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Abstract

In this paper, we use fixed point theorem due to Avery and Peterson to
prove the existence of the triple positive pseudo-symmetric solutions    to
a three-point second-order p-Laplacian integrodifferential boundary
value problem.

1. Introduction

The existence of solutions of second order multi-point boundary value
problems with p-Laplacian has been studied by many authors using
the nonlinear alternative of Leray-Schauder, coincidence degree theory,
the upper and lower solution method and fixed point theorem in cones



YANG LIU et al.140

(see [1-2, 4-7] and references therein). Very recently, by the monotone
iterative technique, Ahmad and Nieto [1] studied the existence of triple
positive pseudo-symmetric solutions for the following three-point
boundary value problem with p-Laplacian
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In this paper, we consider the following three-point boundary value
problems
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( ) ( ) ( ) ( ) ,10,1,0 <η<η′β=η= uuuu (1.2)

where ,1,0 ><β p  ( ) ,2−=φ p
p sss  let qφ  be the inverse of .pφ  Here,

we study the second-order three-point boundary value problems with

p-Laplacian under the conditions of that uaf ,,  and H are pseudo-

symmetric in t about 
2
η

 on ( ).1,0  To the best of our knowledge, this

problem has not been studied before. Our main tool is the fixed point
theorem due to Avery and Peterson.

2. Preliminaries and Lemmas

Definition 2.1. A functional Ex ∈  is said to be pseudo-symmetric

about 
2
η

 on [ ],1,0  if x is symmetric over the interval [ ],,0 η  that is,

( ) ( )txtx −η=  for [ ].,0 η∈t

Let γ and θ be nonnegative continuous convex functionals on K, α be a

nonnegative continuous concave functional on K, and ψ be a nonnegative

continuous functional on K. Then for positive real numbers cba ,,  and d,
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we define the following convex sets:

( ) ( ){ },, dxKxdK <γ|∈=γ

( ) ( ) ( ){ },,,,, dxxbKxdbaK ≤γα≤|∈=γ

( ) ( ) ( ) ( ){ },,,,,,,, dxcxxbKxdcbK ≤γ≤θα≤|∈=αθγ

( ) ( ) ( ){ }.,,,, dxxaKxdaR ≤γψ≤|∈=ψγ

Lemma 2.1 [3]. Let K be a cone in a Banach space E. Let γ and θ be

nonnegative continuous convex functionals on K, α be a nonnegative

continuous concave functional on K, and ψ be a nonnegative continuous

functional on K satisfying ( ) ( )xx λψ≤λψ  for ,10 ≤λ≤  such that for

some positive numbers M and d,

( ) ( )xx ψ≤α    and   ( )xMx γ≤ (2.1)

for all ( )., dKx γ∈  Suppose ( ) ( )dKdKT ,,: γ→γ  is completely continuous

and there exist positive numbers ba,  and c with ba <  such that

( )1C  ( ) ( ){ } ∅≠>α|αθγ∈ bxdcbKx ,,,,,  and ( ) bTx >α  for ( ,, θγ∈ Kx

),,,, dcbα

( )2C  ( ) bTx >α  for ( )dbKx ,,, αγ∈  with ( ) ,cTx >θ

( )3C  ( )daR ,,,0 ψγ∉  and ( ) aTx <ψ  for ( ),,,, daRx ψγ∈  with

( ) .ax =ψ

Then T has at least three fixed points 21, xx  and ( )dKx ,3 γ∈  such that

( ) dxi ≤γ    for ,3,2,1=i

( ),1xb α<  ( )2xa ψ<  with ( ) bx <α 2  and ( ) .3 ax <ψ

Throughout the paper, we assume the following conditions hold:

( )1H  [ ] [ ) [ )∞→∞× ,0,01,0:f  is continuous nondecreasing in u, and

for any fixed [ ),,0 ∞∈u  ( )utf ,  is pseudo-symmetric in t about 
2
η

 on

( );1,0
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( )2H  [ ] [ ] [ ) [ )∞→∞×× ,0,01,01,0:H  is continuous nondecreasing

in u, and for any fixed ( ) [ ] [ ),,01,0, ∞×∈ξ u  ( )utH ,, ξ  is pseudo-symmetric

in t about 
2
η

 on ( );1,0

( )3H  ( ) ( )1,0Lta ∈  is nonnegative on ( )1,0  and pseudo-symmetric in t

about 
2
η

 on ( ).1,0  Further, ( ) 0≡/ta  on any nontrivial compact subinterval

of ( ).1,0

Lemma 2.2. For any ,Ku ∈  we have ( ) ,utu σ≥  ,,
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ttu

ttu
tu

and note that ηu  is nonnegative, concave and symmetric on [ ]1,1−η

with .uu =η  It follows from the concavity and symmetry of ηu  that
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which, in view of ( ) ( )tutu =η  on [ ],1,0  yields
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Let [ ]1,0CE =  be Banach space equipped with norm ( )tuu
t 10

max
≤≤

=



TRIPLE POSITIVE PSEUDO-SYMMETRIC SOLUTIONS … 143

and K be a cone in E defined by { uEuK :∈=  is nonnegative, concave

on [ ],1,0  pseudo-symmetric about 
2
η

 on [ ]1,0  and ( )tu
t η≤≤

η
2

min }.uσ≥

Define an operator EKT →:  by
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It is obvious that u is a solution of problems (1.1) and (1.2) if and only if

.uTu =

Lemma 2.3. Suppose ( ),H1  ( )2H  and ( )3H  hold. Then KKT →:  is

completely continuous.

Proof. For each ,Ku ∈  let .Tuv =  Then,

( ) ( ) ( )( ) ( )( ) ,,,,2 2
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So Tuv =  is concave.
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Next, we show Tu  is pseudo-symmetric about 
2
η

 on [ ].1,0  For
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( ) ( ).tTu=

We can get ( ) 0
2

=





 η′Tu  by the symmetry of Tu  on [ ].,0 η  And for

,1,
2 



η∈t  the concavity of Tu  implies that ( ) ( ) .0≤′ tTu  Therefore,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .010 ≥η′β=≥η= TuTuTuTu

Consequently, we have ( ) ( ) 0≥tTu  as ( )Tu  is concave. And it is obvious

that ( )( ) ,min TutTu σ≥  for .
2

η≤≤η
t  Hence, we obtain that .KTK ⊆
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3. Main Result

Let the nonnegative continuous concave functional α on K, the
nonnegative continuous convex functionals γθ,  and the nonnegative

continuous functional ψ  be defined on the cone K by

( ) ( ) ( ) ( ) ( ) ( )tuuuutuu
tt 10

2

max,min
≤≤η≤≤η

=ψ=θ=γ=α

for .Ku ∈  Clearly,

( ) ( ) ( ) ( ) ( ).uuuuu ψ=γ=θ≤α≤σθ (3.1)

By Lemma 2.2, we have

( ) .uu σ≥α (3.2)

From (3.1) and (3.2), we know (2.1) hold.

Let

( ) ( ) ( )∫ ∫ ∫∫∫ η η ηη

η
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2

1

2 22

2 ., dsdaNdsdadssaL
s

q

s

qq

Theorem 3.1. Suppose ( ),H1  ( )2H  and ( )3H  hold. Let ,0 dba σ≤<<

and the following conditions hold,

( )1A  ( )( ) ( )( )∫ η 





φ≤ξξξ+

t

p L
d

dutHtutf
2

,,,  for [ ] [ ],,0,1,0 dut ∈∈

( )2A  ( )( ) ( )( )∫ η 
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

φ<ξξξ+

t

p L
a

dutHtutf
2
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Then BVP (1.1) and (1.2) have at least three pseudo-symmetric positive

solutions 21, uu  and 3u  such that
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≤≤

ifordtui
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 ( ) ,min 1

2
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t η≤≤η

<  ( ) ,max 110
dtu

t
≤
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( )
σ

<<
≤≤
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t

2
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max  with ( ) btu
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<
η≤≤η

2

2

min  and ( ) .max 310
atu

t
<

≤≤
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Proof. Firstly, we check ( ) ( )dKdKT ,,: γ→γ  is completely continuous

operator.

If ( ),, dKu γ∈  then ( ) .du ≤γ  From ( ),A1  we have

( ) ( )tTuTu
t 10

max
≤≤

=γ
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


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η

Therefore, ( ) ( ).,,: dKdKT γ→γ  Standard applications of Arzela-Ascoli

Theorem imply that T is completely continuous operator.

We choose ( ) .10,
4

≤≤
η

= t
bt

tu  It is easy to check that

( ) 


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Thus, for ,,,,,, 




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σ
αθγ∈ dbbKu  one has ( ) .
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Therefore, condition ( )1C  of Lemma 2.1 is satisfied.

Secondly, we show ( )2C  of Lemma 2.1 is satisfied. From (3.1), we

have ( ) ( ) ( ) ,min
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bTutTuTu
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Finally, we show condition ( )3C  of Lemma 2.1 is also satisfied.
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According to Lemma 2.1, there exist three positive pseudo-symmetric

solutions 21, uu  and 3u  for BVP (1.1) and (1.2) such that

( ) dtuit
≤

≤≤ 10
max    for ,3,2,1=i   ( ) ,min 1

2

tub
t η≤≤

η
<  ( ) ,max 110

dtu
t

≤
≤≤

( )
σ

<<
≤≤

btua
t 210

max  with ( ) btu
t

<
η≤≤η

2

2

min  and ( ) .max 310
atu

t
<

≤≤
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