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Abstract

In this paper, we use fixed point theorem due to Avery and Peterson to
prove the existence of the triple positive pseudo-symmetric solutions to
a three-point second-order p-Laplacian integrodifferential boundary
value problem.

1. Introduction

The existence of solutions of second order multi-point boundary value
problems with p-Laplacian has been studied by many authors using
the nonlinear alternative of Leray-Schauder, coincidence degree theory,
the upper and lower solution method and fixed point theorem in cones
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(see [1-2, 4-7] and references therein). Very recently, by the monotone
iterative technique, Ahmad and Nieto [1] studied the existence of triple
positive pseudo-symmetric solutions for the following three-point
boundary value problem with p-Laplacian

1+n
(vp @) +a) £t xO)+ | F K@ x(@)doy =0, te(0.1),
x(0) =0, x(n) =x(1), 0 <n<1,

where p > 1, y,(s) = s/ s["7%

In this paper, we consider the following three-point boundary value

problems

(bp @) + a(t){f(t, )+ [, 1 u(a»da} ~0. te@1, @D
2

u(0) = u(n), w(1) =pu'(), 0<n<1, (1.2)

where B <0, p >1, ¢,(s)=4s |p_2, let ¢, be the inverse of ¢,. Here,

we study the second-order three-point boundary value problems with
p-Laplacian under the conditions of that f, a, v and H are pseudo-

symmetric in ¢ about % on (0,1). To the best of our knowledge, this

problem has not been studied before. Our main tool is the fixed point
theorem due to Avery and Peterson.

2. Preliminaries and Lemmas

Definition 2.1. A functional x € E is said to be pseudo-symmetric
about % on [0, 1], if x is symmetric over the interval [0, n], that is,
x(t) = x(n—t) for t € [0, n].

Let y and 6 be nonnegative continuous convex functionals on K, o be a
nonnegative continuous concave functional on K, and y be a nonnegative

continuous functional on K. Then for positive real numbers a, b, ¢ and d,
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we define the following convex sets:
K(y, d) = {x e K|vy(x) < dj,
K(y,a,b,d)={x € K|b < a(x), y(x) < d},
K(y,0,a,b,¢,d)=1{x € K|b < a(x), 0(x) <c, y(x) < d},
R(y, v, a,d) = {x € K|a < y(x), v(x) < d}.

Lemma 2.1 [3]. Let K be a cone in a Banach space E. Let y and 9 be
nonnegative continuous convex functionals on K, o be a nonnegative
continuous concave functional on K, and y be a nonnegative continuous
functional on K satisfying y(Ax) < Ay(x) for 0 <A <1, such that for

some positive numbers M and d,

a(x) < y(x) and | x| < My(x) (2.1)

forall x € K(y, d). Suppose T : K(y,d)— K(y,d) is completely continuous

and there exist positive numbers a, b and c with a < b such that

(Cy) {xeK(v,0,0,b,c,d)a(x)>b} =D and o(Tx) > b for x e K(y,0,
a, b, ¢, d),

(Cy) oTx) > b for x € K(y, o, b, d) with 6(Tx) > c,
(C3) 0¢R(y,w,a,d) and y(Tx)<a for x € R(y, v, a, d), with
y(x) = a.
Then T has at least three fixed points x1, x93 and x3 € m such that
v(x;)<d fori=1,2, 3,
b<a(xy), a<wy(xy) with a(xg) < b and y(x3) < a.

Throughout the paper, we assume the following conditions hold:
(Hy) f:]0,1]x[0, ©) — [0, o) is continuous nondecreasing in u, and

for any fixed u € [0, ©), f(¢, u) is pseudo-symmetric in ¢ about g on

(0, 1);
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(Hy) H :[0,1]x][0,1]x[0, ©) — [0, ®) is continuous nondecreasing
in u, and for any fixed (&, u) < [0,1]x[0, ), H(t, &, u) is pseudo-symmetric

in ¢ about g on (0, 1);

(H3) af(t) € L(0,1) is nonnegative on (0, 1) and pseudo-symmetric in ¢
about % on (0, 1). Further, a(¢)#0 on any nontrivial compact subinterval
of (0, 1).

n

Lemma 2.2. For any u € K, we have u(t) > ol|u|, te {E, n}, where

o= —n)(l _%)-1.

Proof. For any u € K, we define

fun-t), teln-1,0]
”““‘t@, e 0.1,

and note that u, is nonnegative, concave and symmetric on [n -1, 1]

n

with | u, || = | u|. It follows from the concavity and symmetry of u, that

ul(t-2) @ -nvn, ce[n1]
lal(1-2) a0 ee[2a]

which, in view of u,(t) = u(t) on [0, 1], yields

uy(t) 2

-1
ult) = | u ||(1 —g) minfl - n+s,1-8), telo,1]

So, for ¢ e {g n}, ut) > |u (1 - n)(1 _g]_l.

Let E =C[0,1] be Banach space equipped with norm ||u|= 62ta<)§| u(t)]
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and K be a cone in E defined by K = {u € E : u is nonnegative, concave

on [0, 1], pseudo-symmetric about % on [0, 1] and min u(t)> of u |}
—<i<n
2

Define an operator T : K — E by

3 s
Bog [ j n2 a(s){f (s, u(s))+ J.ﬂ H(s, & u(t)) dé} ds]
2
+ J-:‘Pq U;a(r){f(r, u(t)) + J-gtH(r, g, u(i))dg} dTJ ds
t a n
(Tu)(t) =1+ f 0%[ J' 32 a(t){f(t, u(t))+ j T2 H(r, &, u(E_,))dE_} d’t} ds, 0<t< %

2 s
B%[ K a(s){f(s, o)+ [ Hs. u(@»da} ds}
2

It is obvious that u is a solution of problems (1.1) and (1.2) if and only if

Tu = u.

Lemma 2.3. Suppose (H;), (Hg) and (Hs) hold. Then T : K — K is

completely continuous.

Proof. For each u € K, let v = Tu. Then,

a a
) - ¢q[ [?at) {f(r, u(e)+ [ 2 H u(a))da}dr} 2.2

n
(6p ) - —a(t>{f(t, )+ [ * Hee & u(a))da} <o. @y

So v = Tu 1is concave.
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Next, we show Tu is pseudo-symmetric about g on [0,1]. For

t e {g, n}, we have

L (.n n
I; g [Isz a(t) {f(ﬂ u(t)) + JTZ H(t, €, u(&))d&} d’t} ds

- I : ¢q{ j 2 a(x) {f(r, u(t)) + j % H(x, &, u(&))d&} dt]ds

] n
- J.tn g J.g a(t) {f(l', u(r)) + I 2 H(r, €, u(g))da}drld&.

n—-t

= Ln b Iﬂs a(t) {f(‘t, u(t)) + Iﬂr H(z, &, u(&))d&}dt}ds.
2 2

Thus, for any ¢ e [g, n} (n -t e {0, gD, we obtain

n .
(Tu)(n —t) = o, [If a(s) {f(s, u(s)) + Iﬂ H(s, &, u(i))dé}dsJ
2

+ J'th)q [J‘%S a(r) {f(r, u(t)) + J.%T H(x, &, u(E_,))dE_} d‘c]ds

= (Tu)(t).
We can get (Tu)'(gj = 0 by the symmetry of Tu on [0, n]. And for
t e [g, 1}, the concavity of Tu implies that (Tu)' (¢) < 0. Therefore,
(Tu)(0) = (Tu)(n) = (Tu) (1) = (Tw) (n) = 0.

Consequently, we have (Tu)(t) > 0 as (Tu) is concave. And it is obvious

that min(Tw)(t) > of Tu |, for % < t < n. Hence, we obtain that TK c K.
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3. Main Result

Let the nonnegative continuous concave functional o on K, the
nonnegative continuous convex functionals 0, y and the nonnegative

continuous functional y be defined on the cone K by

a(w) = min |u@)|, 7v()=0(w) = y(u) = (I)nax| u(t) |
<t<1

—<t<
9 n

for u € K. Clearly,
o0(u) < a(u) < 0(u) = y(u) = y(u). (3.1)
By Lemma 2.2, we have
a(u) = of u||. (3.2)
From (3.1) and (3.2), we know (2.1) hold.
Let

L= Bd)q[j‘ng a(s)ds} + Jé %[J‘%S a(t)drjds, N = J.; d)q(j‘%s a(t)dr}ds.

Theorem 3.1. Suppose (H;), (Hy) and (Hg) hold. Let 0 < a < b < od,
and the following conditions hold,

(A1) fleu®) + [ H & ue)dz < 4, F] fort € [0.1].w e 0. d]

2

(Aa) 70 ) + [ HC. & ule)ds < 6% for t € 0.1, u < [0, a],
2

(A3) ft, ) + | ;H(t, £ u(e))de > ¢p(GiNj fort [g n}, ue [b, %}
2

Then BVP (1.1) and (1.2) have at least three pseudo-symmetric positive
solutions uy, us and ug such that

max|y(t)| <d  fori=1,23 b< _n;lfnl w ()], max|u ()] <d,
Mo

a < (I)gtasxll us(t)| < % with _n::ilnl us(t)| < b and 52?£>(1| us(t)| < a.
Sst<
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Proof. Firstly, we check 7' : K(y,d)— K(y,d) is completely continuous
operator.

If u € K(y, d), then y(u) < d. From (A;), we have

Tu) = Tult
v(Tw) = max| Tut)|

ut s
- B%[ [ 2ats {ﬂs, uls)+ [ Hls. u(@))da}dsJ
2
+ . ¢q{ [ at {f(t, ue)+ [, HE & u(g))dg} df} ds
2 2 2
a s
< %B%[If a(s)ds} + %J‘é %Ué a(r)dr}ds = %L =d.

Therefore, T : K(y, d) — K(y, d). Standard applications of Arzela-Ascoli

Theorem imply that 7T is completely continuous operator.

We choose u(t) = 4Tbt, 0 <t < 1. Itis easy to check that

u(t) e K(y, 0, a, b, %, d)

and
au) = oc[4—btj >b
n
for
Nos<
g ST
So

{u € K(y, 0, o, b,%, d)|a(u) > b} = .
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Thus, for u e K(y, 0, a, b, %, dj, one has b < u(t) < %. We obtain

a(Tu) = min | Tu(t)| = o max| Tu(t) |
0<t<1

—<i<
9 n

n s
- c{wq{jj als) {f(s, o)+ [, His. & u(a»da}ds}
2

+ Jé bg U; a(r) {f(r, u(t)) + Jé H(t, &, u(é))d&}dr]ds}
1 s .
> G,[ﬂ bg Uﬂ a(t) {f(r, u(t)) + .[ﬂ H(z, &, u(&))d&} er ds
2 2 9

b ! s b
zGG—NJ'ﬂq)q Iﬂa(r)dr ds = 2N =b.
2 2

Therefore, condition (C;) of Lemma 2.1 is satisfied.

Secondly, we show (Cy) of Lemma 2.1 is satisfied. From (3.1), we
have a(Tu) = min | Tu(t)| > o6(Tu) > b, for all u e K(y, a, b, d) with
A<i<y
2

b

Finally, we show condition (C3) of Lemma 2.1 is also satisfied.
Obviously, as wy(0) =0 < a, there holds 0 ¢ R(y, vy, a, d). Suppose
u € R(y, v, a, d) with y(«) = a. Then, by condition (As), we get

¥(Tu) = max| (Tu) ¢) |

a4 s
= Bd’q["f a(s) {f(S, u(s)) + jﬂ H(s, &, u(é))dé}ds}
2
+ ; ¢q( | 3 a(v) {f(r, u(x)) + Ig H(x, &, u(&))di} dTJ ds

ul 1 s
< %B%[If a(s)ds} + %J.g ¢Q(J.ga(r)d1}ds = %L = a.
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According to Lemma 2.1, there exist three positive pseudo-symmetric
solutions u;, ug and ug for BVP (1.1) and (1.2) such that

(1]

(2]

(3]

(4]

(5]

(6]

(7]

max @) £d fori=1,2,3, b< min|u(t maxu t)|<d,
1 1

—<t<
g=t=n

a < max| us(t)| < b with min | us(t)| < b and (r)nax| us(t)| < a.
(e}

0<t<1
<
9 n
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