A CONVERGENCE THEOREM FOR I-QUASI-NONEXPANSIVE MAPPINGS

SI-SHENG YAO and LI-HUA QIU

Department of Mathematics Kunming Teachers College Kunming, Yunnan, 650031, P. R. China e-mail: yaosisheng@yahoo.com.cn

Abstract

In this paper, we are concerned with the study of the Ishikawa iterative scheme involving an I-quasi-nonexpansive mapping T. Under some suitable conditions, the scheme is shown to converge strongly to a common fixed point of T and I.

1. Introduction and Preliminaries

Throughout this paper, we denote the set of all fixed points of a mapping T by F(T) and $T^0 = E$, where E denotes the mapping $E: C \to C$ defined by Ex = x, respectively.

Let C be a closed convex bounded subset of a real normed linear space X. Then T is called *nonexpansive* on C if

$$||Tx - Ty|| \le ||x - y||,$$
 (1.1)

for all $x, y \in K$.

2000 Mathematics Subject Classification: 47H10.

Keywords and phrases: I-quasi-nonexpansive mapping, common fixed point, uniformly convex Banach space.

This work was supported by Kunming Teachers College (No. 200/7002).

Received August 31, 2007

In 1941, Tricomi introduced the quasi-nonexpansive mapping for real functions. Diaz and Metcalf [1] and Dotson Jr. [2] studied quasi-nonexpansive mappings in Banach spaces. In 1997, Kirk [4] introduced the quasi-nonexpansive mapping in metric spaces. In 2006, Rhoades and Temir [7] generalized the concept to a normed space as follows: T is said to be a quasi-nonexpansive mapping if

$$||Tx - f|| \le ||x - f||, \tag{1.2}$$

for all $x \in C$ and $f \in F(T)$.

Remark 1.1. From the above definitions it is easy to see that if F(T) is nonempty, then a nonexpansive mapping must be quasi-nonexpansive. But the converse does not hold.

Definition 1.1. Let C be a subset of X, and T and I be self-mappings of C. Then T is said to be I-quasi-nonexpansive on C if $||Tx - f|| \le ||Ix - f||$, for all $x \in C$ and $f \in F(T) \cap F(I)$.

For studying common fixed points of a iterative scheme involving an I-quasi-nonexpansive mapping T and the nonexpansive mapping I, we quoted the Ishikawa scheme as follows:

Definition 1.2. Let $T:C\to C$ be an I-quasi-nonexpansive mapping and I be a nonexpansive mapping on C, where C is nonempty closed and convex subset of a Banach space X. Then an *iterative scheme* is a pair of sequences $\{x_n\}$ and $\{y_n\}$ defined by, for a given $x_0\in C$,

$$y_n = a'_n T x_n + b'_n x_n,$$

 $x_{n+1} = a_n T y_n + b_n x_n,$ $n \ge 0,$ (1.3)

where $\{a_n\}$, $\{b_n\}$, $\{a'_n\}$ and $\{b'_n\}$ are real sequences in (0,1) with $a_n+b_n=1=a'_n+b'_n$.

For approximating fixed points of deterministic nonexpansive mappings, Senter and Dotson [9] introduced a Condition (A). Later on, Maiti and Ghosh [5] and Tan and Xu [10] studied Condition (A) and pointed out that Condition (A) is weaker than the requirement of semi-compactness on mappings.

Definition 1.3. A mapping $T: C \to C$ is said to satisfy Condition (A) if there exists a nondecreasing function $f: [0, +\infty) \to [0, +\infty)$ with f(0) = 0, f(r) > 0, for all $r \in (0, +\infty)$ such that $||x - Tx|| \ge f(d(x, F(T)))$ for all $x \in C$, where $d(x, F(T)) = \inf\{d(x, x^*) : x^* \in F(T)\}$, F(T) is the fixed point set of T.

There are a number of recent results on fixed points of nonexpansive and quasi-nonexpansive mappings in Banach spaces and metric spaces. For example, the strong and weak convergences of the sequence of certain iterates to a fixed point of quasi-nonexpansive maps were studied by Petryshyn and Williamson Jr. [6]. Their analysis was connected with the convergence of Mann iterates studied by Dotson Jr. [2]. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces was discussed by Ghosh and Debnath [3]. In [11], the weakly convergence theorem for *I*-asymptotically quasi-nonexpansive mapping defined in Hilbert space was proved. And in 2006, Rhoades and Temir [7] proved the weak convergence of the sequence of Mann iterates to a common fixed point of an *I*-nonexpansive mapping *T* and a nonexpansive mapping has not been studied, yet.

The aim of our study is to prove a strongly convergence theorem for an I-quasi-nonexpansive mapping in a uniformly convex Banach space. We establish the strongly convergence of the sequence of iterates (1.3) to a common fixed point of T and I if and only if $\liminf_{n\to\infty} d(x_n, F(T)\cap F(I))$. Our theorems improve and generalize some previous results.

We restate the following lemma which plays important roles in our proofs.

Lemma 1.1 [8]. Suppose that X is a uniformly convex Banach space and 0 for all positive integers <math>n. Also suppose that $\{x_n\}$ and $\{y_n\}$ are two sequences in X such that $\limsup_{n\to\infty} \|x_n\| \le r$, $\limsup_{n\to\infty} \|y_n\| \le r$ and $\limsup_{n\to\infty} \|t_nx_n + (1-t_n)y_n\| = r$ hold for some $r \ge 0$. Then $\lim_{n\to\infty} \|x_n - y_n\| = 0$.

2. Main Results

Lemma 2.1. Let C be a nonempty closed convex subset of a normed space X. Let $T: C \to C$ be an I-quasi-nonexpansive mapping and I be a nonexpansive mapping on C. Suppose the sequence $\{x_n\}$ is generated by (1.3). If $F_1 \doteq F(T) \cap F(I) \neq \emptyset$, then $\lim_{n\to\infty} ||x_n - x^*||$ exists for any $x^* \in F_1$.

Proof. For any $x^* \in F_1$,

$$0 \le \|x_{n+1} - x^*\|$$

$$= \|a_n T y_n + (1 - a_n) x_n - x^*\|$$

$$= \|a_n (T y_n - x^*) + (1 - a_n) (x_n - x^*)\|$$

$$\le a_n \|I y_n - x^*\| + (1 - a_n) \|x_n - x^*\|$$

$$\le a_n \|y_n - x^*\| + (1 - a_n) \|x_n - x^*\|$$

$$= a_n \|a'_n (T x_n - x^*) + (1 - a'_n) (x_n - x^*) \| + (1 - a_n) \|x_n - x^*\|$$

$$\le a_n a'_n \|I x_n - x^*\| + a_n (1 - a'_n) \|x_n - x^*\| + (1 - a_n) \|x_n - x^*\|$$

$$\le a_n a'_n \|x_n - x^*\| + a_n (1 - a'_n) \|x_n - x^*\| + (1 - a_n) \|x_n - x^*\|$$

$$\le \|x_n - x^*\|.$$

Thus the sequence $\{\|x_n - x^*\|\}$ is decreasing, so $\lim_{n \to \infty} \|x_n - x^*\|$ exists for any $x^* \in F_1$. It also implies that $\{x_n\}$ is bounded. The proof is completed.

Lemma 2.2. Let X be a uniformly convex Banach space and C be a nonempty closed convex subset of X. Let T, I and $\{x_n\}$ be same as in Lemma 2.1. If $F_1 \neq \emptyset$, then $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$.

Proof. By Lemma 2.1, for any $x^* \in F_1$, $\lim_{n \to \infty} \|x_n - x^*\|$ exists. Assume $\lim_{n \to \infty} \|x_n - x^*\| = c \ge 0$. Since

$$0 \le || y_n - x^* ||$$

$$= || a'_n T x_n + (1 - a'_n) x_n - x^* ||$$

$$\le a'_n || T x_n - x^* || + (1 - a'_n) || x_n - x^* ||$$

$$\le a'_n || I x_n - x^* || + (1 - a'_n) || x_n - x^* ||$$

$$\le a'_n || x_n - x^* || + (1 - a'_n) || x_n - x^* ||$$

$$\le || x_n - x^* ||,$$

taking lim sup on both sides in above inequality, we have

$$\lim \sup_{n \to \infty} \| y_n - x^* \| \le c. \tag{2.1}$$

Since *T* is *I*-quasi-nonexpansive,

$$||Ty_n - x^*|| \le ||Iy_n - x^*|| \le ||y_n - x^*||,$$

which implies that $\limsup_{n\to\infty} ||Ty_n - x^*|| \le c$.

Further, $\lim_{n\to\infty} \|x_{n+1} - x^*\| = c$ means that

$$\lim_{n\to\infty} || a_n (Ty_n - x^*) + b_n (x_n - x^*) || = c.$$

Applying Lemma 1.1, we obtain

$$\lim_{n \to \infty} || T y_n - x_n || = 0.$$
 (2.2)

Next,

$$|| x_n - x^* || \le || x_n - Ty_n || + || Ty_n - x^* ||$$

$$\le || x_n - Ty_n || + || Iy_n - x^* ||$$

$$\le || x_n - Ty_n || + || y_n - x^* ||$$

gives

$$c = \lim_{n \to \infty} ||x_n - x^*|| \le \liminf_{n \to \infty} ||y_n - x^*||. \tag{2.3}$$

By (2.1) and (2.3),

$$\lim_{n \to \infty} \| y_n - x^* \| = c. \tag{2.4}$$

Now, $\lim_{n\to\infty} ||y_n - x^*|| = c$ is expressible as

$$\lim_{n\to\infty} || a'_n(Tx_n - x^*) + b'_n(x_n - x^*) || = c.$$

In addition, we have

 $\lim \sup_{n \to \infty} ||Tx_n - x^*|| \le \lim \sup_{n \to \infty} ||Ix_n - x^*||$

$$\leq \lim_{n\to\infty} ||x_n - x^*|| = c.$$

Hence, it follows from Lemma 1.1 that

$$\lim_{n \to \infty} ||Tx_n - x_n|| = 0. \tag{2.5}$$

The proof is completed.

Theorem 2.3. Let X be a uniformly convex Banach space and C, T, I and $\{x_n\}$ be same as in Lemma 2.2.

- (1) If $F_1 = F(T) \cap F(I) \neq \emptyset$, then F_1 is a closed set.
- (2) $\{x_n\}$ converges strongly to a common fixed point of T and I if and only if $\lim \inf_{n\to\infty} d(x_n, F_1) = 0$.

Proof. (1) Let $\{\xi_n\} \subset F_1$ be such that $\xi_n \to x$ as $n \to \infty$. Then

$$\parallel Tx - x \parallel \ = \ \parallel Tx - \xi_n + \xi_n - x \parallel \ \le \ \parallel Ix - \xi_n \parallel \ + \ \parallel \xi_n - x \parallel \ \le \ 2 \parallel \xi_n - x \parallel.$$

This implies that Tx = x. Also,

$$|| Ix - x || = || Ix - \xi_n + \xi_n - x || \le 2 || \xi_n - x ||.$$

So, x is a common fixed point of T and I. Thus F_1 is a closed set.

(2) Suppose that $\{x_n\}$ converges strongly to a fixed point q of F_1 . Then $\lim_{n\to\infty}\|x_n-q\|=0$. Since $0\leq d(x_n,\,F_1)\leq\|x_n-q\|$, we have $\liminf_{n\to\infty}d(x_n,\,F_1)=0$.

Conversely, suppose that $\liminf_{n\to\infty}d(x_n,\,F_1)=0$. For any $x^*\in F_1$, by Lemma 2.1, we have $0\leq \|x_{n+1}-x^*\|\leq \|x_n-x^*\|$. Thus,

$$0 \le d(x_{n+1}, F_1) \le d(x_n, F_1).$$

So, $\lim_{n\to\infty} d(x_n, F_1)$ exists. Furthermore, since $\liminf_{n\to\infty} d(x_n, F_1) = 0$, we have

$$\lim_{n\to\infty} d(x_n, F_1) = 0. \tag{2.6}$$

We now prove that $\{x_n\}$ is a Cauchy sequence.

For any $\varepsilon > 0$, since $\lim_{n \to \infty} d(x_n, F_1) = 0$, there exists natural number N_1 such that when $n \geq N_1$, $d(x_n, F_1) < \frac{\varepsilon}{3}$. Thus, there exists $x^* \in F_1$ such that for above ε there exists positive integer $N_2 \geq N_1$ such that as $n \geq N_2$

$$\|x_n-x^*\|<\frac{\varepsilon}{2}.$$

Now for arbitrary $n, m \ge N_2$, consider

$$||x_n - x_m|| \le ||x_n - x^*|| + ||x_m - x^*|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This implies $\{x_n\}$ is a Cauchy sequence. Therefore, there exists $p \in C$ such that $\{x_n\}$ converges strongly to p. In addition, $\lim_{n\to\infty}x_n=p$ and $\lim_{n\to\infty}d(x_n,F_1)=0$ give that $d(p,F_1)=0$, F_1 is closed as indicated in Theorem 2.3(1), therefore $p\in F_1$. The proof is completed.

Corollary 2.4. Let X be a uniformly convex Banach space and C, T, I and $\{x_n\}$ be same as in Lemma 2.1. If $F_1 \neq \emptyset$, T satisfies Condition (A) and $\lim \inf_{n\to\infty} d(x_n, F(I)) = 0$, then $\{x_n\}$ converges to a common random fixed point of T and I.

Proof. For any $x^* \in F_1$, by Lemma 2.1, for each $\omega \in \Omega$, $\lim_{n\to\infty} ||x_n(\omega) - x^*(\omega)||$ exists. Let it be c for some $c \ge 0$. If c = 0, then there is nothing to prove.

If c > 0, then by Lemma 2.2, $\lim_{n \to \infty} ||Tx_n - x_n|| = 0$. Moreover,

$$||x_{n+1} - x^*|| \le ||x_n - x^*||$$

gives that

$$\inf_{x^* \in F_1} ||x_{n+1} - x^*|| \le \inf_{x^* \in F_1} ||x_n - x^*||.$$

That implies that $0 \le d(x_{n+1}, F_1) \le d(x_n, F_1)$. Thus $\lim_{n\to\infty} d(x_n, F_1)$ exists.

Since T satisfies Condition (A), we have

$$||x_n - Tx_n|| \ge f(d(x_n, F(T))).$$

It follows from (2.5) that we have $\lim_{n\to\infty} f(d(x_n,\,F(T))) \le 0$. Since f is a nondecreasing function with f(0)=0, therefore, $\lim_{n\to\infty} d(x_n,\,F(T))=0$.

Further, by $\liminf_{n\to\infty}d(x_n,\,F(I))=0$ and $F_1\neq\varnothing$, we get

$$\lim\inf_{n\to\infty}d(x_n,\,F_1)=0.$$

It follows from Theorem 2.3 that $\{x_n\}$ converges to the common random fixed point of T and I. This completes the proof.

References

- J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc. 135 (1969), 459-485.
- [2] W. G. Dotson Jr., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65-73.
- [3] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl. 207(1) (1997), 96-103.
- [4] W. A. Kirk, Remarks on approximation and approximate fixed points in metric fixed point theory, Ann. Uni. Mariae Curie-Sklodowska. Sec. A 51(2) (1997), 167-178.
- [5] M. Maiti and M. K. Ghosh, Approximating fixed points by Ishikawa iterates, Bull. Austral. Math. Soc. 40 (1989), 113-117.
- [6] W. V. Petryshyn and T. E. Williamson Jr., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497.

- [7] B. E. Rhoades and Seyit Temir, Convergence theorems for *I*-nonexpansive mappings, Inter. J. Math. Math. Sci. 2006 (2006), 1-4.
- [8] J. Schu, Weak and strong convergence to fixed points of nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- [9] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44(2) (1974), 375-380.
- [10] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308.
- [11] S. Temir and O. Gul, Convergence theorem for *I*-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007), 759-765.