 4vig, 2137}y
= 0mod 2135 = {2pg3).
By Part I, Proposition 4.2(1) of [13], we have
H(t") = pas mod{2ps}.
By Part I, Proposition 6.2(5) of [13], we have
H(Ajxgy) = &3
Therefore, for some integers x, vy, z, a, b, ¢, we have
(612, 4vig, 2137} > 22t + y(E" - &Y)
+ 2ECiKgy + 019519 + bViskig + CMyaliz 13-

By Table 2.3(4), we have

(515622 = 0.
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From the fact that SE3t!Y = 0, we have

E*v - 8E3Y = B4,
By Part I, (8.20) of [13] and the fact that 615599 = 0, we have

E*t" = 2d B3V

for some integer d. From the fact that n‘%‘? = 0, we have

E401K27 € n§571<27 =0.
Therefore, for some integer x', we have

'E3TIV

* 2 —
{015, 4vag, 2140} 3 2x +bvisKay + Nisk3 16

By (3) and (4) of Table 2.3, we have o5n22 + 2} = {01502, G15099,
2BV} = {2E%t"V} which is the indeterminacy of the Toda bracket

{015, 4V59, 2140}. So we may put
{015, 4v5a, 210} > bVf5Ra1 + enishz 6.
By Theorem 1 of [4], we have
(o, 4v", 21) = vk,
Since Gog = {VvZK, Nugs} = Zg @ Zy, we have b =1 and ¢ = 0. Thus we
have {65, 4vss, 2140} > VisKay.
(4) We apply the formula of Proposition 1.5 of [15]
0 e o B, v, 8, &} + {o, B, v, 8}, &} + {o, B, {y, B, &}

to the case

(o, B, 7, 8, €) = (015, Cag, i3, 2033, Siyp).
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Then we have the formula
0 € {{o15, Caa, 833}, 2034, 841} + {015, {C2a, 833, 2033}, 8141}
+ {015, Ca2, {8133, 2033, Styp}}-

Here we calculate each Toda bracket above. By Lemma 3.1(4), we have

{{o15, Ca2, Bizz}, 2034, 8i41} = x{Cy5, 2034, 8y}

for some odd integer x. Then by the definition of (35 (see Part II,
Proposition 3.1(2) of [13]), we have

{Ci5, 2034, 8ty1} < {C15, 8034, 2141} O {15, 8134, 2034} 3 L3715

By Part II, Proposition 2.2(4) of [13], we have 515V34 = 0. By Proposition
3.1 of [15] and Part II, Proposition 2.2(5) of [13], we have
215834 = 815623 = 0. So the indeterminacy of {515, 2634, 8],41} 18 given
by

Cismis + 8mip = {Ci5Vaas Ciseaa) = O.
Since the indeterminacy of {Cy5, 8634, 2147} is given by
Cismis + 2mhy = {26315},
we have
{Ci5, 2034, Bua1} = xC335
for some odd integer x'. Therefore, for some odd integer x”, we have
{{o15, Caz, Bizs}, 2034, Buy1} = x"C3,15.

Next, we consider {o;5, {{99, St33, 2633}, 8t41}. By the definition of
(see p. 137 of [15]), we have

{Gog. Bz, 2033} > ~Lag.
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By Part II, Proposition 2.2(3) of [13], we have (99V33 = {99e33 = 0. Since
132 = 0, the indeterminacy of {{g9, 8133, 2633} is given by

Goomi} + 1332054 = {GooVas, Gantas) = 0.
So we have
{C22, 8ugg, 2033} = ~Too.
Therefore, we have
{015, {Coz, 8igs, 2033}, Bua1} = ~{o15, Ca2, Buar}-
Finally, we consider {c;5, a9, {8133, 2033, 8t49}}. We have
{833, 2033, B0} < {4133, 16033, 2140} = {4133, 0, 2140} = Omod 215 =
So we have
{15, Goz, {833, 2033, Buo}} = {015, Gag, 0} = O mod 515733,
By Lemma 2.5(4), we have 65135 = {015K99 } = 0. Therefore, we have
{015, Caz, {8t33, 2033, By}t = 0.

Substituting these results into the first formula, we have

x"C315 — 1615, Cog, Stag} + 03 0.

Since the indeterminacy of {cys, Cag, 8141} is given by oy5m35 + 815

= 0, we have

{015, Cags 841} = x"C315.

(5) We can define a Toda bracket {o;5, K99, 8t49} by Lemma 2.5(4)
and the fact that 8«99 = 0. We have
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{o15, Koz, 8z} < {015, 4K99, 2149}
= {015, VioKag, 2142} by Lemma 15.4 of [8]
2
> {015, Va2, 0}
3 0.
: 22 15 _ - 4 L
We consider o535 + 2143 = {015P(145), O15N29K23, 015 which is the
indeterminacy of {oy5, 4K99, 2149}. By Lemma 2.5(5), we have
(5%5 = 0.
So, by Part I, Proposition 2.8 of [13] and (10.10) of [15], we have
2
o15P(145) = +P(131) 039 = #2075 = 0,

where P denotes the boundary homomorphism of the EHP-exact
sequence. By Proposition 3.1 of [15] and Lemma 2.5(4), we have

O15M22K93 = O15K99Mag = 0.

So we have 01575% +2n}£’3 =0. Since the indeterminacy of

{o15, 4K99, 2149} 1s trivial, we have
{015, Kag, 8lga} = {015, 4Kag, 2149} = 0.

(6) We can define a Toda bracket {o14, 651, 2149} by Lemma 2.5(5)

and the fact that 20%1 = 0. By Table 2.2(4), we have 074€91K99 = 0. By

Table 2.2(3), we have 0©74V9;094 = 0. Hence the indeterminacy of

3 . .
{014, 051, 2143} is given by
21 14 * — *
O14M43 + 2My3 = {014021, 014€91K29, G14V21024, 2614591 |
_ *
= {014021}‘

Since mis = {61465} = Zs, we have {o14, 6531, 2149} 3 0. Thus we have

3
{015, 059, 243} 3 0.
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Lemma 3.3. We have the following relations:

(1) {o'o14, V31, 2ta7} = 0.

(2) {0'cy4, G971, 16198} = —G'pyy + 4x6'p14 for some integer x.
(3) {o'o14, Va1, 2199} > 0.

(4) {o'cy4, K91, 2135} 3 (|)7v§0 + xc'co14v§0 for some integer x.
(3) {c'o14, 031, 2135} > 3"

(6) {0'c14, P21, 32136} > X0 Prg + 4av7019Ky7 + bGPy + co'yyy for

some odd integer x and integers a, b, c.

Proof. (1) We can define a Toda bracket {4, v3;, 2197} by Table
2.2(3) and the fact that 2v3; = 0. The indeterminacy of {o14, V31, 297}
is oy4mas + 2mh4 = {05, ). Since mhy = {034, K14} = Zg @ Zy, we may put

2
xkiy € {014, Va1, 297}
for some integer x. We have

2
XK14Mog € {G14, V21, 2197) Nag
2
c {014, V31, 0}
= O mod (51475%25.

By (4) and (5) of Table 2.2, we have 614758 = {614€21, 614V21} = 0. So we
have xKkyyngg = 0. On the other hand, by (10.23) of [15] we have

K14Meg = E4. Since Ej4 is a generator of 75y, we have x = 0. Hence we

have {c14, V31, 2197} > 0. So we have

(6’014, V31, 2197} D {14, V31, 297} 3 0.
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By Table 2.4(1), the indeterminacy of {c'cyy4, V31, 2tg7) is o'cyumag +

2nls = {c'c%,} = 0. Thus we have {c'cy4, V31, 2197} = 0.

(2) We can define a Toda bracket {0'cy4, G971, 16198} by Table 2.4(1)
and the fact that 1609; = 0. By (4) and (5) of Table 2.2, we have

0014897 = 0'014Ve; = 0. Therefore, we have
o145y + 16m3g = {0'01489;, 0014 Ve ) = O,
which is the indeterminacy of {c'cy4, 091, 1619g3}. Hence we have
~E{c'c14, 691, 16198} € {Ec'cy5, Gg9, 16199}
c {Ec'cy5, 4099, 4199}
> Ec'{c5, 4099, 4199}

> Ec'pys by Lemma 3.1(2).

By (4) and (5) of Table 2.2, we have Ec'ci5n33 = {Ec'ci5699, Ec'c15Ve0 )

= 0. Therefore, we have
L 29 8 ,
Ec'cy5m3) + 4ngy = {4Ec'py5, 4068p15),

which is the indeterminacy of {Ec'c;5, 4599, 4199}. Since 46gp;5 is not in

the image of the suspension homomorphism, we have

~E{c'c14, 091, 16198} = Ec'py5 + 4xEc'p5
for some integer x. Since E : ngg - n§0 is a monomorphism, we have

{0'014, 021, 16198} = —0'p14 — 4x0'pyy.
(3) We can define a Toda bracket {14, Va1, 2199}; by Table 2.2(5)

and the fact 2vy; = 0. By Table 2.2(3), we have 014\/%1 = 0. By Table
2.2(4), we have G14€91N99 = 0. So the indeterminacy of {o14, Va1, 2t99};

is given by
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o14En3g + 2750 = {01431, O14821M29, O1abia1, 2014}
= {o14M21, 20014}
Since TSy = {oyy, G14ler} = Zg ® Zy, we may put
{014, Va1, 2199} 3 xwyy

for some integer x. We consider the generalized Hopf homomorphism

H : i} — n3]. We have
H({o14, V21, 2199}y ) € {H(014), Va1, 2120}
=10, Va1, 2199}
= 0mod 213] = {2vg;}.
On the other hand, by Lemma 12.15 of [15], we have
H(xwpy) = 2va7.

Hence, we see that x is an even integer. Since the indeterminacy of

{014, Vzl, 2l29}1 1s {614M21, 20)14}, we have {014, V21, 2129}1 53 0. Thus

we have
{0014, Va1, 2199} D 6014, Va1, 2199} 3 0.
(4) By Lemma 3.1(5), we have
{Ec’c15, Kag, 2136} D Ec'{o15, ka9, 236}
5 Eo'vi56;g + xEc’0;5v3;

for some integer x. By Proposition 3.1 of [15] and Part II, Proposition
2.1(8) of [13], we have

’ - = 2
Ec'vi5018 = Ec'G15vas = ¢gv3y-
Therefore, we have

’ 2 4 2
{Ec’c15, Kag, 236} 3 0gv3 + xEc’wy5v3;.
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We can define a Toda bracket {0’04, K21, 2135} by Lemma 2.6(3) and the

fact that 2ky; = 0. For an element a of {c'cy4, K91, 2135}, We have
’ 2 / 2
- E(O() € {EG 015, K99, 2136} 3 ¢8V31 + xEo ®15V31-

By Table 2.4(2), we have 6'014p9; = 0 and Eoc’ci5p99 = 0. By Table

2.2(8), we have 0'014€9; = 0 and Ec'G5€99 = 0. Therefore, we have
Ec'cysm32 + 2157 = {Eo'cy5p9s, Eo'c5899, 2050°, 2E5"}
= {2640", 2E58"},

which is the indeterminacy of {Ec'cys, K99, 2135}. Since 2046" is not in

the image of the suspension homomorphism, we have
— E(0) = ¢gv3; + xEc'o5v3, + 2yES”
= 0gVa1 15V31 Y
for some integer y. Since E : n%G - Tt§7 is a monomorphism, we have
_ 2 ’ 2 2 5!!
o = —h7v3p — X'®14V3 — 258"
By the above argument, we have
! 21 2 7 _{ ' ! = 28” _ 26”
o'o14n36 + 2n36 = {0'014P21, 001482, 28"} = {28},

which is the indeterminacy of {c'c4, K97, 2135}. Since V%O is of order

two, we have
{0014, K91, 255} > d7v3o + 30014 VA,
(5) By the definition of §” (see p. 215 of [12]), we have
{0'014, 031, 2155} D {0’01y, Oa1, 2098} 3 8.

(6) We can define a Toda bracket {0'014, pa;, 3213} by Table 2.4(2)
and the fact that 32py; = 0. By Lemma 3.2(1), we have
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- E{c’c14, P21, 32136} C {E6'0y5, Pag, 32137}
c {Ec’cy5, 2pg2, 16137}
D Ec{o15, 2022, 16137}
> xE0’p15 + 4aE0'vi5K18 + bEG'O15 + cEc'y15

for some odd integer x and integers a, b, c. By (7.19) of [15] and the fact

that vgoj1Kyg is of order 8, we have 4Ec'v5K1g = 4vgo11K15. S0 we have
— E{c'014, P21, 32136} € {E0'015, 2pgg, 16137}
E) xEG/515 + 4aV8011E18 + bEG/¢15 + CEG,\II15.

By Part I, Proposition 3.4(4) of [13] and the fact 4Ec'v5K;3 = 4Vg011Kig,

we have

Ec'c15099 = Ec'¢;5 mod{4vgoy kg ).

By Table 2.3(2), we have EG/G%5}129 = 0. Therefore, the indeterminacy of
{EG,015, 2p22, 16137} s given by
Ec'oy5m3g + 16m3g = {Ec'o; 5099, Eo'oisgg}
= {Ec’015 + 4yvg011%18),

where y = 0 or 1. Therefore, for an element o of {6'614, P97, 32135}, we

have

—E(Ot) = .’X:EG’B]_5 + 4a’V8611E18 + b’EG’¢15 + CEG’\V15,

where o' and b’ are some integers. Since FE : n§7 — n§8 is a
monomorphism, we have

o = —x0'514 + 4a’V7(510E17 + b’6,¢14 + CG,\|114.

Thus we obtain the required result.
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4. The Homotopy Groups =;(F, /Gy : 2) for i < 45
We consider the 2-local fibration

SY L 1Gy 5§23,

which is given by Davis and Mahowald [2]. Then we have the long
homotopy exact sequence:

Ajy s * A
o (873 1 2) iy (S 1 2) 5 n;(F, /Gy 2)£>7ti(823 12)>- (1)

associated with the above 2-local fibration. By making use of this exact
sequence, we will calculate homotopy groups =;(F,/Gs : 2). First we

calculate the boundary homomorphisms A; : 71:i23 - TI:}?I.

Lemma 4.1. We have the formulas

Ag3(l93) = 015 and A;(Ea) = 6150,

where o is an arbitrary element of niZgl and E is the suspension

homomorphism.

Proof. By Borel [1], we have H*(F,/Gq; Zy) = A(xy5, X93), Sq®xi5

= xg3. Since Sq®xj5 = x93, we have Ay3(193) = 615. Then we have the

second formula from the familiar property of the boundary

homomorphism of a fibration.

Using Tables 2.2 and 2.3 and Lemmas 2.5 and 4.1, we calculate the

boundary homomorphism A; : 123 — nl?

; ;0 for i <45. The results are

stated in the following.

15

Lemma 4.2. (1) The homomorphisms A;,; .23 - " are

1+1
epimorphisms for i = 22, 27, 28. For other values of i(23 < i < 45), we
have the following table of the cokernels of A; ;.
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i 23 24 25 26 29 30
Coker Ai+1 Zz Z2 (&) Zz Z2 Z8 ZZ Z32 ® Z2
generator || Vi vis, s | Mstie | Gis Ki5 P15 €15

31 32 33 34

Zog@®Zy | Zyg@®Zy ®Zy®Zy | Zg®Lg ®ZLy | Zg®Zy ®Zy

®1

Py * — 2 — = —
M, @5 | M M31s €155 VisKiss M5 | &1s, BTN Mistue | Ci5s W15V31, O1s

35 36 37

Zs Z, ®Z, Zy ®Zy ® Zy ® Z

K15 Mski6, E*Avgs "', 1531, £15K23, V15018
38 39 40

Zig @ Ly ®Ly ®Zy ®Zy | Lo ®Zy @ Zy ®Zy Zo ®Zy @ Zy

P15 V15K18 V155 E 5 V' S5, &5, ECS, p" &15033, 315> Dila1
41 42 43 44 45
Zs ®Zy ® 7, Zs Zo | Zy | Zs®@Z,07Z,
3.IV 2 — — A%
E T, viskor, Miskage | G315 | €i5Kes | L1 | 07, @15K31, Wi5038

(2) The homomorphisms A; :Tti23 - nfl are monomorphisms for

i =24, 25, 27, 28, 33, 35, 36. For other values of i (23 < i < 45) we have
the following table of the kernel of A;.
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1 23 26 29 30 31 32

Ker Ai Z ZS ZZ Z4 ZZ (‘B Z2 ZZ (‘B Z2

generator 16123 V23 V%3 4023 V23, 823 Vgg, 8237]31
34 37 38 39 40 41
Zo | Zy | Zy ®Z, Z, Zy ® Z, Z,
Co3 | Ko23 2p93, Ea3 PRI Go3Ml30N39, V23K26 4vgg

42 43 44 45
Zo®Zy | Zg Z, ®Z, Z, ®Z,
Cos, Oa3 Ka3 KoaNaz, 093 | €o3Ks1, Vo3lag

From the exact sequence (1), we have the following short exact

sequence

0 — Coker A; ini(F4/G2 : Z)ﬁ Ker A; — 0.

From this short exact sequence, we will calculate m;(F;/Gy :2) by

making use of the following theorem which is proved by Mimura-Toda.

Theorem 4.3 (Theorem 2.2 of [9]). Let (X, p, B) be a fibration, F be

a fiber p_l(*) and A be the boundary homomorphism in the homotopy

exact sequence of the fibration. Assume that o € n;,1(B), B e nj(Si) and

v e TCk(Sj) satisfy the conditions (A(a))B =0 and By = 0. Then for an

arbitrary element § of Toda bracket {A(a), B, v} = w1 (F), there exists an

element € € m;j,1(X) such that

€ = aEB,

.0 = eky.
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Let us state our first main result.

91

Theorem 4.4. We have the following table of the homotopy groups
n;(Fy /Gy : 2) for i < 45.

[} 1<14 15 16 17 18
TCL'(F4/G2 N 2) 0 Z Z2 Z2 Z8
generator i (115) i(15) i(n75) ix(V15)
19, 20 21 22 23 24 25
0 7, 0 VAN 7, ®Z, Z,
., 92 . — . . .
ix(vi5) [16193], ix(Vi5) | in(vi5) in(iys) | ie(nishtig)
26 27,28 29 30 31
Zei | O 7,07, Zos ®Zs Ty ®Zy ®Zy ® Zy
[Vas] [Vaslvae, ix(x15) | [4093] ix(E15) |[Vasl [e2s], is(n®), iu(wgs)

32

Ty ®Zy ®Zy ®Zy ®Zy ® Zy

2 . ®r . * . P —
[V23]V267 [823]ﬂ31> ix(n Tl31), l*(815), l*(V15K18)7 l*(Mls)

33 34 35
. . 2 . — . .= .=
ix(E15), 1(E7L), Tx(n15016) [Ca3], ix(®15v31)s i4(15) ix(¥15)
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36 37
Z, ®Z, Zs ®Z, ®ZLy &L,
i (N15%16), is(E*Av33) i(*), 23], ix(015v31 ), inlerskas3)
38

[2p93], i(vi5K18 ) [Eas ), i(wis), wl(E), iu(V")

39

Zo @ Ly ®Zy ®Zy ® Ly

[o93130], 1(15)s x(E15), 1(ECT), in(n™)

40

Zo ®Zy ®Ly ®Zy ® Zy

[o23130]1N39, [Vag] ka6, 1+(E15033), ik 15), i(Dingy)

41 42 43
i (E3Y), [4v53], L(M15M316) [C25], [Gas] [Ka3], ix(e15K23)
44 45
Zo ®Zy ® Zy Ty ©Zoy ®Zy ®Zy ® Ly

[Kas]nas, [035), i(Ly) | in(8Y), [eag] ka1, [Vas] Gags inl@r5ka1 ), in(Wi5038)
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Here we denote by [o] an element of m;(Fy/Gy :2) such that

p([0]) = a € m;(S?3 : 2). The following relations hold:
8[vas] = ix(a1C15),
4[4c93] = i:(p15),
8[G2s] = in(aslys),
kas] = iu(v15515 + bogsva1),
16[2pg3] = ix(agpys + 4bavi5Kig + byyis + badis),
24v33] = iu(vi5Ka1),
8[Ca3] = ix(aslsis),
where a; is an odd integer and b; = 0 or 1.

Proof. The homomorphisms i, : Coker A;,; — m;(Fy /Gy : 2) are

isomorphisms for i < 22 and i =24, 25, 27, 28, 33, 35, 36.
We remark that 97 (Fy /Gg : 2) = neg(Fy /Gy : 2) = 0.
Consider the case i = 23. By Lemma 4.2, we have an exact sequence
0— Z2 L—*>T[23(F4/G2 . Z)E)Z — 0.
Since Z is free, this exact sequence splits.
Consider the case i = 26. By Lemma 4.2, we have an exact sequence
00— Z8 E)7'[326(F'4/G2 : 2)&;Z8 4 0,

where the first Zg is generated by (;5 and the second Zg is generated

by vo3. By Lemma 3.1(1), we have

{015, vag, 8ua5} 3 %15
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for some odd integer x. By Theorem 4.3, there exists an element [vg3] €

T96(Fy /Gy : 2) such that
pi([ves]) = vo3  and  i(xCy5) = 8[vas].
Therefore, we obtain nog(Fy /Gy : 2) = {[vas]} = Zgy.

For i =30, 34, 37, 41, 42, we obtain the results by an argument

similar to the case i = 26 from (2), (4) and (5) of Lemma 3.1 and (3) and
(4) of Lemma 3.2, respectively?!.

Consider the case i = 29. By Lemma 4.2, we have an exact sequence

0 = Zy 5 mpg (Fy /Gy  2) 52y — 0,
where the first Zoy is generated by x;5 and the second Z, is generated
by vZ3. We consider [vg3]veg. We have
2[vas]vag) = [Vas ] E*V' by (5.5) of [15]

€ [vog]{neg, 2197, Na7} by the definition of v’ (p. 40 of [15])

< {[vazInze, 2197, na7)

= {0, 2197, No7} by the fact ng7(Fy /Gy : 2) =0

= 0mod myg(Fy /Gy : 2)Mgg.
Since T9g(F, /Gy : 2) = 0, we have

2([vaz]vae) = 0.
Moreover we have
p:([vaslvae) = (Pulvas]) ves = \%3-

This implies that the above sequence splits.

1 For the case i =42, we need some more consideration on the

construction of generators.
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Consider the case i = 31. By Lemma 4.2, we have an exact sequence

00— Z2 @ Z2 ﬁ)7'l'.31(}7'4/(;2 : 2)&)Z2 (‘BZQ — 0,

where the first Zo ® Zy is generated by n", ©;5 and the second
Zy ®7Z5 1is generated by Vg3, €93. By Lemma 3.1(3), we have
{o15, €99, 2139} > 0. Hence, by Theorem 4.3, there exists an element
[ea3] € m31(F4 /Gy : 2) such that

p*([823]) = €93 and 2[823] = 0.

We can define a Toda bracket {[vas], nag, vo7} using the fact that

[V23]T]26 € 7'[27(F4/G2 . 2) = 0. Since TE%EI; = 7T28(F4/G2 . 2) = 0, the
indeterminacy of {[vg3], Ngg, Vo7} is trivial. Then by Lemma 6.2 of [15],

we have
piilvas] naes var} = {vas, N, Var} = Va3
Therefore, we can define [vo3] = {[Va3], Nag, Vo7}. Then we have
2[vas] = {[vas] maes var} 2
< {[vas], 2ng6, varl
= 0mod[vg3] 73] + os(Fy /Gy : 2) vag = 0.
This implies that the above sequence splits.

Consider the case i = 32. By Lemma 4.2, we have an exact sequence

0 - Z2 ®Z2 @ZQ @ZQ E)7'[32(.F4/G2 Z)ﬁZZ @ZQ d 0,

where Zo ® Zy ® Zy ® Z, is generated by n"ngsy, €15, V15518, Hy5 and

Zo, ®Zy is generated by Vis, €93M3;. We consider [vg3]vig and

[e23]n31. Then we have
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p([va3]v3e) = Vi3, 2vas]vis = [vag]2v3s = 0,
P«([e23]M31) = €93n31, 2[eaz]ng1 = [ea3]2n31 = 0.

Therefore, the above sequence splits.

Consider the case i = 38. By Lemma 4.2, we have an exact sequence

00— Z16 @Zs @Zz @Zz (&) Zz E)7'538(1’14:/(;2 : 2)&;Z16 @Zz - 0,

where Z16 @ Z8 @ Z2 @ Z2 @ Z2 1s generated by 515, V15f18, V15,

=)

e ,v and Z;g ®Zy is generated by 2ps3, €53. By Lemma 3.1(6), we
have {0;5, €99, 2137} 3 0. Hence, by Theorem 4.3, there exists an element

[523] € 7T38(F4/G2 : 2) such that

P+([Egs]) = 23 and 2[eg3] = 0.

By Theorem 4.3 and Lemma 38.2(1) there exists an element [2pg3]
€ mag (Fy/Gg : 2) such that

P:([2p23]) = 2093 and  i.(xPy5 + 4avisKig + bYys + ci5) = 16[2pgs]
for some odd integer x and integers a, b, c. Therefore, we obtain
7'[38(F4/G2 :2)EZ256 ®Z8 @ZQ@ZZ @Zz @ZQ

Consider the case i = 39. By Lemma 4.2, we have an exact sequence

00— Z2 @Zg (‘BZQ (‘BZZ ﬁ)7'1739(F'4/(;2 Z)E)ZZ d 0,

where Zo ® Zy ® Zy ® Z, is generated by G5, 5, EC*, u*' and Z, is
generated by Gg93l3y. By Theorem 4.3 and Lemma 3.2(2), there exists an
element [093u3g] € Tag(Fy /Gy : 2) such that

P«([023u30]) = Og3lgy  and  2[oyspgg] = 0.

Therefore, the above sequence splits.
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Consider the case i = 40. By Lemma 4.2, we have an exact sequence

0— Z2 @Zz @Zz l—*)TE40(F4/G2 : 2)E)Z2 @ZQ —> 0,

where Z2 @ Z2 @ Z2 1s generated by a15033, M3,15, D1M31 and Z2 @ Z2
is generated by 0O93U3oN3g, VogKeg. We consider [ogsnsg]ngg and
[Vag]gg. Then we obtain the result by an argument similar to the case

I = 32.

Consider the case i = 43. By Lemma 4.2, we have an exact sequence

0— Zz l—*)TE43(F4/G2 . 2)&)Z8 —> O,

where Z, is generated by €;5K93 and Zg is generated by ¥93. By

Theorem 4.3 and Lemma 3.2(5), there exists an element
[Ezg] € TC43(F4/G2 : 2) such that

p*([fz!?)]) = E23 and 8[?23] = 0.
Therefore, the above sequence splits.

Consider the case i = 44. By Lemma 4.2, we have an exact sequence

0— Z2 E>7'IZ44(F"4/G2 : 2)5Z2 @ZQ — 0,

where Zy is generated by L; and Zg @ Zy is generated by KosM4s, 033.

We consider [Kg3]n43. Then we have
pi([kg3]ny) = Kognys and  2[kg3]ngp = [Ko3]2n43 = 0.

By Theorem 4.3 and Lemma 3.2(6), there exists an element [633]
€ ny4(Fy /Gy : 2) such that

p([033]) = o33 and 2[o33] = 0.

This implies that the above sequence splits.
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Consider the case i = 45. By Lemma 4.2, we have an exact sequence

0— Z8 @ZQ ®Z2 E)7’!:44(F'4/G2 2)&;Z2 @Zg d O,

where Zg @ Zy @ Z4 is generated by 0V, ®15K31, W15038 and Zg @ Z,
is generated by €93K31, V93095. We consider [eg3]k3; and [ve3]Tag.

Then we obtain the result by an argument similar to the case i = 32.

5. The Homotopy Groups w;(Q] : 2) for i < 37
We consider the fibration

ST5Hansas?,

which 1s given by Davis and Mahowald [2]. Then we have a long

homotopy exact sequence

A; i " A
oo (Q82) B () B @) B (s S @)

associated with the above fibration. By making use of this exact

sequence, we calculate homotopy  groups m(QIl:2). Let
ad : m;,1(8%%) 5 7;(2S?®) be the adjoint isomorphism. Then for an

element a of 1;(S??), we have the formula
ad(Ea) = ad(i93) o
We define the homomorphism
Af: m(8%) > mi_p(ST)
by
A = A;_;ad.
Then we have the following.

Lemma 5.1. We have the formulas

Ap3(i3) = —c'o14 + E7'l1g, 18], 18],
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AY(E?a) = (-0’04 + E 7' 1g, 18], 15])
for o e ni_Q(SZI), where [,] is the Whitehead product and E is the
suspension homomorphism.

Proof. By Davis-Mahowald [2] and Mimura [7], we have

QI =S"Ue2Ue®U--,
B

where B = —c'cy, + E[[ig, 13], 15]. Hence we have

, , -1
As(igg) = —6'o14 + E™ " [[1g, 1], 15].

Then we obtain the second formula from the familiar property of the
boundary homomorphism of a fibration.

From now on, we restrict our attention to the 2-primary component.

For A} : niZS - ni7_2, by Lemma 5.1, we have the following formulas

’ ’ (2 '
A23 (l23) = —0014 and AL(E (X.) = —G 0140, (3)
where o is an arbitrary element of 71:12_12.

Using Tables 2.2, 2.3, 2.4, Lemma 2.6 and formula (3), we calculate

23

the boundary homomorphism A; : n;° — nZ_z for i < 39. The results are

stated below.

Lemma 5.2. (1) We have the following table of the cokernels of

Aig 23 o ml (22 < i < 37)

i 22 23

Coker A;:+2 ZS @ Zz @ Z2 Zz @ Z2 @ Z2

generator p", 6'Vviy, €7 o'Uy4, EC', uq616
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24 25 26 27
Zy ®Z, ®Zy @ Zy Zs®Z, | Zs®Zy | Zg
O0M14l15, V7K10, B7, N7UgO17 | (7018, N7Hg Cq, 07 Ky
28 29
Z, ®Z, Zs ®Z, ®Zy ® Zy
N7Kg, 0'Kyy 6'P14»> V7K15, €7K15, V7010
30 31
Zs ®Zy ®Zy ®Zy ® Ly Zy ®ZLy ®Zy Ly ®Ly ® Zy

VK10, P's 7, K7Va7 — VK10, G'@4 | 87, N7094, V7010K17, O7, O Hy4, C'®14M30

32

(Z, ®Zg)®Zy ®Zy ® Ly

nr 2 n ! - -
{0, E%"}, o'm4by5, Mgz, N7H8025

33 34

Ty ©®Zo ®Zy Ly ® Ly ® Ly ® Zy Zy ®Zg ® Zy

= , - 2 — 9— = - —
C7096, O'®W14V30s K7V27, 07096, O7V30, V7K1, N7M38 | O K14, C37, V70715

35 36

Zo ® Ly ® Ly ®Zy Ty ®Zy ®Zy ®Zy ® Ly

0""v39, GMakys, ViKis, €7K15 | O, 0'e14Ka, O'®14VE0, d7VE0, N7E8KI6
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37

Zg ®Zg ® Zy ® Zy

o'P14> V7010K175 O'W14, $7030

. ;.23 7
(2) The homomorphisms Ajq : .0, — T

are monomorphisms for
1 =23, 24, 26, 27, 32, 34, 35. For other values of i (22 < i < 37) we have

the following table of the kernel of A%,;.

i 22 25 28 29 30 31 33

Ker A%+1 Z Z8 Z2 ZlG Z2 @ Z2 Z2 @ Z2 Z8

2 — 3
generator 8lgg Vo3 | Vag | O23 | Va3, €23 | Va3, €23M31 Cos

36 37
2 —
G623, Kag P23, €23

From the exact sequence (2), we have the following short exact

sequence
0 — Coker A;,; 5 QI : Z)ﬁKer A; — 0,
from which we will calculate 7;(QI1 : 2). We remark that

Ker A; = ad(i93)E " (Ker A},;) and Coker A;,; = Coker A},

for dimensions under consideration.

Theorem 5.3. We have the following table of homotopy groups
m;(QI1 : 2) for i < 37.
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i 1<6 7 8 9 10 11, 12 13
TCi(QH . 2) 0 Z Z2 Z2 ZS 0 Z2
generator i(17) | i(7) | (F) | in(vy) in(v7)
14 15 16
Zs Zo ®Zy ® Zo Zo ®Zoy ®Zy ® Ly
(") | i(o'Mma), i(V7), ix(er) ix(o™Miq), i (V3), ix(17), ix(n7eg)
17 18 19 20 21
Zg ®Zy Zg ®Zy 0 Z, Z,
ix(v7610), is(M7ug) | i(C7), i(V7vys) ix(v7610v17) i (K7)
22 23
ZOZy ®Zy® Zy Zy ®Zy ®Zy

[8123]’ i*(p”)’ i*(G'Vl4 )’ L*(§7)

tu(0'14), L(EQ), 1u(n7016)

24

25

Zo ®Zy ®Zy ®Zy

Zey 7y

L(0My4ty5)s G(VKg), (D7), ie(N71g017)

[Vas], i(m7ms)

26 27 28
Zs ® Z, Zg Zy ®Zy ® Z,
ix(C7), 1:(S7) i (K7 ) [Vos]vas, k(n7Ksg), i(0'ic14)
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29

[o95], i (V7iy5), Txl(E7y5), 1x(V7G10)

30

Ty ® Ly ®Zy ®Ly ®ZLy ® Ly ® Zy

1 (vikig), &(P): [Vasl, [eas], &x(d7), u(izvar — viii)s ix(0'@py)

31

Zo @ Ly ®Zy ®Ly ®ZLy ® Ly ®Zy ® Ly

9 . . —
[vas]vas, [ea3]ng1s ix(87), ix(7094 ),

ix(v7610K17), x(67), ix(0'T14), ix(c'@14M30)

32

(Z,©Zg)®Zy ®Zy ® Ly

{i.(0"), i(E?9")}, is(0M14T5 ), ie(psy ), ix(7Hgoas5)

33

., . — 9 . . . 9— .
[Casls ix(0'®14vs0), ix(K7v37), k(57096 )s ix(d7Va0 )s ix(ViKig): bx(N7Hg8)

34

35

Zy ®Zg ® Zy

Zo ® Ly ®Zy ® Ly

ix(0'%14), i:(C37), 1(V7015)

1(0"'V32), (0" aKy5), b(V7Ky5), b(e75)
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36

[633], [kgs], is(0'e14k20), ix('@14VE0), ix(N7egKyg)

37

[Pas]s ix(v7010%17); [E23]s i(0'W14), 1(07030)

Here we denote by [o] an element of m;(QIl : 2) such that p.([a]) =

ad(a) e 1;(QS?3 : 2). The following relations hold:

8[vas] = ix(a1G7018),

16[o3] = ix(agc'pra),

8[¢2s] = ix(astroae);

2o3s] = .(8"),

2icag] = i (7vEo + bio'w14vEp),

32[pa3] = ix(a40' Py + 4bav7O10K17 + D30 W14 + by0'd14),
where a; is an odd integer and b; =0 or 1.

Proof. The homomorphisms i, : CokerA;,; - m;(Q[]:2) are

isomorphisms for i < 21 and i =23, 24, 26, 27, 32, 34, 35.

Consider the case i = 22. By Lemma 5.2, we have an exact sequence

0> Zg ®@Zy ®Zy S n99(QI1:2)32Z - 0.

Since Z is free, this exact sequence splits.
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Consider the case i = 25. By Lemma 5.2, we have an exact sequence

00— Z8 @Zz E)’)'525(§2I—[ : Z)ﬁZS e 0,

where Zg @ Zq is generated by (;015, M7pg and Zg is generated by
ad(vgs). We consider the Toda bracket {c'ci4, vgi, 8tg4}. Then, by
Lemma 3.1(1), we have

{0'014, Va1, 824} D o'{o14, Va1, Blag} > x0'Cyy

for some odd integer x. By Lemma 12.12 of [15], we have 6'(;4 = xC;073

for some odd integer x'. So we have
{6'0145 Va1, 8las} 3 x"Crog

for some odd integer x". Therefore, by Theorem 4.3, there exists an
element [vo3] € m95(QIT : 2) such that

p([ves]) = ad(ves) and  iu(x"Cr018) = 8[vas].
Therefore, we have mo5(Q 11 : 2) = Zgy @ Zs.

By an argument similar to the case of mo5(QI1: 2), we obtain

M99 (Q 1 : 2) from Lemma 3.3(2).

Consider the case i = 28. By Lemma 5.2, we have an exact sequence

00— Z2 &) Z2 E)7'[28(§21_[ : 2)&;Z2 —> 0,
where Zs ® Z, is generated by m;xg, o'k;4 and Zg is generated by

ad(v33). By Theorem 4.3 and Lemma 3.3(1), there exists an element

g€ Myg(QTI : 2) such that p,(c) = ad(v3;) and 2e = 0. Since [vg3]ves
— ¢ € Imi,, we have 2[vg3]vgs = 0. Therefore, we can choose [vg3]vas

as a generator. Then we obtain the required result.

Consider the case i = 30. By Lemma 5.2, we have an exact sequence

O%ZS ®Z8 @Zz @Zz @ZQL%*TCSO(QH:2)%Z2 @ZQ —)0,
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where Zg @ Zg ®Zy ®Zy ®Z, is generated by vikig, p’s d7, K7Vay
~V7K10, 00y4 and Zy @ Zy is generated by ad(vys), ad(egs). By Lemma
3.3(3), we have

{0,014, V21, 2129} 5 0.

Therefore, by Theorem 4.3, there exists an element [vg3] € m3(QIT : 2)
such that

p«([Vas]) = ad(ve3) and 2[ve3] = 0.
By Lemma 3.1(3), we have
{0/014, €91, 2[29} ) (5,{(514, €91, 2129} 5 0.

Therefore, by Theorem 4.3, there exists an element [e95] € m30(QI] : 2)
such that

p*([823]) = ad(823) and 2[823] = 0.
Therefore, the above sequence splits.

Consider the case i = 31. By Lemma 5.2, we have an exact sequence

0> Zy ®Zy ® Ly ® Zg ® Zy ® Zoy > 1y Q1 : 2) 320 ® 7y — 0,
where Zo @ Zy @ Zy ®Zy ®Zy ®Zy is generated by 7, H094,
V7G10K17, Of, Oy, O®14N3o and Zy ® Zy is generated by ad(vis),
ad(eg3ns; ). We consider [vgs]vas and [eg5]n3o. Then we have

Pe([va3]v3s) = ad(v3s), 2lvag]vas = O,
ps(eg3]nz0) = ad(eganz1), 2[egzlngo = 0.

Therefore, the above sequence splits.

Consider the case i = 33. By Lemma 5.2, we have an exact sequence

U D
0—>Z8@Z2@Z2 @ZQ ®Z2 @ZQ @Zg—)TC33(QH22)—)Z8 —)0,
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where Zg ®Zy ®Zy ®Zy ®Zy ®Zy ®Zy is generated by {;09,
o'014V30, K7V37, 57036, G730, ViKiz, Nilgs and Zg is generated by
ad({y3). We consider {o'cyy, Co1, 8igp). Since n23 =0, we have

6’6143 + 8mhy = 0, which is the indeterminacy of {c'cyy, Co1, Sigg).

Therefore, this Toda bracket consists of only one element. We have

{6'614, Co1, Biga} = 6'{o14, Ca1, Siga}

x6'C4 + yo'my4vsy by Lemma 3.1(4)

x6'Cq4 since 6'®;4V3 is of order two
= x'C7096 by Part I (8.14) of [13],

where x, x' are odd integers and y is an even integer. Therefore, by

Theorem 4.3, there exists an element [{93] € T33(Q ] : 2) such that

p([(23]) = ad({a3) and i.(xT7096) = 8[Cas].
Therefore, we obtain the required result.

Consider the case i = 36. By Lemma 5.2, we have an exact sequence

0—)Z8 @ZQ@ZQ@ZQ@ZQE)TFBG(QH:2)&;Z2@Z2 —)0,

where Zg ® Zy ® Zy ® Z, © Z, is generated by 3", o'e14k99, c’m14v§0,

d7v3y, Mieskig and Zo ® Zy is generated by ad(o3s), ad(kg3). By

Lemma 3.3(4), we have

9 9
{0'014, K91, 235} 3 d7V3) + X0 @1 4V3

for some integer x. Therefore, by Theorem 4.3, there exists an element
[kos] € mgg(QIT : 2) such that

pe([r23]) = ad(xgg) and 2[kgs] = i(d7v3) c'or4vio)-
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By Lemma 3.3(5), we have
{o'o14, 031, 235} > 8.

Therefore, by Theorem 4.3, there exists an element [o33] € m3g(QIT : 2)
such that

pu([033]) = ad(c33) and 2[o35] = i(3").
Therefore, we have m36(Q]:2) = Zg ®Zy ®Zy ®Zy @ Z,.

Consider the case i = 37. By Lemma 5.2, we have an exact sequence

0 —)ZS @ZS (‘BZQ @Zz ﬁ)Tl137(£21_[ : 2)&;Z32 @Zz —> O,

where ZS @® Z8 @ Z2 @ Z2 1s generated by 0/514, V7010E17, G,\U14, (|)7G30
and Zsy ® Zy is generated by ad(pgs), ad(g93). By Lemma 3.1(6), we

have
{6'614, Eo1, 2136} D 6'{014, Toy, 2156} 3 0.

Therefore, by Theorem 4.3, there exists an element [€93]€ m37(QIT : 2)
such that

p«([Ea3]) = ad(83) and 2[ey3] = 0.

By Theorem 4.3 and Lemma 3.3(6), there exists an element
[Pa3] € mg7(QII : 2) such that

p«([p2s]) = ad(pgs)

and
15 (x0'Pry + 4av7010K17 + b0 W1y + c0'dry) = 32[ps]

for some odd integer x and some integers a, b, c. Therefore, we have

7'537(91_[ : 2) = Z256 @Zg @ Z2 @ZQ @22
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