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Abstract

In this paper, we are concerned with the study of the Ishikawa iterative

scheme involving an I-quasi-nonexpansive mapping T. Under some

suitable conditions, the scheme is shown to converge strongly to a

common fixed point of T and I.

1. Introduction and Preliminaries

Throughout this paper, we denote the set of all fixed points of a

mapping T by ( )TF  and ,0 ET =  where E denotes the mapping

CCE →:  defined by ,xEx =  respectively.

Let C be a closed convex bounded subset of a real normed linear space

X. Then T is called nonexpansive on C if

,yxTyTx −≤− (1.1)

for all ., Kyx ∈
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In 1941, Tricomi introduced the quasi-nonexpansive mapping for real

functions. Diaz and Metcalf [1] and Dotson Jr. [2] studied quasi-

nonexpansive mappings in Banach spaces. In 1997, Kirk [4] introduced

the quasi-nonexpansive mapping in metric spaces. In 2006, Rhoades and

Temir [7] generalized the concept to a normed space as follows: T is said

to be a quasi-nonexpansive mapping if

,fxfTx −≤− (1.2)

for all Cx ∈  and ( ).TFf ∈

Remark 1.1. From the above definitions it is easy to see that if ( )TF

is nonempty, then a nonexpansive mapping must be quasi-nonexpansive.

But the converse does not hold.

Definition 1.1. Let C be a subset of X, and T and I  be self-mappings

of C. Then T is said to be I-quasi-nonexpansive on C if ≤− fTx

,fIx −  for all Cx ∈  and ( ) ( ).IFTFf I∈

For studying common fixed points of a iterative scheme involving an

I-quasi-nonexpansive mapping T and the nonexpansive mapping I, we

quoted the Ishikawa scheme as follows:

Definition 1.2. Let CCT →:  be an I-quasi-nonexpansive mapping

and I be a nonexpansive mapping on C, where C is nonempty closed and

convex subset of a Banach space X. Then an iterative scheme is a pair of

sequences { }nx  and { }ny  defined by, for a given ,0 Cx ∈

,0
,

,

1

≥
+=

′+′=

+

n
xbTyax

xbTxay

nnnnn

nnnnn
(1.3)

where { },na  { },nb  { }na′  and { }nb′  are real sequences in ( )1,0  with

nn ba +   .1 nn ba ′+′==

For approximating fixed points of deterministic nonexpansive

mappings, Senter and Dotson [9] introduced a Condition (A). Later on,

Maiti and Ghosh [5] and Tan and Xu [10] studied Condition (A) and

pointed out that Condition (A) is weaker than the requirement of semi-

compactness on mappings.
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Definition 1.3. A mapping CCT →:  is said to satisfy Condition (A)

if there exists a nondecreasing function [ ) [ )∞+→∞+ ,0,0:f  with

( ) ,00 =f  ( ) ,0>rf  for all ( )∞+∈ ,0r  such that ( )( )( )TFxdfTxx ,≥−

for all ,Cx ∈  where ( )( ) { ( ) ( )} ( )TFTFxxxdTFxd ,:,inf, ∈= ∗∗  is the

fixed point set of T.

There are a number of recent results on fixed points of nonexpansive

and quasi-nonexpansive mappings in Banach spaces and metric spaces.

For example, the strong and weak convergences of the sequence of certain

iterates to a fixed point of quasi-nonexpansive maps were studied by

Petryshyn and Williamson Jr. [6]. Their analysis was connected with the

convergence of Mann iterates studied by Dotson Jr. [2]. Subsequently, the

convergence of Ishikawa iterates of quasi-nonexpansive mappings in

Banach spaces was discussed by Ghosh and Debnath [3]. In [11], the

weakly convergence theorem for I-asymptotically quasi-nonexpansive

mapping defined in Hilbert space was proved. And in 2006, Rhoades

and Temir [7] proved the weak convergence of the sequence of Mann

iterates to a common fixed point of an I-nonexpansive mapping T and

a nonexpansive mapping I. But the strongly convergence theorem for

I-nonexpansive mapping has not been studied, yet.

The aim of our study is to prove a strongly convergence theorem for

an I-quasi-nonexpansive mapping in a uniformly convex Banach space.

We establish the strongly convergence of the sequence of iterates (1.3) to a

common fixed point of T and I if and only if ( ) ( )( ).,inflim IFTFxd nn I∞→

Our theorems improve and generalize some previous results.

We restate the following lemma which plays important roles in our

proofs.

Lemma 1.1 [8]. Suppose that X is a uniformly convex Banach space

and 10 <≤≤< qtp n  for all positive integers n. Also suppose that

{ }nx  and { }ny  are two sequences in X such that ,suplim rxnn ≤∞→

rynn ≤∞→suplim  and ( ) rytxt nnnnn =−+∞→ 1suplim  hold for

some .0≥r  Then .0lim =−∞→ nnn yx
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2. Main Results

Lemma 2.1. Let C be a nonempty closed convex subset of a normed

space X. Let CCT →:  be an I-quasi-nonexpansive mapping and I be a

nonexpansive mapping on C. Suppose the sequence { }nx  is generated by

(1.3). If ( ) ( ) ,1 ∅≠= IFTFF I&  then ∗
∞→ − xxnnlim  exists for any

.1Fx ∈∗

Proof. For any ,1Fx ∈∗

∗
+ −≤ xxn 10

( ) ∗−−+= xxaTya nnnn 1

( ) ( ) ( )∗∗ −−+−= xxaxTya nnnn 1

( ) ∗∗ −−+−≤ xxaxIya nnnn 1

( ) ∗∗ −−+−≤ xxaxya nnnn 1

( ) ( ) ( ) ( ) ∗∗∗ −−+−′−+−′= xxaxxaxTxaa nnnnnnn 11

( ) ( ) ∗∗∗ −−+−′−+−′≤ xxaxxaaxIxaa nnnnnnnn 11

( ) ( ) ∗∗∗ −−+−′−+−′≤ xxaxxaaxxaa nnnnnnnn 11

.∗−≤ xxn

Thus the sequence { }∗− xxn  is decreasing, so ∗
∞→ − xxnnlim

exists for any .1Fx ∈∗  It also implies that { }nx  is bounded. The proof is

completed.

Lemma 2.2. Let X be a uniformly convex Banach space and C be

a nonempty closed convex subset of X. Let IT ,  and { }nx  be same as in

Lemma 2.1. If ,1 ∅≠F  then .0lim =−∞→ nnn xTx
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Proof. By Lemma 2.1, for any ,1Fx ∈∗  ∗
∞→ − xxnnlim  exists.

Assume .0lim ≥=− ∗
∞→ cxxnn  Since

∗−≤ xyn0

( ) ∗−′−+′= xxaTxa nnnn 1

( ) ∗∗ −′−+−′≤ xxaxTxa nnnn 1

( ) ∗∗ −′−+−′≤ xxaxIxa nnnn 1

( ) ∗∗ −′−+−′≤ xxaxxa nnnn 1

,∗−≤ xxn

taking lim sup on both sides in above inequality, we have

.suplim cxynn ≤− ∗
∞→ (2.1)

Since T is I-quasi-nonexpansive,

,∗∗∗ −≤−≤− xyxIyxTy nnn

which implies that .suplim cxTynn ≤− ∗
∞→

Further, cxxnn =− ∗
+∞→ 1lim  means that

( ) ( ) .lim cxxbxTya nnnnn =−+− ∗∗
∞→

Applying Lemma 1.1, we obtain

.0lim =−∞→ nnn xTy (2.2)

Next,

∗∗ −+−≤− xTyTyxxx nnnn

∗−+−≤ xIyTyx nnn

∗−+−≤ xyTyx nnn
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gives

.inflimlim ∗
∞→

∗
∞→ −≤−= xyxxc nnnn (2.3)

By (2.1) and (2.3),

.lim cxynn =− ∗
∞→ (2.4)

Now, cxynn =− ∗
∞→lim  is expressible as

( ) ( ) .lim cxxbxTxa nnnnn =−′+−′ ∗∗
∞→

In addition, we have

∗
∞→

∗
∞→ −≤− xIxxTx nnnn suplimsuplim

.lim cxxnn =−≤ ∗
∞→

Hence, it follows from Lemma 1.1 that

.0lim =−∞→ nnn xTx (2.5)

The proof is completed.

Theorem 2.3. Let X be a uniformly convex Banach space and ITC ,,

and { }nx  be same as in Lemma 2.2.

(1) If ( ) ( ) ,1 ∅≠= IFTFF I  then 1F  is a closed set.

(2) { }nx  converges strongly to a common fixed point of T and I if and

only if ( ) .0,inflim 1 =∞→ Fxd nn

Proof. (1) Let { } 1Fn ⊂ξ  be such that xn →ξ  as .∞→n  Then

.2 xxIxxTxxTx nnnnn −ξ≤−ξ+ξ−≤−ξ+ξ−=−

This implies that .xTx =  Also,

.2 xxIxxIx nnn −ξ≤−ξ+ξ−=−

So, x is a common fixed point of T and I. Thus 1F  is a closed set.

(2) Suppose that { }nx  converges strongly to a fixed point q of .1F

Then .0lim =−∞→ qxnn  Since ( ) ,,0 1 qxFxd nn −≤≤  we have

( ) .0,inflim 1 =∞→ Fxd nn
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Conversely, suppose that ( ) .0,inflim 1 =∞→ Fxd nn  For any ,1Fx ∈∗

by Lemma 2.1, we have .0 1
∗∗

+ −≤−≤ xxxx nn  Thus,

( ) ( ).,,0 111 FxdFxd nn ≤≤ +

So, ( )1,lim Fxd nn ∞→  exists. Furthermore, since ( ) ,0,inflim 1 =∞→ Fxd nn

we have

( ) .0,lim 1 =∞→ Fxd nn (2.6)

We now prove that { }nx  is a Cauchy sequence.

For any ,0>ε  since ( ) ,0,lim 1 =∞→ Fxd nn  there exists natural number

1N  such that when ,1Nn ≥  ( ) .
3

, 1
ε<Fxd n  Thus, there exists 1Fx ∈∗

such that for above ε there exists positive integer 12 NN ≥  such that as

2Nn ≥

.
2
ε<− ∗xxn

Now for arbitrary ,, 2Nmn ≥  consider

.
22

ε=ε+ε<−+−≤− ∗∗ xxxxxx mnmn

This implies { }nx  is a Cauchy sequence. Therefore, there exists Cp ∈

such that { }nx  converges strongly to p. In addition, pxnn =∞→lim  and

( ) 0,lim 1 =∞→ Fxd nn  give that ( ) ,0, 1 =Fpd  1F  is closed as indicated in

Theorem 2.3(1), therefore .1Fp ∈  The proof is completed.

Corollary 2.4. Let X be a uniformly convex Banach space and ITC ,,

and { }nx  be same as in Lemma 2.1. If ,1 ∅≠F  T  satisfies Condition (A)

and ( )( ) ,0,inflim =∞→ IFxd nn  then { }nx  converges to a common random

fixed point of T and I.

Proof. For any ,1Fx ∈∗  by Lemma 2.1, for each ,Ω∈ω

( ) ( )ω−ω ∗
∞→ xxnnlim  exists. Let it be c for some .0≥c  If ,0=c  then

there is nothing to prove.
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If ,0>c  then by Lemma 2.2, .0lim =−∞→ nnn xTx  Moreover,

∗∗
+ −≤− xxxx nn 1

gives that

.infinf
11

1
∗

∈
∗

+∈
−≤− ∗∗ xxxx nFxnFx

That implies that ( ) ( ).,,0 111 FxdFxd nn ≤≤ +  Thus ( )1,lim Fxd nn ∞→

exists.

Since T satisfies Condition (A), we have

( )( )( )., TFxdfTxx nnn ≥−

It follows from (2.5) that we have ( )( )( ) .0,lim ≤∞→ TFxdf nn  Since f is a

nondecreasing function with ( ) ,00 =f  therefore, ( )( ) .0,lim =∞→ TFxd nn

Further, by ( )( ) 0,inflim =∞→ IFxd nn  and ,1 ∅≠F  we get

( ) .0,inflim 1 =∞→ Fxd nn

It follows from Theorem 2.3 that { }nx  converges to the common random

fixed point of T and I. This completes the proof.
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