TRIPLE POSITIVE PSEUDO-SYMMETRIC SOLUTIONS TO A THREE-POINT SECOND-ORDER INTEGRODIFFERENTIAL BOUNDARY VALUE PROBLEM WITH \boldsymbol{p}-LAPLACIAN

YANG LIU ${ }^{1,2}$, CHUANZHI BAI ${ }^{2}$, DAPENG XIE ${ }^{1,2}$ and CHUNLI WANG ${ }^{1,2}$
${ }^{1}$ Department of Mathematics
Yanbian University
Yanji 133000, P. R. China
${ }^{2}$ Department of Mathematics
Huaiyin Teachers College
Huaian, Jiangsu 223300, P. R. China
e-mail: czbai8@sohu.com

Abstract

In this paper, we use fixed point theorem due to Avery and Peterson to prove the existence of the triple positive pseudo-symmetric solutions to a three-point second-order p-Laplacian integrodifferential boundary value problem.

1. Introduction

The existence of solutions of second order multi-point boundary value problems with p-Laplacian has been studied by many authors using the nonlinear alternative of Leray-Schauder, coincidence degree theory, the upper and lower solution method and fixed point theorem in cones 2000 Mathematics Subject Classification: 34B10, 34B18.

Keywords and phrases: fixed point theorem, positive pseudo-symmetric solutions, p-Laplacian, cone.
Received August 18, 2007
(see [1-2, 4-7] and references therein). Very recently, by the monotone iterative technique, Ahmad and Nieto [1] studied the existence of triple positive pseudo-symmetric solutions for the following three-point boundary value problem with p-Laplacian

$$
\begin{gathered}
\left(\psi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+a(t)\left\{f(t, x(t))+\int_{t}^{\frac{1+\eta}{2}} K(t, \zeta, x(\zeta)) d \zeta\right\}=0, \quad t \in(0,1) \\
x(0)=0, x(\eta)=x(1), 0<\eta<1
\end{gathered}
$$

where $p>1, \psi_{p}(s)=s|s|^{p-2}$.
In this paper, we consider the following three-point boundary value problems

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime}(t)\right)\right)^{\prime}+\alpha(t)\left\{f(t, u(t))+\int_{\frac{\eta}{2}}^{t} H(t, \xi, u(\xi)) d \xi\right\}=0, \quad t \in(0,1), \tag{1.1}\\
u(0)=u(\eta), u(1)=\beta u^{\prime}(\eta), \quad 0<\eta<1 \tag{1.2}
\end{gather*}
$$

where $\beta<0, p>1, \phi_{p}(s)=s|s|^{p-2}$, let ϕ_{q} be the inverse of ϕ_{p}. Here, we study the second-order three-point boundary value problems with p-Laplacian under the conditions of that f, a, u and H are pseudosymmetric in t about $\frac{\eta}{2}$ on $(0,1)$. To the best of our knowledge, this problem has not been studied before. Our main tool is the fixed point theorem due to Avery and Peterson.

2. Preliminaries and Lemmas

Definition 2.1. A functional $x \in E$ is said to be pseudo-symmetric about $\frac{\eta}{2}$ on $[0,1]$, if x is symmetric over the interval $[0, \eta]$, that is, $x(t)=x(\eta-t)$ for $t \in[0, \eta]$.

Let γ and θ be nonnegative continuous convex functionals on K, α be a nonnegative continuous concave functional on K, and ψ be a nonnegative continuous functional on K. Then for positive real numbers a, b, c and d,
we define the following convex sets:

$$
\begin{aligned}
& K(\gamma, d)=\{x \in K \mid \gamma(x)<d\}, \\
& K(\gamma, a, b, d)=\{x \in K \mid b \leq \alpha(x), \gamma(x) \leq d\}, \\
& K(\gamma, \theta, \alpha, b, c, d)=\{x \in K \mid b \leq \alpha(x), \theta(x) \leq c, \gamma(x) \leq d\}, \\
& R(\gamma, \psi, a, d)=\{x \in K \mid a \leq \psi(x), \gamma(x) \leq d\} .
\end{aligned}
$$

Lemma 2.1 [3]. Let K be a cone in a Banach space E. Let γ and θ be nonnegative continuous convex functionals on K, a be a nonnegative continuous concave functional on K, and ψ be a nonnegative continuous functional on K satisfying $\psi(\lambda x) \leq \lambda \psi(x)$ for $0 \leq \lambda \leq 1$, such that for some positive numbers M and d,

$$
\begin{equation*}
\alpha(x) \leq \psi(x) \quad \text { and } \quad\|x\| \leq M \gamma(x) \tag{2.1}
\end{equation*}
$$

for all $x \in \overline{K(\gamma, d)}$. Suppose $T: \overline{K(\gamma, d)} \rightarrow \overline{K(\gamma, d)}$ is completely continuous and there exist positive numbers a, b and c with $a<b$ such that
$\left(\mathrm{C}_{1}\right)\{x \in K(\gamma, \theta, \alpha, b, c, d) \mid \alpha(x)>b\} \neq \varnothing$ and $\alpha(T x)>b$ for $x \in K(\gamma, \theta$, $\alpha, b, c, d)$,
$\left(\mathrm{C}_{2}\right) \alpha(T x)>b$ for $x \in K(\gamma, \alpha, b, d)$ with $\theta(T x)>c$,
$\left(\mathrm{C}_{3}\right) \quad 0 \notin R(\gamma, \psi, a, d)$ and $\psi(T x)<a$ for $x \in R(\gamma, \psi, a, d)$, with $\psi(x)=a$.

Then T has at least three fixed points x_{1}, x_{2} and $x_{3} \in \overline{K(\gamma, d)}$ such that

$$
\begin{aligned}
& \gamma\left(x_{i}\right) \leq d \quad \text { for } i=1,2,3 \\
& b<\alpha\left(x_{1}\right), \\
& a<\psi\left(x_{2}\right) \text { with } \alpha\left(x_{2}\right)<b \text { and } \psi\left(x_{3}\right)<a .
\end{aligned}
$$

Throughout the paper, we assume the following conditions hold:
$\left(\mathrm{H}_{1}\right) f:[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous nondecreasing in u, and for any fixed $u \in[0, \infty), f(t, u)$ is pseudo-symmetric in t about $\frac{\eta}{2}$ on $(0,1)$;
$\left(\mathrm{H}_{2}\right) \quad H:[0,1] \times[0,1] \times[0, \infty) \rightarrow[0, \infty)$ is continuous nondecreasing in u, and for any fixed $(\xi, u) \in[0,1] \times[0, \infty), H(t, \xi, u)$ is pseudo-symmetric in t about $\frac{\eta}{2}$ on $(0,1)$;
$\left(\mathrm{H}_{3}\right) a(t) \in L(0,1)$ is nonnegative on $(0,1)$ and pseudo-symmetric in t about $\frac{\eta}{2}$ on $(0,1)$. Further, $a(t) \not \equiv 0$ on any nontrivial compact subinterval of $(0,1)$.

Lemma 2.2. For any $u \in K$, we have $u(t) \geq \sigma\|u\|, t \in\left[\frac{\eta}{2}, \eta\right]$, where $\sigma=(1-\eta)\left(1-\frac{\eta}{2}\right)^{-1}$.

Proof. For any $u \in K$, we define

$$
u_{\eta}(t)= \begin{cases}u(\eta-t), & t \in[\eta-1,0] \\ u(t), & t \in[0,1],\end{cases}
$$

and note that u_{η} is nonnegative, concave and symmetric on $[\eta-1,1]$ with $\left\|u_{\eta}\right\|=\|u\|$. It follows from the concavity and symmetry of u_{η} that

$$
u_{\eta}(t) \geq \begin{cases}\|u\|\left(1-\frac{\eta}{2}\right)^{-1}(1-\eta+t), & t \in\left[\eta-1, \frac{\eta}{2}\right] \\ \|u\|\left(1-\frac{\eta}{2}\right)^{-1}(1-t), & t \in\left[\frac{\eta}{2}, 1\right]\end{cases}
$$

which, in view of $u_{\eta}(t)=u(t)$ on [0, 1], yields

$$
u(t) \geq\|u\|\left(1-\frac{\eta}{2}\right)^{-1} \min \{1-\eta+t, 1-t\}, \quad t \in[0,1] .
$$

So, for $t \in\left[\frac{\eta}{2}, \eta\right], u(t) \geq\|u\|(1-\eta)\left(1-\frac{\eta}{2}\right)^{-1}$.
Let $E=C[0,1]$ be Banach space equipped with norm $\|u\|=\max _{0 \leq t \leq 1}|u(t)|$
and K be a cone in E defined by $K=\{u \in E: u$ is nonnegative, concave on $[0,1]$, pseudo-symmetric about $\frac{\eta}{2}$ on $[0,1]$ and $\left.\underset{\frac{\eta}{2} \leq t \leq \eta}{\min } u(t) \geq \sigma\|u\|\right\}$.

Define an operator $T: K \rightarrow E$ by

$$
(T u)(t)=\left\{\begin{array}{l}
\beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s)\left\{f(s, u(s))+\int_{\frac{\eta}{2}}^{s} H(s, \xi, u(\xi)) d \xi\right\} d s\right) \\
+\int_{\eta}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
\beta \phi_{q}\left(\int_{s}^{\frac{\eta}{2}} a(\tau)\left\{f(\tau, u(\tau))+\int_{\tau}^{\frac{\eta}{2}} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s, \quad 0 \leq t \leq \frac{\eta}{2}, \\
\\
+\int_{t}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s, \quad \frac{\eta}{2} \leq t \leq 1 .
\end{array}\right.
$$

It is obvious that u is a solution of problems (1.1) and (1.2) if and only if $T u=u$.

Lemma 2.3. Suppose $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ hold. Then $T: K \rightarrow K$ is completely continuous.

Proof. For each $u \in K$, let $v=T u$. Then,

$$
\begin{align*}
& v^{\prime}(t)=\phi_{q}\left(\int_{t}^{\frac{\eta}{2}} a(\tau)\left\{f(\tau, u(\tau))+\int_{\tau}^{\frac{\eta}{2}} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau,\right. \tag{2.2}\\
& \left(\phi_{p}\left(v^{\prime}(t)\right)\right)^{\prime}=-a(t)\left\{f(t, u(t))+\int_{t}^{\frac{\eta}{2}} H(t, \xi, u(\xi)) d \xi\right\} \leq 0 . \tag{2.3}
\end{align*}
$$

So $v=T u$ is concave.

Next, we show $T u$ is pseudo-symmetric about $\frac{\eta}{2}$ on $[0,1]$. For $t \in\left[\frac{\eta}{2}, \eta\right]$, we have

$$
\begin{aligned}
& \int_{0}^{\eta-t} \phi_{q}\left(\int_{s}^{\frac{\eta}{2}} a(\tau)\left\{f(\tau, u(\tau))+\int_{\tau}^{\frac{\eta}{2}} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
= & -\int_{\eta}^{t} \phi_{q}\left(\int_{\eta-s}^{\frac{\eta}{2}} a(\tau)\left\{f(\tau, u(\tau))+\int_{\tau}^{\frac{\eta}{2}} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
= & \int_{t}^{\eta} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\eta-\tau}^{\frac{\eta}{2}} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
= & \int_{t}^{\eta} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s .
\end{aligned}
$$

Thus, for any $t \in\left[\frac{\eta}{2}, \eta\right]\left(\eta-t \in\left[0, \frac{\eta}{2}\right]\right)$, we obtain
$(T u)(\eta-t)=\beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s)\left\{f(s, u(s))+\int_{\frac{\eta}{2}}^{s} H(s, \xi, u(\xi)) d \xi\right\} d s\right)$

$$
\begin{aligned}
& +\int_{t}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
= & (T u)(t) .
\end{aligned}
$$

We can get $(T u)^{\prime}\left(\frac{\eta}{2}\right)=0$ by the symmetry of $T u$ on $[0, \eta]$. And for $t \in\left[\frac{\eta}{2}, 1\right]$, the concavity of $T u$ implies that $(T u)^{\prime}(t) \leq 0$. Therefore,

$$
(T u)(0)=(T u)(\eta) \geq(T u)(1)=\beta(T u)^{\prime}(\eta) \geq 0
$$

Consequently, we have $(T u)(t) \geq 0$ as $(T u)$ is concave. And it is obvious that $\min (T u)(t) \geq \sigma\|T u\|$, for $\frac{\eta}{2} \leq t \leq \eta$. Hence, we obtain that $T K \subseteq K$.

3. Main Result

Let the nonnegative continuous concave functional α on K, the nonnegative continuous convex functionals θ, γ and the nonnegative continuous functional ψ be defined on the cone K by

$$
\alpha(u)=\min _{\frac{\eta}{2} \leq t \leq \eta}|u(t)|, \quad \gamma(u)=\theta(u)=\psi(u)=\max _{0 \leq t \leq 1}|u(t)|
$$

for $u \in K$. Clearly,

$$
\begin{equation*}
\sigma \theta(u) \leq \alpha(u) \leq \theta(u)=\gamma(u)=\psi(u) \tag{3.1}
\end{equation*}
$$

By Lemma 2.2, we have

$$
\begin{equation*}
\alpha(u) \geq \sigma\|u\| \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we know (2.1) hold.
Let

$$
L=\beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s) d s\right)+\int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau) d \tau\right) d s, \quad N=\int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau) d \tau\right) d s
$$

Theorem 3.1. Suppose $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ hold. Let $0<a<b \leq \sigma d$, and the following conditions hold,

$$
\begin{aligned}
& \left(\mathrm{A}_{1}\right) f(t, u(t))+\int_{\frac{\eta}{2}}^{t} H(t, \xi, u(\xi)) d \xi \leq \phi_{p}\left(\frac{d}{L}\right) \text { for } t \in[0,1], u \in[0, d] \\
& \left(\mathrm{A}_{2}\right) f(t, u(t))+\int_{\frac{\eta}{2}}^{t} H(t, \xi, u(\xi)) d \xi<\phi_{p}\left(\frac{a}{L}\right) \text { for } t \in[0,1], u \in[0, a] \\
& \left(\mathrm{A}_{3}\right) f(t, u(t))+\int_{\frac{\eta}{2}}^{t} H(t, \xi, u(\xi)) d \xi>\phi_{p}\left(\frac{b}{\sigma N}\right) \text { for } t \in\left[\frac{\eta}{2}, \eta\right], u \in\left[b, \frac{b}{\sigma}\right]
\end{aligned}
$$

Then BVP (1.1) and (1.2) have at least three pseudo-symmetric positive solutions u_{1}, u_{2} and u_{3} such that

$$
\begin{aligned}
& \max _{0 \leq t \leq 1}\left|u_{i}(t)\right| \leq d \quad \text { for } i=1,2,3, b<\min _{\frac{\eta}{2} \leq t \leq \eta}\left|u_{1}(t)\right|, \max _{0 \leq t \leq 1}\left|u_{1}(t)\right| \leq d, \\
& a<\max _{0 \leq t \leq 1}\left|u_{2}(t)\right|<\frac{b}{\sigma} \text { with } \min _{\frac{\eta}{2} \leq t \leq \eta}\left|u_{2}(t)\right|<b \text { and } \max _{0 \leq t \leq 1}\left|u_{3}(t)\right|<a
\end{aligned}
$$

Proof. Firstly, we check $T: \overline{K(\gamma, d)} \rightarrow \overline{K(\gamma, d)}$ is completely continuous operator.

If $u \in \overline{K(\gamma, d)}$, then $\gamma(u) \leq d$. From $\left(\mathrm{A}_{1}\right)$, we have $\gamma(T u)=\max _{0 \leq t \leq 1}|T u(t)|$

$$
\begin{aligned}
= & \beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s)\left\{f(s, u(s))+\int_{\frac{\eta}{2}}^{s} H(s, \xi, u(\xi)) d \xi\right\} d s\right) \\
& +\int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
\leq & \frac{d}{L} \beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s) d s\right)+\frac{d}{L} \int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau) d \tau\right) d s=\frac{d}{L} L=d
\end{aligned}
$$

Therefore, $T: \overline{K(\gamma, d)} \rightarrow \overline{K(\gamma, d)}$. Standard applications of Arzela-Ascoli Theorem imply that T is completely continuous operator.

We choose $u(t)=\frac{4 b t}{\eta}, 0 \leq t \leq 1$. It is easy to check that

$$
u(t) \in K\left(\gamma, \theta, \alpha, b, \frac{b}{\sigma}, d\right)
$$

and

$$
\alpha(u)=\alpha\left(\frac{4 b t}{\eta}\right)>b
$$

for

$$
\frac{\eta}{2} \leq t \leq \eta
$$

So

$$
\left\{\left.u \in K\left(\gamma, \theta, \alpha, b, \frac{b}{\sigma}, d\right) \right\rvert\, \alpha(u)>b\right\} \neq \varnothing .
$$

Thus, for $u \in K\left(\gamma, \theta, \alpha, b, \frac{b}{\sigma}, d\right)$, one has $b \leq u(t) \leq \frac{b}{\sigma}$. We obtain

$$
\begin{aligned}
\alpha(T u)= & \min _{\frac{\eta}{2} \leq t \leq \eta}|T u(t)| \geq \sigma \max _{0 \leq t \leq 1}|T u(t)| \\
= & \sigma\left\{\beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s)\left\{f(s, u(s))+\int_{\frac{\eta}{2}}^{s} H(s, \xi, u(\xi)) d \xi\right\} d s\right)\right. \\
& \left.+\int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s\right\} \\
\geq & \sigma \int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
\geq & \sigma \frac{b}{\sigma N} \int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau) d \tau\right) d s=\frac{b}{N} N=b .
\end{aligned}
$$

Therefore, condition (C_{1}) of Lemma 2.1 is satisfied.
Secondly, we show (C_{2}) of Lemma 2.1 is satisfied. From (3.1), we have $\alpha(T u)=\min _{\frac{\eta}{2} \leq t \leq \eta}|T u(t)| \geq \sigma \theta(T u)>b$, for all $u \in K(\gamma, \alpha, b, d)$ with $\theta(T u)>\frac{b}{\sigma}$.

Finally, we show condition $\left(\mathrm{C}_{3}\right)$ of Lemma 2.1 is also satisfied. Obviously, as $\psi(0)=0<a$, there holds $0 \notin R(\gamma, \psi, a, d)$. Suppose $u \in R(\gamma, \psi, a, d)$ with $\psi(u)=a$. Then, by condition $\left(\mathrm{A}_{2}\right)$, we get

$$
\begin{aligned}
\psi(T u)= & \max _{0 \leq t \leq 1}|(T u)(t)| \\
= & \beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s)\left\{f(s, u(s))+\int_{\frac{\eta}{2}}^{s} H(s, \xi, u(\xi)) d \xi\right\} d s\right) \\
& +\int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau)\left\{f(\tau, u(\tau))+\int_{\frac{\eta}{2}}^{\tau} H(\tau, \xi, u(\xi)) d \xi\right\} d \tau\right) d s \\
\leq & \frac{a}{L} \beta \phi_{q}\left(\int_{\eta}^{\frac{\eta}{2}} a(s) d s\right)+\frac{a}{L} \int_{\frac{\eta}{2}}^{1} \phi_{q}\left(\int_{\frac{\eta}{2}}^{s} a(\tau) d \tau\right) d s=\frac{a}{L} L=a .
\end{aligned}
$$

According to Lemma 2.1, there exist three positive pseudo-symmetric solutions u_{1}, u_{2} and u_{3} for BVP (1.1) and (1.2) such that

$$
\begin{aligned}
& \max _{0 \leq t \leq 1}\left|u_{i}(t)\right| \leq d \quad \text { for } i=1,2,3, \quad b<\min _{\frac{\eta}{2} \leq t \leq \eta}\left|u_{1}(t)\right|, \max _{0 \leq t \leq 1}\left|u_{1}(t)\right| \leq d, \\
& a<\max _{0 \leq t \leq 1}\left|u_{2}(t)\right|<\frac{b}{\sigma} \text { with } \min _{\frac{\eta}{2} \leq t \leq \eta}\left|u_{2}(t)\right|<b \text { and } \max _{0 \leq t \leq 1}\left|u_{3}(t)\right|<a .
\end{aligned}
$$

References

[1] B. Ahmad and Juan J. Nieto, The monotone iterative technique for three-point second-order integrodifferential boundary value problems with p-Laplacian, Bound. Value Probl., Vol. 2007, Article ID 57481, 9 pp., 2007. doi: 10.1155/2007/57481.
[2] R. Avery and J. Henderson, Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian, J. Math. Anal. Appl. 277 (2003), 395-404.
[3] R. Avery and A. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (2001), 313-322.
[4] Y. Guo and W. Ge, Three positive solutions for one-dimensional p-Laplacian, J. Math. Anal. Appl. 286 (2003), 491-508.
[5] X. He and W. Ge, Twin positive solutions for one-dimensional p-Laplacian boundary value problem, Nonlinear Anal. 56 (2004), 975-984.
[6] J. Li and J. Shen, Existence of three positive solutions for boundary value problem with p-Laplacian, J. Math. Anal. Appl. 311 (2005), 457-465.
[7] Bing Liu, Positive solutions of three-point boundary value problems for the one-dimensional p-Laplacian with infinitely many singularities, Appl. Math. Leet. 17 (2004), 655-661.

